Table S1: Annotated genes with functions in sugar fermentation

Enzyme/Protein	S. cerevisiae		H. uvarum	%aa identity	
Hexose transporter	HXT1	YHR094C	HuHXT1	HUVA_0D00240	56
	НХТ2	YMR011W	HuHXT2	HUVA_0L01320	54
	НХТЗ	YDR345C		HUVA_0L01320	55
	HXT4	YHR092C		HUVA_0L01320	54
	HXT5	YHR096C		HUVA_0L01320	52
	НХТ6	YDR343C		HUVA_0L01320	57
	НХТ7	YDR342C		HUVA_0L01320	57
	НХТ8	YJL214W		HUVA_0L01320	56
	НХТ9	YJL219W		HUVA_0L01320	56
	HXT10	YFL011W		HUVA_0L01320	52
	HXT11	YOL156W		HUVA_0L01320	55
	HXT12	YIL170W		HUVA_0L01320	48
	HXT13	YEL069C		HUVA_0L01320	50
	HXT14	YNL318C	HuHXT14	HUVA_0B02500	33
	HXT15	YDL245C		HUVA_0L01320	49
	HXT16	YJR158W		HUVA_0L01320	49
	HXT17	YNR072W		HUVA_0L01320	50
Hexokinase/Glucokinase	HXK1	YFR053C	HuHXK2	HUVA_0D01460	71
	НХК2	YGL253W		HUVA_0D01460	72
	Glk1	YCL040W		HUVA_0D01460	36
Phosphoglucose isomerase	PGI1	YBR196C	HuPGI1	HUVA_0A01480	71
Phosphofructokinase	PFK1	YGR240C	HuPFK1	HUVA_0H01120	57
	PFK2	YMR205C	HuPFK2	HUVA_0V00740	56
Aldolase	FBA1	YKL060C	HuFBA1	HUVA_0G01470	76
Triosephoshate isomerase	TPI1	YDR050C	HuTPI1	HUVA_0D00480	68
Triosephosphate-	TDH1	YJL052W	HuTDH3	HUVA_0B02070	78
dehydrogenase	TDH2	YJR009C		HUVA_0B02070	82
	TDH3	YGR192C		HUVA_0B02070	83
Phoshpoglycerate kinase	PGK1	YCR012W	HuPGK1	HUVA_0F00810	73
Phosphoglycerate mutase	GPM1	YKL152C	HuGPM1	HUVA_0B02300	76
Enolase	ENO1	YGR254W	HuENO2	HUVA_0H00510	82
	ENO2	YHR174W		HUVA_0H00510	81
Pyruvate kinase	PYK1	YAL038W	HuPYK1	HUVA_0S00560	77
Pyruvate decarboxylase	PDC1	YLR044C	HuPDC1	HUVA_0S00750	78
Alcohol dehydrogenase	ADH1	YOL086C	HuADH1	HUVA_0N01010	72
	ADH2	YMR303C		HUVA_0N01010	71
	ADH3	YMR083W	HuADH3	HUVA_0N01040	67

Amino acid identities were calculated from global sequence alignments using the needle Programm of the EMBOSS software package. The location of each homolog in *H. uvarum* is given by a trivial name and the systemic gene name of the annotation.

¹The three annotated hexose transporters of *H. uvarum* are indicated. A BLAST search against the nucleotide sequence translated in all six frames independent of annotated open reading frames shows the presence of five more sequences with homology to hexose transporters in the *H. uvarum* genome. Whether these encode functional homologs or pseudogenes remains to be determined.

² The corrected sequence of *HuPFK1* was used for this comparison as explained in the main manuscript, rather than the annotated genome sequence.

