Appendix

Table of Contents

Appendix Table S1: The results of the statistical analyses of the figures	2
Appendix Table S2: The results of the statistical analyses of the expanded view figures	3

Appendix Table S1: The results of the statistical analyses of the figures

Α		В	С	D Figure 2E Two-way ANOVA followed by Tukey's multiple comparisons test
	Figure 2A Two-way ANOVA followed by Dunnett's multiple comparisons test (-) 2 hours ns 4 hours ns 8 hours ****	Figure 2B Two-way ANOVA followed by Tuke multiple comparisons test 37°C c ctrl#1 ctrl#2 ns ctrl#1 ASK1#1 ns ctrl#1 ASK1#3 ns ctrl#2 ASK1#1 ns ctrl#2 ASK1#3 ns ASK1#1 ASK1#3 ns	Figure 2D Two-way ANOVA followed by Tukey's multiple comparisons test multintest mult	37°C cold ctrl#1 ctrl#2 ns ***** ctrl#1 ctrl#3 ns ns ctrl#1 ASK1#1 ns **** ctrl#1 ASK1#2 ns **** ctrl#1 ASK1#2 ns **** ctrl#2 ctrl#3 ns **** ctrl#2 ctrl#3 ns **** ctrl#2 ctrl#3 ns **** ctrl#2 ASK1#1 ns **** ctrl#2 ASK1#1 ns **** ctrl#3 ASK1#1 ns **** ctrl#3 ASK1#1 ns **** ctrl#3 ASK1#2 ns **** ctrl#3 ASK1#2 ns **** ctrl#3 ASK1#2 ns ns ASK1#1 ASK1#3 ns ns ASK1#1 ASK1#3 ns ns ASK1#2 ns ns ns
E	Figure 2G Two-way ANOVA followed by Tukey's multiple comparisons test multintegrade test multiple comparisons test multiple compari	Figure 2H Two-way ANOVA followed by multiple comparisons te 37°C DMSO 202190 NS DMSO SB DMSO SB DMSO SB 202474 SB SB 202190 202474 NS	Tukey's st cold **** *** *** *** *** *** *** *** SB SB SB 202190 202474 *** SB SB SB SB SB SB SB SB SB SB SB SB SB	* * * * * * * * * * * * * *
Ι	Two-way ANOVA followed by DMSO DMSO compound Fer-1 U0124	gure 6A Tukey's multiple comparisons test DMSO Fer-1 Fer-1 U0124 U0126 U0124 U0126 U0126	J : Figure 6B K Two-way ANOVA followed by Bonferroni's multiple comparisons test MilliQ	Figure 6C Two-way ANOVA followed by Tukey's multiple comparisons test DMSO DMSO SB202190 compound
	0.625 NS NS 1.25 NS NS 1.25 NS NS 2.5 NS NS 5 **** **** 10 **** NS	ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ***** **** ns *****	Compound Dfx 0.625 ns 1.25 ns 10 *****	SB202190 SB202474 SB202474 0.625 NS NS NS 1.25 NS NS * 2.5 NS NS NS 5 ***** NS ***** 10 ***** NS *****
L	ct#1 ct#1 siRNA	Figure 6D -way ANOVA followed by Tukey's mult ct#1 ct#1 ct#1 ct#2 ct#2 ct#2 ASK1 ASK1 ASK1 ct#3 ASK1 ASK	iple comparisons test ct#2 ct#3 ct#3 ct#3 ASK1 ASK1 ASK1 #1 #1 #2 I ASK1 ASK1 ASK1 ASK1 ASK1 ASK1 ASK1 ASK1	
	312.5 ns ns 625 ns ns 1250 ns ns 2500 ns ns 5000 ns ns 10000 ns ns	#1 #2 #3 #3 #1 #2 NS NS </th <th>#3 #1 #2 #3 #2 #3 #3 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS</th> <th></th>	#3 #1 #2 #3 #2 #3 #3 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS	
Μ		Figure 6G		

