Table S1. 1	The circ-	Amotl1-	AKT1	Distance
-------------	-----------	---------	------	----------

N(res No)	atom	chain	AA (res No)	atom	chain	distance	type
U 40	OP1	A	TYR 152	OH	B	2.41	Phil phil
U 40	OP2	A	LEU 155	CD2	B	3.21	Phil phob
G 41	OP2	A	LYS 158	CD	B	2.44	Phil phil
A 42	OP1	A	LYS 182	NZ	B	3.45	Phil phil
A 45	02'	A	GLU 314	OE1	B	3.17	Phil phil
A 45	N7	A	PHE 358	CZ	B	2.69	Phil phob
A 45	C2	A	LEU 357	CD2	B	1.46	Phil phob
A 45	02'	A	PRO 313	CG	B	1.94	Phil phob
A 45	N6	A	HIS 354	CB	B	1.71	Phil phil
A 45	OP2	A	LYS 297	CE	B	1.79	Phil phil
U 46	04	A	TYR 315	CE1	B	2.86	Phil phil
U 46	N3	A	GLU 278	OE1	B	2.09	Phil phil
U 77	02'	A	HIS 220	ND1	B	2.06	Phil phil
U 77	C5'	A	ASP 221	OD2	B	2.42	Phil phil
G 78	OP2	A	ARG 222	CG	B	2.95	Phil phil
G 78	OP1	A	ASP 221	CG	B	0.8	Phil phil
G 78	OP2	A	THR 219	OG1	B	3.38	Phil phil
C79	OP1	A	MET 147	CE	B	2.43	Phil phob
G 80	OP1	A	PHE 150	0	B	3.32	Phil phob
G 80	OP2	A	MET 147	0	В	3.09	Phil phob
G 80	05'	A	ASN 148	ND2	B	2.23	Phil phil
G 81	06	A	THR 146	OG1	B	3.43	Phil phil
G 81	OP2	A	ASN 148	OD1	B	1.91	Phil phil
G 81	OP1	A	LYS 170	NZ	B	2.86	Phil phil
C 82	OP2	A	LYS 170	CD	B	2.51	Phil phil
C.82	N4	A	ASN 148	0	B	1.17	Phil phil
C 82	N4	A	GLU 149	N	B	2.26	Phil phil
A 83	OP2	A	LYS 170	0	B	3.01	Phil phil
A 83	N6	Δ	VAL 145	CA	B	3.09	Phil phob
A 83	NG	Δ	GUI 149	OE1	B	0.81	Phil phil
A 83	C5'	A	ALA 171	CB	B	2.88	Phil phob
C 85	02	A	ABG 200	NH2	B	3.23	Phil phil
11.86	02	Δ	GLN 203	NE2	B	3.16	Phil phil
11.86	02	Δ	ARG 200	NH2	B	2.86	Phil phil
6.87	C1'	A	GLN 203	NE2	B	3.06	Phil phil
A 90	03'		GUI 418	0	B	2 21	Phil phil
C 91	OP1	Δ.	175 420	CG.	B	3.14	Phil phil
C 91	P	A	GUU 418	0	B	3.21	Phil phil
1197	02'	Δ	175 284	CF	B	1.87	Phil phil
000	C4'		G111 228	OE1	B	1.54	Phil phil
000	03'	A	ALA 212	CB	B	2.44	Phil phob
099	02		ARG 206	NH1	B	2 11	Phil phil
000	OP2	A	ARG 174	CD	B	3 41	Phil phil
A 100	OP2	Δ	175 214	CB	B	2.74	Phil phil
A 100	0.12	Δ	ARG 206	ch	B	3 33	Phil phil
A 100	0P1	A	GLU 228	N	B	24	Phil phil
A 100	02'	A	LEU 202	0	B	1.26	Phil phob
A 100	OP1	Δ	ALA 212	0	B	1.22	Phil phob
A 100	OPI	A	MET 227	C	B	3.16	Phil phob
A 100	N3	A	GLN 203	CG	B	2.35	Phil phil
A 100	03'	Δ	LEI 213	0	B	0.81	Phil phob
6 101	0.002	Δ	TYR 215	N	B	2.18	Phil phil
G 101	OP1	A	1EU 213	CG	B	0.92	Phil phob
G 101	03'	A	ASN 199	0	B	2.76	Phil phil
G 101	03'		SEB 216	0G	B	2.97	Phil phil
G 101	007		175 214	N	B	1 34	Phil phil
G 101	CA'		LEU 202	CD2	B	0.6	Phil phob
G 101	67	Δ	ARG 200	NH1	B	0.6	Phil phil
6 101	OP2		VAL 226	0	B	3.17	Phil phob
C101	N/4		TYR 215	CE1	P	2.22	Phil phil
C102	CS		ASN 199	N	B	3.43	Phil phil
C102	002	A	SER 216	0	B	2.07	Phil phil
C102	04		ARG 200	CG	B	2.07	Phil phil
G 103	06		VAL 145	N	B	1 1 2	Phil phob
6 104	06		THR 145	OG1	P	1.13	Phil phil
6 104	06	A	6111140	OE2	P	2.37	Phil phil
6 104	N7		VAL 145	C	P	2.14	Phil phak
C10F	NI4	A	TUD 140	cer	P	2.10	Phil shill
CT02	1 194	A	TEN 145	COZ	D	5.16	Philiphi