Functional group		S. cerevisiae		%aa identity					
Higher alcohols									
Amino acid permeases	GAP1	YKR039W	HuGAP1	HUVA_0Q00300	66				
Transaminases	BAT1	YHR208W	HuBAT1	HUVA_0G00720	67				
	BAT2	YJR148W		HUVA_0G00720	64				
	ARO8	YGL202W	HuARO8	HUVA_0J01320	46				
	ARO9	YHR137W	HuARO9	HUVA_0000700	30				
Decarboxylases	PDC1	YLR044C	HuPDC1	HUVA_0S00750	78				
	THI3	YOL086C	HuTHI3	HUVA_0N01010	72				
Dehydrogenases	ADH1	YOL086C	HuADH1	HUVA_0N01010	72				
	ADH3	YMR083W	HuADH3	HUVA_0N01040	67				
	SFA1	YDL168W	HuSFA1	HUVA_0BV00120	57				
	ALD5	YER073W	HuALD5	HUVA_0AA00210	47				
	ALD6	YPL061W	HuALD6	HUVA_0AH00100	54				
	OYE2	YHR179W	HuOYE2	HUVA_0AE00210	47				
	НОМ2	YDR158W	HuHOM2	HUVA_0A00230	70				
Ester compounds									
Acetyl-/Acyltransferases	EEB1	YPL095C	HuEEB1	HUVA_0A01690	41				
	IAH1	YOR126C	HuIAH1	HUVA_0A04760	46				
Glycerol production									
Dehydrogenase	GPD1	YDL022W	HuGPD1	HUVA_0AC00420	46				
Phosphatase	GPP2	YER062C	HuGPP2	HUVA_0Q00600	67				
Processing of aroma compounds from grape ingredients									
Glucanases and Glucosidases	BGL2	YGR282C	HuBGL2	HUVA_0H01180	44				
	GRE2	YOL151W	HuGRE2	HUVA_0A03230	50				
	YPR1	YDR368W	HuYPR1	HUVA_0A00510	49				
	ROT2	YBR229C	HuROT2	HUVA_0V00220	35				
	SGA1	YIL099W	HuSGA1	HUVA_0V00520	31				
	SIM1	YIL123W	HuSIM1	HUVA_0A100100	57				
Xylosidases	GRE3	YHR104W	HuGRE3	HUVA_0M00160	52				
				HUVA_0A04250	27				
				HUVA_0B00860	29				
				HUVA_0AF00390	32				
				HUVA_0M00390	25				
		ANI_1_1358014 ¹		HUVA_0DZ00100	25				

Table S2: Annotated genes with functions in production of aromatic compounds

The table includes annotations not included in the semi automatically annotated data set submitted to Genbank.

¹ Reference: Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, et al. 2007. Genome sequencing and analysis of the versatile cell factory *Aspergillus niger* CBS 513.88. Nat Biotechnol 25:221-231.

Table S3: Annotated genes related to stress response pathways

Functional group	S. cerevisiae			%aa identity	
High osmolarity glycerol (HOG)	SHO1	YER118C	HuSHO1	HUVA 0AF00310	38
	MSB2	YGR014W	HuMSB2		25
	STE20	YHL007C	HuSTE20		23
	STE50	YCL032W	HuSTE50	HUVA_0J00440	30
	CDC42	YLR229C	HuCDC42	HUVA_0A01310	93
	OPY2	YPR075C	HuOPY2	HUVA_0A02790	24
	YPD1	YDL235C	HuYPD1	HUVA_0W00350	33
	SSK2	YNR031C	HuSSK2	HUVA_0D01160	31
	HOG1	YLR113W	HuHOG1	HUVA_0A00590	58
Cell wall integrity (CWI)	MID2	YLR332W	HuMID2	HUVA_0C02040	29
	ROM2	YLR371W	HuROM2	HUVA_0G01240	33
	ROM1	YGR070W		HUVA_0G01240	31
	RHO1	YPR165W	*	HUVA_0AE00480	71
	PKC1	YBL105C	HuPKC1	HUVA_0AQ00100	54
	ВСК1	YJL095W	HuBCK1	HUVA_0AA00400	33
	MKK1	YOR231W	HuMKK1	HUVA_0AH00240	38
	МКК2	YPL140C		HUVA_0AH00240	37
	SLT2	YHR030C	HuSLT2	HUVA_0B02480	69
	KDX1	YKL161C		HUVA_0B02480	50
General stress response (GSR)	CDC25	YLR310C	HuCDC25	HUVA_0Q00190	23
	RAS2	YNL098C	*	HUVA_0AL00310	33
	CYR1	YJL005W	HuCYR1	HUVA_0B02920	41
	BCY1	YIL033C	HuBCY1	HUVA_0A03310	36
	ΤΡΚ1	YJL164C	HuTPK2	HUVA_0M00380	59
	ТРКЗ	YKL166C		HUVA_0M00380	59
	ТРК2	YPL203W		HUVA_0M00380	70
Oxidative stress response (OSR)	YBP1	YBR216C	HuYBP1	HUVA_0P00160	22
	HYR1	YIR037W	HuHYR1	HUVA_0M01240	62
	YAP1	YML007W	HuYAP1	HUVA_0BI00110	24
	SOD1	YJR104C	HuSOD1	HUVA_0D00160	66
	SOD2	YHR008C	HuSOD2	HUVA_0D00380	48
	CTT1	YGR088W	HuCTT1	HUVA_0A02280	43
	GSH1	YJL101C	HuGSH1	HUVA_0F00240	43
	GSH2	YOL049W	HuGSH2	HUVA_0101200	46
	TRX1	YLR043C	HuTRX1	HUVA_0D01370	43
	TRX2	YGR209C	HuTRX2	HUVA_0R00460	26