-								Fig	ure 6G								
				Two	-way A	NOVA	follow	ed by '	Tukey's	s multi	ple cor	nparis	ons tes	st			
			ct#1	ct#1	ct#1	ct#1	ct#1	ct#2	ct#2	ct#2	ct#2	ct#3	ct#3	ct#3	ASK1 #1	ASK1 #1	ASK1 #2
		SIRINA	ct#2	ct#3	ASK1 #1	ASK1 #2	ASK1 #3	ct#3	ASK1 #1	ASK1 #2	ASK1 #3	ASK1 #1	ASK1 #2	ASK1 #3	ASK1 #2	ASK1 #3	ASK1 #3
		15.625	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
		31.25	ns	ns	ns	ns	ns	ns	ns	*	***	ns	ns	**	ns	ns	ns
		62.5	ns	**	ns	*	*	ns	*	****	****	****	****	****	ns	ns	ns
	ГМ	125	ns	****	ns	*	***	*	***	****	****	****	****	****	ns	ns	ns
	2	250	ns	**	ns	*	****	ns	***	****	****	****	****	****	ns	ns	ns
	RSI	500	ns	*	*	ns	**	ns	***	*	***	****	****	****	ns	ns	ns
		1000	ns	ns	**	ns	ns	ns	***	ns	ns	****	**	***	ns	ns	ns
		2000	ns	ns	*	ns	ns	ns	**	ns	ns	****	ns	*	*	ns	ns
		4000	ns	ns	ns	ns	ns	ns	ns	ns	ns	****	ns	ns	ns	ns	ns

Appendix Table S2: The results of the statistical analyses of the expanded view figures 51 D Figure EV3A А

				ĸ								i iyui	e L V	Л						
				D			Tw	vo-wa	y ANC	DVA fo	ollowe	d by T	Tukey	's mul	tiple c	compa	risons	s test		
<u>:</u> !	Figure	EV2D					DMSO	DMSO	DMSO	DMSO	DMSO	5 μM SB20 2190	5 μM SB20 2190	5 μM SB20 2190	5 μM SB20 2190	5 μM SB20 2474	5 μM SB20 2474	5 μM SB20 2474	20 μM SB20 2190	
Two-wa	ay ANOVA f nultiple com	ollowed by parisons te 37°C	Tukey's st cold		CO	mpound	5 μM SB20 2190	5 μM SB20 2474	20 μM SB20 2190	20 μM SB20 2474	1 μM Fer-1	5 μM SB20 2474	20 μM SB20 2190	20 μM SB20 2474	1 μM Fer-1	20 μM SB20 2190	20 μM SB20 2474	1 μM Fer-1	20 μM SB20 2474	
DMSO Fer-1 ns **** DMSO U0124 ns ***				39.0625	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns			
DMSO	U0124	ns	***		_		ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
DMSO U0124 ns **** DMSO U0126 ns ****			Ξ	156.25	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns			
Fer-1	U0124	ns	****		드	312.5	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Fer-1	U0126	ns	ns		Ę	625	ns	ns	**	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
J0124	U0126	ns	ns ****		as	1250	ns	ns	ns	*	****	*	ns	**	****	***	ns	****	****	
00124 00126 hs		ш	2500	ns	ns	****	ns	****	ns	****	ns	****	****	ns	****	****				
						5000	ns	ns	**	ns	****	ns	**	ns	****	**	ns	****	**	
						10000	ns	ns	**	ns	****	ns	**	ns	****	**	ns	****	**	

<u> </u>	::							Figur	e EV3	3B							
)			Τv	vo-wa	y ANC	DVA fo	ollowe	d by T	[ukey	's mul	tiple c	ompa	risons	s test			
			DMSO	DMSO	DMSO	DMSO	DMSO	5 μM SB20 2190	5 μM SB20 2190	5 μM SB20 2190	5 μM SB20 2190	5 μM SB20 2474	5 μM SB20 2474	5 μM SB20 2474	20 μM SB20 2190	20 μM SB20 2190	20 μM SB20 2474
	COL	npouna	5 μM SB20 2190	5 μM SB20 2474	20 μM SB20 2190	20 μM SB20 2474	1 μM Fer-1	5 μM SB20 2474	20 μM SB20 2190	20 μM SB20 2474	1 μM Fer-1	20 μM SB20 2190	20 μM SB20 2474	1 μM Fer-1	20 μM SB20 2474	1 μM Fer-1	1 μM Fer-1
		15.625	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
		31.25	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	Ţ	62.5	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	5	125	**	ns	*	**	***	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	ကု	250	***	*	****	****	****	ns	ns	ns	*	**	ns	***	ns	ns	ns
	ŝ	500	****	*	****	****	****	ns	****	ns	****	****	**	****	ns	ns	**
	Ω.	1000	ns	ns	****	****	****	ns	****	**	****	****	***	****	**	ns	****
		2000	ns	ns	****	****	****	ns	****	*	****	****	**	****	**	****	****
		4000	ns	ns	****	***	****	ns	****	ns	****	****	*	****	*	****	****