The table reporting a list of atoms "in contact" (within the distance cutoff) with relative distances less than $3.5 \text{\AA}.$

Table S3. Accessible Surface Area table of circ-Amolt1-Akt1 complex

Buried area upon the complex formation (A ²) 4527.2
Buried area upon the complex formation (%) 9.08
Interface area (A ²) 2263.6
Interface area circ-AMOTL1 (%) 7.24
Interface area AKT1 (%) 12.17
POLAR Buried area upon the complex formation (A ²) 1888.0
POLAR Interface (%) 41.70
POLAR Interface area (A ²) 944.0
NON POLAR Buried area upon the complex formation (A ²) 2639.2
NON POLAR Interface (%) 58.30
NON POLAR Interface area (A ²) 1319.6
Residues at the interface_total (n) 93
Residues at the interface_circ-AMOTL1 34
Residues at the interface_AKT1 59

Table S2. The circ-Amotl1-PDK1 Distance

N(res No)	atom	chain	AA (res No)	atom	chain	distance	type
G 3	N2	A	GLY 285	CA	B	2.77	Phil phob
A4	02'	A	GLY 285	N	B	3.35	Phil phob
A4	02'	A	LEU 289	CD2	B	2.69	Phil phob
A4	C2	A	ASN 286	ND2	B	2.42	Phil phil
A 5	C4	A	LEU 289	CD1	B	0.82	Phil phob
A 5	C2	A	TYR 288	CD2	В	2.32	Phil phil
A 5	C2'	A	GLN 292	OE1	B	2.12	Phil phil
G 6	04'	A	GLN 292	OE1	B	2.6	Phil phil
U 14	02	A	ASN 286	ND2	B	2.33	Phil phil
U 15	04'	A	ASN 286	CB	B	1.67	Phil phil
U 15	C4'	A	GLU 287	N	B	3.07	Phil phil
U 15	02'	A	GLY 285	0	B	1.53	Phil phob
U 17	N3	A	GLN 247	NE2	B	2.49	Phil phil
U 17	04	A	THR 245	CG2	B	2.97	Phil phil
A 18	C8	A	GLY 285	0	B	2.91	Phil phob
C28	03'	A	ILE 87	CD1	B	2.89	Phil phob
C 28	C4'	A	GLU 90	OE2	B	2.25	Phil phil
C 29	C5'	A	ILE 87	CD1	B	2.94	Phil phob
G 54	OP2	A	GLU 80	CB	B	2.62	Phil phil
G 56	OP1	A	LYS 83	CD	B	2.93	Phil phil
U 68	03'	A	LYS 77	CE	B	2.37	Phil phil
U 68	C5	A	PRO 74	CG	B	1.54	Phil phob
U 69	04	A	PRO 72	0	B	3.43	Phil phob
U 69	OP1	А	PHE 147	CB	B	2.17	Phil phob
U 69	C5	A	PRO 74	CD	B	2.75	Phil phob
U 69	C4'	A	TYR 146	0	B	0.99	Phil phil
U 69	04	A	GLN 73	CB	B	1.36	Phil phil
U 69	OP1	A	LYS 77	CE	B	2.59	Phil phil
C70	OP1	A	THR 148	CG2	B	2.98	Phil phil
C 70	N4	Δ	GIN 73	NE2	B	129	Phil phil
C70	P	Δ	PHE 147	CA	B	3.25	Phil phob
C71	002	Δ	ARG 131	NH2	B	272	Phil phil
C71	N4	Δ	GIN 73	NE2	B	2.72	Phil phil
G 107	02'	Δ	UE119	CD1	B	2.71	Phil phob
A 100	02	*	CIN 150	051	0	2.05	Thil photo
A 108	03	A	GLN 150	OEL	Б	2	Phil phil
A 108	03	A	LYS 115	NZ	B	2.69	Phil phil
0 109	OPZ	A	LYS 115	NZ	В	3.26	Phil phil
U 109	OP2	A	LEU 155	CD2	B	3.3	Phil phob
U 109	OP2	A	GLN 150	CD	B	0.78	Phil phil
A 115	N6	A	GLN 73	CB	B	3.18	Phil phil
A 115	N6	A	PRO 72	0	B	2.13	Phil phob
C146	03'	A	SER 105	N	B	1.2	Phil phil
C146	02'	A	ARG 106	CG	B	2.62	Phil phil
C146	03'	A	THR 104	C	B	0.4	Phil phil
C146	03'	A	ALA 103	C	B	3.27	Phil phob
C147	05'	A	ALA 103	C	B	0.89	Phil phob
C147	OP1	A	GLU 101	0	B	2.08	Phil phil
C147	P	A	SER 105	N	B	1.81	Phil phil
C147	C5'	A	THR 104	N	B	0.81	Phil phil
C147	OP1	A	LEU 102	0	B	2.08	Phil phob
A 148	OP2	A	ALA 103	CB	B	1.79	Phil phob
A 148	OP2	A	LEU 102	C	B	3.35	Phil phob
22222000000000000000000000000000000000	12.200 AVER	1987			-	sources and the	
G 149	OP1	A	ARG 78	I NHZ	B	3.29	Phil phil