* Non-syntenic homologs. Most likely false positives due to high sequence conservation in the protein family.

Figure S1: FIGE separation and Southern hybridizations of chromosomes from *H. uvarum*. Chromosomes from *S. cerevisiae* (standard, left lanes) and the adapted type strain of *H. uvarum* described in the main manuscript (right lanes) were separated by FIGE under the conditions indicated below the gels (e.g. upper left corner a separation for 44 h in a gel with 0.9% agarose). DNA was stained with ethidium bromide (left, white bands on gray background). Gels were blotted and hybridized with a mixture of DIG-labeled probes with one probe for the indicated chromosomes of *S. cerevisiae* (e.g. + ScChrXIII in the upper left image) and three different labeled PCR products from the indicated contigs (e.g. Contig 12 shown in red in the upper left image). The latter mixture was used to ensure that each contig is indeed represented by a continuous correctly assembled sequence and gives only one signal. Signals in the hybridization corresponding to the chromosomes in the ethidium bromide stained gels are boxed, with *H. uvarum* chromosomes boxed in red. Estimated chromosome sizes are given at the left of the gels in megabase pairs (Mbp). Hybridizations are ordered by chromosome numbers (I-VII). Note that in FIGE chromosomes migrate inversely correlated to their size. See text and legend to Fig. 3 for more details.

Contig16::CGAGTTGGAGTTGCTACCGTAAGAATCGGAGTTATCGTTACCGTAT GAGCTCTTTTTACCGTAAGAATCGGAGTTATCATTACCATATGAGTTAGAGTTGTC **ATTACCGTAGGAATTGGAGTTGCTACCGTAAGAATCGGAGTTATCGTTACCGTATG** AGCTCTTTTTACCGTAAGAATCGGAGTTATCATTACCATATGAGTTAGAGTTGTCA **TTACCGTAGGAATTGGAGTTGCTACCGTAAGAATCGGAATTATCGTTACCGTATGA** GCTCTTTTTACCGTAAGAATTGGAGTTATCATCATCATAAGAATTTTTCTTACCGT AAGAATTGGAGTTATCGTTACCGTAGGAATTGGAGTTGCTACCGTAAGAATCAGAG **TTATCGTTACCGTAGGAATTGGAGTTGCTACCATATGAGTTAGAGTTATCATTACC ATATGAGTTGGAGTTGCTACCGTATGAGTTAGAGTTATCATTACCATATGAGTTGG** AGTTGCTACCGTATGAGTTAGAGTTATCATTACCATATGAGTTGTCGTTACCGTAG GAATTGCTGTTATCATTACCGTAGGAATTGGAGTTATCGTTACCGTATGAGTTGTC **GTTACCATTAGAGCCAGAATTGTTGTTACCATTGTTACCGAACTTCTTTTGGGCCAA** AGTCAAAACCTTGGTCTACATATTTGGATGCATTAGAACCAAATTGCTCGTTAGCT **TTTTTTTCAACAAATTGTTTAGCGTTATCAAATAAACCCATTTTTAGTTATCTTTT** AAAGTTATTACTACTTGAAAATCTTTTGAAAATTATTGTAAAAATATTTTCTATGGT **TAATTTTCATGTATTTTATTCTAATAATATTTAAAATGTTATTTAATTTAATAGATTA TCTTAACACTTTTTACACACACCCTTGTTTATATAGT**CGTAAATATTTAGACATAT AGATAAATTTTTCAGTATATG::Contig13