Ε

Η

с I

Π								
$\boldsymbol{\nu}$				Figu	ire EV3C			
		Two-wa	ay ANOVA	followed by	' Tukey's m	ultiple com	parisons te	st
	001	nnound	DMSO	DMSO	DMSO	Fer-1	Fer-1	U0124
	COI	npound	Fer-1	U0124	U0126	U0124	U0126	U0126
		39.0625	ns	ns	ns	ns	ns	ns
		78.125	ns	ns	ns	ns	ns	ns
	Σ	156.25	ns	ns	ns	ns	ns	ns
	느	312.5	ns	ns	ns	ns	ns	ns
	Ę	625	****	ns	****	*	ns	ns
	as	1250	****	ns	****	****	ns	****
	ш	2500	****	ns	****	****	ns	****
		5000	****	ns	****	****	ns	****
		10000	****	ns	****	****	ns	****

5	Figure E	/3D	F	51			Figu	ire EV3E				G	12.			
T١	wo-way ANOVA	A followed			Two-wa	ay ANOVA	followed by	Tukey's m	ultiple com	parisons te	st			Two-v	vay ANOVA	follo
5	by Bonferroni's	multiple s test				DMSO	DMSO	DMSO	SB 202190	SB 202190	SB 202474				DMSO	DI
С	ompound	MilliQ Dfx		cor	npouna	SB 202190	SB 202474	Fer-1	SB 202474	Fer-1	Fer-1		co	mpouna	SB 202190	20
	39.0625	ns			39.0625	ns	ns	*	ns	ns	ns			3.90625	ns	
	78.125	ns			78.125	ns	ns	ns	ns	ns	ns			7.8125	ns	
1	5 156.25	ns		Σ	156.25	ns	ns	ns	ns	ns	ns		1	· 15.625	ns	
	<u> </u>	ns		드	312.5	ns	ns	ns	ns	ns	***		- L	31.25	ns	
	E 625	****		Ę	625	****	ns	****	****	****	****		ς β	62.5	ns	
	Se 1250	****		ras	1250	****	ns	****	****	****	****		SI	125	****	*
I.	ட் ₂₅₀₀	****		Ш	2500	***	ns	****	***	****	****		ш	250	****	
	5000	****			5000	*	ns	****	*	****	****			500	****	
	10000	****			10000	*	ns	****	*	****	****			1000	****	

Two-way ANOVA followed by Tukey's multiple comparisons	test
DMSO DMSO DMSO SB SB 202190 202190	SB 202474
202190 202474 Fer-1 SB Fer-1 SB Fer-1	Fer-1
3.90625 ns ns ns ns ns	ns
7.8125 ns ns ns ns ns	ns
	ns
🔄 31.25 ns ns ns ns ns	ns
ო 62.5 ns ns ns ns ns	ns
រុក 125 **** **** **** ns ns	**
L 250 **** ** **** ns	****
500 **** ns **** ** ***	****
1000 **** ns **** * ****	****

J	::				Fię	gure l	EV4E					
•	Tw	o-way AN	IOVA	follov	ved b	y Tuk	(ey's	multip	ole co	mpar	isons	test
			ct#1	ct#1	ct#1	ct#1	ct#2	ct#2	ct#2	ASK1 #1	ASK1 #1	ASK1 #3
		SIRINA	ct#2	ASK1 #1	ASK1 #3	ASK1 #4	ASK1 #1	ASK1 #3	ASK1 #4	ASK1 #3	ASK1 #4	ASK1 #4
		39.0625	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
		78.125	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	-	156.25	ns	***	ns	ns	***	ns	ns	****	**	ns
	⊇ L]	312.5	ns	****	*	ns	****	ns	ns	****	****	ns
	stin	625	ns	ns	ns	ns	ns	ns	ns	*	ns	ns
	1250		ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	_	2500	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
		5000	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
		10000	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns

K					Fig	gure E	EV4F					
	Т٧	vo-way AN	NOVA	follo	wed b	y Tuk	ey's i	nultip	le co	mpari	isons	test
			ct#1	ct#1	ct#1	ct#1	ct#2	ct#2	ct#2	ASK1 #1	ASK1 #1	ASK1 #3
	:	SIRINA	ct#2	ASK1 #1	ASK1 #3	ASK1 #4	ASK1 #1	ASK1 #3	ASK1 #4	ASK1 #3	ASK1 #4	ASK1 #4
		3.90625	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
		7.8125	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	_	15.625	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	Ν	31.25	ns	ns	****	ns	ns	*	ns	****	ns	***
	2	62.5	ns	ns	****	ns	ns	*	ns	****	ns	****
	RS	125	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
		250	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
		500	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
		1000	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns

							⊦ıgu	re EV4	B							
			Two	-way A	NOVA	follow	ed by	Tukey'	s multij	ple cor	nparis	ons tes	st			
		ct#1	ct#1	ct#1	ct#1	ct#1	ct#2	ct#2	ct#2	ct#2	ct#3	ct#3	ct#3	ASK1 #1	ASK1 #1	ASK1 #2
	SIRINA	ct#2	ct#3	ASK1 #1	ASK1 #2	ASK1 #3	ct#3	ASK1 #1	ASK1 #2	ASK1 #3	ASK1 #1	ASK1 #2	ASK1 #3	ASK1 #2	ASK1 #3	ASK1 #3
F	0.625	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
- L	1.25	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
stin	2.5	***	ns	ns	ns	ns	***	***	**	ns	ns	ns	ns	ns	*	ns
Eras	5	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	10	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns

::							Figu	re EV4	с							
			Two	-way A	NOVA	followe	ed by '	Tukey's	s multi	ple cor	nparise	ons tes	st			
	- DNA	ct#1	ct#1	ct#1	ct#1	ct#1	ct#2	ct#2	ct#2	ct#2	ct#3	ct#3	ct#3	ASK1 #1	ASK1 #1	ASK1 #2
	15.625	ct#2	ct#3	ASK1 #1	ASK1 #2	ASK1 #3	ct#3	ASK1 #1	ASK1 #2	ASK1 #3	ASK1 #1	ASK1 #2	ASK1 #3	ASK1 #2	ASK1 #3	ASK1 #3
	15.625	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	31.25	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
_	62.5	ns	ns	ns	****	ns	ns	ns	****	ns	ns	****	ns	****	ns	****
N	125	****	ns	ns	ns	****	***	ns	****	ns	ns	ns	****	**	**	****
3	250	****	ns	ns	ns	****	****	*	****	ns	ns	ns	****	ns	ns	***
RSI	500	***	ns	ns	ns	*	***	ns	**	ns	ns	ns	*	ns	ns	ns
	1000	*	ns	ns	ns	ns	*	ns								
	2000	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	4000	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns

:!					Fig	ure E	V5A					
ctrl siRNA GPX4 siRNA ASK1 siRNA			#1	#2	#1	#2	#1 #1	#2 #1	#1 #2	#2 #2	#1	#2
#1			`	ns	***	*	***	**	***	**	ns	ns
#2				`	**	*	**	**	***	**	ns	ns
	#1				`	ns	ns	ns	ns	ns	**	**
	#2					`	ns	ns	ns	ns	*	*
	#1	#1					`	ns	ns	ns	***	**
	#2	#1						`	ns	ns	**	**
	#1	#2							`	ns	***	***
	#2	#2								`	**	**
		#1									`	ns
		#2										`
ctrl siRNA	GPX4 siRNA	ASK1 siRNA	One-way ANOVA followed by Tukey's multiple comparisons test									

L