The table reporting a list of atoms "in contact" (within the distance cutoff) with relative distances less than 3.5Å.

Table S4. Accessible Surface Area table of circ-Amolt1-PDK1 complex

Buried area	upon the complex formation (A ²) 3920.5
Buried area	upon the complex formation (%) 8.94
Interface are	ea (A ²) 1960.25
Interface are	ea circ-AMOTL1 (%) 6.56
Interface are	ea PDK1 (%) 14.00
POLAR Burie	ed area upon the complex formation (A ²) 1730.3
POLAR Inter	face (%) 44.13
POLAR Inter	face area (A ²) 865.15
NON POLAR	Buried area upon the complex formation (A ²) 2190.1
NON POLAR	Interface (%) 55.86
NON POLAR	Interface area (A ²) 1095.05
Residues at	the interface_total (n) 101
Residues at	the interface_circ-AMOTL1 42
Residues at	the interface_PDK1 59

Table S5. circ-Amolt1-AKT1 interaction overview

mber of interacting residues circ-AMOTL1 25
mber of interacting residues AKT1 41
mber of hydrophilic-hydrophobic interaction 19
mber of hydrophilic-hydrophilic interaction 49
mber of hydrophobic-hydrophobic interaction 0

Table S6. circ-Amolt1-PDK1 interaction overview Number of interacting residues circ-AMOTL1 25 Number of interacting residues PDK1 32 Number of hydrophilic-hydrophilic interaction 21 Number of hydrophilic-hydrophilic interaction 33 Number of hydrophibic-hydrophibic interaction 0