Figure S2: Putative sequence of the gap between contigs 13 and 16 of the annotated genome sequence from *H. uvarum*. Sequences in blue and underlined represent the ends of contigs 13 and 16, as indicated. Sequence in black and bold letters was obtained by cloning and Sanger sequencing of four independent PCR products. Since the sequence at the end of contig 16 is highly repetitive, the exact size of the gap cannot be determined.

41 - 43 copies of the rDNA unit

rDNA-unit	RI	DN25-3′	\I	RDN5		RDN18	RDN58	8	RDN25	
			ETS2 NTS1	N NTS2	ETS1		ITS1 ITS	2		ETS
<i>H. uvarum</i> rDNA	1 11 () ()		• <mark>-••</mark> •···				0		1 10 11 10	
S. cerevisiae rDNA	• 11	0.1.1	•••	× -	╾╸				I II	
	1					■ h	igh homolog	y area	AT-rich	GC-rich
Segment	ETS2	NTS1	RDN5	NTS2	ETS1	RDN18	ITS1	RDN58	ITS2	RDN25
H. uvarum [bps]	157	472	120	637	625	1786	290	159	212	3383
S. cerevisiae [bps]	211	915	120	1243	700	1800	362	120	233	3396
Identity [%]	45	33	95	31	61	94	51	89	52	91
B ⊷ 15-25 bp → H 24 bp → 3 bp ← 25-110 bp → 1										
5'- NACTO	C/NAG	r c A	CGTCCG	GTACGT	CGTACC	GTCGTA	ССТ	GA	АССТ	-3′
n =	: 3-5			n =	1		n = 1	n =	5-22	

Figure S3: Arrangement of rDNA units in *H. uvarum* as compared to *S. cerevisiae*. (A) Schematic representation of the localization of rDNA units between contigs 25 and 1. Contig arrows indicate the orientation from 5' to 3' of the annotated sequence, with light and dark blue regions indicating the overlaps of the flanking rDNA units. Genes annotated according to the S. cerevisiae rDNA repeats are given below (*RDN*#), as are the schematic results of sequence alignments with regions of high homology. The table shows lengths and identities of the different sequence parts between *H. uvarum* and *S. cerevisiae* units. ETS1/2 = external transcribed spacers, NTS1/2 = non-transcribed spacers, ITS1/2 = internal transcribed spacers.

(B) Organization and consensus sequence of putative telomeres in *H. uvarum*. Lengths (above) and numbers (below) of conserved sequence elements are indicated. Black letters indicate three bp repeats within the conserved 24 bp motive.

Figure S4

Figure S4: Comparative analysis of specific enzyme activities in the fermentative pathway from *H. uvarum* and *S. cerevisiae* on different carbon sources. Cells from the two yeast species were grown on rich medium with the carbon sources as indicated below. Glucose and fructose were applied in equal amounts to reach the indicated total sugar concentrations. Red colours designate activities in crude extracts from *S. cerevisiae*, blue colours in those from *H. uvarum*. Compare Table 2 in the main text for enzyme abbreviations. Tpi*: in order to show the activities for triosephosphate isomerase in the same graph, they were all diminished by a factor of 10, i.e. the specific activity for *S. cerevisiae* grown on 2 % Glc/Fru is approximately 26.000 mU/mg protein.