а

1. circ-FAM21C, circ-MTHFD1L, circ-NRIP3, circ-METTL25, circ-WWC2, circ-KANK1, circ-MAP3K4, circ-PARL, circ-WDFY2, circ-DHX34 11. circ-TGFBR1, circ-MRRF, circ-CARKD, circ-LINC-PINT, circ-PICALM, circ-PRIM2, circ-SLC25A26, circ-CLK1, circ-VRK1, circ-L3MBTL2 21. circ-DUSP3, circ-VLDLR-AS1, circ-PRPF4B, circ-BIRC6, circ-SMU1, circ-SUN1, circ-RANGAP1, circ-MCM7, circ-TSPAN14, circ-ZNF250 31. circ-BBS7, circ-COMMD1, circ-MAN1B1, circ-SLC9A7, circ-WIPI1, circ-CAMK1, circ-POLR3H, circ-TM2D1, circ-TCF4, circ-TRIM37 41. circ-NCEH1, circ-PPM1D, circ-BCAT1, circ-SLC31A1, circ-GCLM, circ-LPGAT1, circ-C6orf106, circ-TMTC3, circ-PSMD5, circ-SLC30A5 51. circ-MTX2, circ-ELP6, circ-SLC25A17, circ-NR4A3, circ-LRR1, circ-MATR3, circ-POLR2E, circ-CNOT2, circ-ANKRD13C, circ-ERCC6 61. circ-PEX1, circ-VPS37B, circ-RNF38, circ-NR2F6, circ-PARP2, circ-PSAP, circ-DYRK1A, circ-RHEB, circ-ZNF292, circ-HAUS6 71. circ-MCCC2, circ-LRBA, circ-FNTA, circ-TBC1D14, circ-COPA, circ-HPS5, circ-ZDHHC5, circ-MRPL30, circ-LRCH3, circ-MED13L 81. circ-RPS12, circ-VPS13C, circ-INTS1, circ-GRAMD4, circ-LINC01031, circ-TUBGCP4, circ-OTUD4, circ-CHD7, circ-ZNF462, circ-FAM192A 91. circ-EPS15, circ-CHFR, circ-LINC01473, circ-ASCC3, circ-SLC30A6, circ-VPS41, circ-CCNB1IP1, circ-LRP11, circ-PHIP, circ-EP400 101. circ-NRF1, circ-LILRA5, circ-PPIA, circ-USP54, circ-FIRRE, circ- CRIM1, circ-PHF8, circ-TERF2IP, circ-XPO1, circ-ATG3 111. circ-MPHOSPH8, circ-ABL2, circ-WARS2, circ-RPS6KC1, circ-CCNY, circ-RNF13, circ-HN1, circ-AK308944, circ-ZBTB40, circ-MTSS1 121. circ-TRAM1, circ-CAPZB, circ-CCT6B, circ-GIT2, circ-RERE, circ-FMN2, circ-CHD2, circ-PDE7B, circ-CCDC6, circ-NPTN 131. circ-DEK, circ-KIF20B, circ-KIF16B, circ-GINS1, circ-FAM196A, circ-RHOBTB3, circ-UGP2, circ-SMPD2, circ-HECTD1, circ-AHI1 141. circ-ST3GAL5, circ-KDM1A, circ-CSRP2BP, circ-TFF1, circ-TAB2, circ-SMARCA5, circ-DPP8, circ-SEPT10, circ-BIRC2, circ-LINC00669 151. circ-PPM1B, circ-OSBPL10, circ-UBXN7, circ-AGO1, circ-SYNCRIP, circ-ZNF483, circ-YTHDC2, circ-DCP2, circ-ZNF639, circ-VPRBP 161. circ-ATAD2B, circ-PMAIP1, circ-RNF217, circ-RPS29, circ-VAV2, circ-SNRNP40, circ-LRP6, circ-CTPS1, circ-TYW1B, circ-ZFYVE26 171. circ-RBBP8, circ-WWC3, circ-EXOC4, circ-STAT2, circ-NDUFS1, circ-LARGE, circ-GPC1, circ-GIGYF2, circ-EMC1, circ-ARHGEF9 181. circ-TMCC2, circ-ARL6IP1, circ-ACLY, circ-AMOTL1, circ-EZH2, circ-ITGA3, circ-REXO4, circ-ZNF66, circ-TOPBP1, circ-EIF2B3 191. circ-TBCD, circ-TBC1D1, circ-CCDC57, circ-SPG11, circ-GPS2, circ-ZRANB1, circ-FOXN3, circ-STXBP5, circ-CDK8, circ-ATP13A1

Fig S1. Expression of circ-Amotl1 decreased cell apoptosis

(a) Names of circular RNAs in Fig 1a.

(b) Transfection with circ-Amotl1 increased expression of circ-Amotl1 in Ypen cells.

(c) Proliferation assays were performed in Ypen cells transfected with circ-Amotl1 or the control vector. Circ-Amotl1 expression enhanced cell proliferation (n=3).

(d) Single cell proliferation was determined. Over-expression of circ-Amotl1 increased proliferation of YPEN cells (n=20).

(e) Circ-Amotl1- and vector-transfected YPEN cells were subject to cell survival assay. Transfection with circ-Amotl1 enhanced cell survival. (f) YPEN cells transfected with circ-Amotl1 expression construct or the control vector were cultured in different conditions and subject to apoptotic assays. Expression of circ-Amotl1 decreased levels of apoptosis (*n=4*).

Fig S2. Effects of endogenous circ-Amotl1 on cell activities

(a) MCF-7 cells transfected with circ-Amotl1 siRNAs or a control oligo were cultured in H2O2 for 12 h. Typical pictures showed silencing circ-Amotl1 increased Annexin V positive cells (*n=4*).
(b) Ypen cells transiently transfected with siRNA against circ-Amotl1 decreased cell survival (n=4).

а

50 µm

Fig S3. Circ-Amotl1 expression induced Akt activation.

(a) Western blot analysis revealed that ectopic expression of circ-Amotl1 had no effect on levels of Akt, PDK1, and pPDK1, but induced activation of Akt.

(b) Heart tissues were stained with DAPI (blue), circ-AMOTL1 (red) and green fluorescence showing expression of pAKT, AKT, pPDK1 and PDK1. Delivery of circ-AmotI1 enhanced pAKT expression, and pAKT, AKT, pPDK1 and PDK1 nuclear translocation.

Fig S4. Effect of circ-Amotl1 expression on Akt signalling.

(a) Lysates prepared from MCF-7 cells transfected with circ-Amotl1 siRNA or an control oligo, were mixed with the DNA probe or an control oligo. Silencing circ-Amotl1 with siRNA decreased circ-Amotl1 expression in the input (*n=6*).

(b) Silencing circ-Amotl1 resulted in pulling down decreased levels of Akt and PDK1 with the probe complementary to circ-Amotl1.

(c) Ectopic expression of circ-Amotl1 induced nuclear translocation of Akt and PDK1 in Ypen (left) and MCF-7 (right) cells.

(d-e) Treatment with Akt inhibitor Triciribine abolished the effects of circ-Amotl1 on cell survival when the cells were cultured in serumfree medium (d) or treated with H2O2 (e).

(f) Treatment with Akt inhibitor Triciribine abolished the effects of circ-Amotl1 on cell apoptosis.

(g) The anti-Ago2 antibody was able to precipitate Ago2 protein.

(h) The probes of both circ-Foxo3 and circ-Amotl1 could pull down circ-Foxo3 and circ-Amotl1 respectively (n=4).

Fig S5. Computational analysis of circ-Amotl1 interacting with Akt and PDK1.

(a) The contact map in the binding residues between circ-Amotl1 and Akt or PDK1.

(b) The residue-level resolution contact maps in the binding residues between circ-Amotl1 and Akt or PDK1.

(c) Refinement of the best docked circ-Amotl1-Akt model and circ-Amotl1-PDK1 model showing MC score vs. steps of simulation.

а

Fig S6. Circ-Amotl1 interacted with Akt and PDK1

(a) Lysates prepared from YPEN cells transfected with vector control or circ-Amotl1, were subject to immuno-precipitation, followed by real-time PCR amplifying circ-Amotl1. Anti-AKT and anti-PDK1 antibodies precipitated more circ-Amotl1 from cells transfected with circ-Amotl1 than from control (n=6).

(b) To confirm the interaction of circ-Amotl1 with AKT and PDK1 in nuclei, we performed the precipitation assay, after cross-linking and nuclear isolation. Cross-linking significantly increased precipitation of circ-Amotl1 by AKT and PDK1. RIP assays indicated that anti-Akt and anti-PDK1 antibodies precipitated more circ-Amotl1 from cells transfected with circ-Amotl1 than from control. In uncross-linked samples, the antibodies precipitated less circ-Amotl1 compared to cross-linked samples (*n=6*).

(c) The circ-Amotl1 probe precipitating circ-Amotl1 could pull-down Akt and PDK1.

(d) In the lysate prepared from circ-AmotI1-transfected Ypen cells, anti-Akt antibody precipitated increased levels of PDK1 and pPDK1, while anti-PDK1 antibody precipitated more Akt and pAkt relative to controls, suggesting both Akt and PDK1 bound to the same circ-AmotI1. Treatment with RNAse A abolished the interaction.

(e) In heart tissues, circ-Amotl1 precipitation pulled down pAkt and pPDK1.

(f) Antibodies against Akt and pPDK1 precipitated circ-Amotl1 but not the linear Amotl1 mRNA.

(g) Lysates prepared from Ypen cells transfected with circ-AmotI1 siRNA or an control oligo, were mixed with the DNA probe or an control oligo. Silencing circ-AmotI1 resulted in pulling down decreased levels of Akt and PDK1 with the probe complementary to circ-AmotI1.

С

Fig S7. Blocking circ-Amotl1 interacting with Akt and PDK1 decreased nuclear translocation in MCF-7 cells.

(a) PCR showed transfection of blocking oligo did not change circ-Amotl1 expression (n=6).

(b) Western blot showed that expression of blocking oligo deceased pAkt levels in MCF-7 cells.

(c) circ-Amotl1-siRNA-, blocking oligo- and control oligotransfected MCF-7 cells were stained with phalloidins (green), DAPI (blue), circ-Amotl1 (yellow) and red fluorescence showing expression of pAKT, Akt, pPDK1 and PDK1. While transfection with the siRNA decreased circ-Amotl1 levels, blocking oligo did not change circ-Amotl1 expression. Both siRNA and blocking oligo decreased nuclear translocation of pAkt, Akt, pPDK1 and PDK1.

MCF-7	merge	Dapi	F-actin	рАКТ	circ-Amotl1
oligo		-			~
siRNA				q	*****
blocking		0		3	<u>چ</u>
MCF-7	merge	Dapi	F-actin	AKT	circ-Amotl1
oligo		-	<	8	
siRNA	Ø	<u>_</u>	Ø	1	<u>De</u>
blocking				\$ 2	
MCF-7	merge	Dapi	F-actin	pPDK1	circ-Amotl1
oligo		•		×.	
siRNA		•			e. G
blocking				Pro Contraction	
MCF-7	merge	Dapi	F-actin	PDK1	circ-Amotl1
siRNA		-			
		•			×
blocking		<u></u>	- All	(2)	

20 µm

20 µm

С

Fig S8. Blocking circ-Amotl1 interacting with Akt and PDK1 decreased nuclear translocation in Ypen cells.

(a) circ-Amotl1-, circ-Amotl1-, blocking oligo-, and control vector-transfected YPEN cells were stained with phalloidins (green), DAPI (blue) and circ-Amotl1 (red). The blocking oligo did not affect circ-Amotl1 expression.

(b) Cells were stained with phalloidins (green), DAPI (blue) and pAkt (red). The blocking oligo decreased pAkt expression.

(c) The cells were stained with DAPI (blue), circ-Amotl1 (red), and red fluorescence showing expression of pAKT, Akt, pPDK1 and PDK1. Transfection of circ-Amotl1 increased circ-Amotl1 and pAKT expression, and promoted circ-Amotl1, pAkt, Akt, pPDK1 and PDK1 nuclear translocation. Transfection with the blocking oligo inhibited these processes.

Fig S9. Blocking circ-Amotl1 modulated cellular activities. (a) Image J analyses showed that the blocking oligo did not affected nuclear translocation of circ-Amotl1 (n=6). (b) Image J analyses showed that the blocking oligo decreased nuclear translocation of pAkt, Akt, pPDK1 and PDK1 (n=6). (c) Ypen cells transfected with the blocking oligo or a control oligo were cultured in H2O2 for 10 h or 12 h. Transfection with the blocking oligo increased Annexin V positive cells (n=4). (d) While expression of circ-Amotl1 increased, transfection with the blocking oligo decreased proliferation of Ypen cells. (e) Transfection with the blocking oligo decreased survival of Ypen cells. (f) Treatment with Akt inhibitor did not affect Akt expression, but decreased Akt phosphorylation. (g) Treatment with Akt inhibitor decreased cell survival. (h) Sequences of oligos used in the study. Cloning primers: Cir.Amotl1-HindIII and Cir.Amotl1-Sall; PCR primers: Cir.Amotl1-R and Cir.Amotl1-F