Supplementary Information

Overexpression of miR-194 Reverses HMGA2-driven Signatures in Colorectal Cancer

Hsin-Yi Chang^{1,2,*}, Shu-Ping Ye^{1,*}, Shiow-Lin Pan¹, Tzu-Ting Kuo¹, Bia Chia Liu¹, Yi-Lin Chen¹, Tsui-Chin Huang¹

¹The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.

²Graduate School of Pharmaceutical Sciences, Kyoto University, Japan.

*These authors contributed equally to this work.

Author contact

Corresponding author: Dr. Tsui-Chin Huang; Phone number: 886-2-2736-1661 Ext. 7675; E-mail: <u>tsuichin@tmu.edu.tw</u>

Table S1. List of miRNA targeting genes co-occurred with HMGA2 in CRC patient
(NES > 1.85)

miRNA		ES	NES	NOM p-val	FDR q-val	Onco	TS	targeting
						miR	miR	HMGA2
miR-101	227	0.5300	2.0500	0.0000	0.0760		\checkmark	
miR-194	93	0.5700	2.0300	0.0020	0.0500	\checkmark	\checkmark	
miR-499	62	0.5800	2.0300	0.0020	0.0360		\checkmark	
miR-202	89	0.5600	1.9700	0.0020	0.0440		\checkmark	
miR-196a / miR-196b	123	0.5000	1.9700	0.0000	0.0370	\checkmark		\checkmark
miR-495	210	0.4800	1.9600	0.0020	0.0340	\checkmark	\checkmark	
miR-518a-2	178	0.4900	1.9600	0.0030	0.0290		\checkmark	
miR-217	96	0.5600	1.9400	0.0000	0.0300			
miR-141 / miR-200a	268	0.4600	1.9300	0.0000	0.0300	\checkmark	\checkmark	
miR-139	110	0.5200	1.9200	0.0030	0.0300		\checkmark	
miR-29a / miR-29b / miR-29c	441	0.4500	1.9100	0.0000	0.0280		\checkmark	
miR-182	32	0.6300	1.9100	0.0040	0.0260	\checkmark		
miR-524	382	0.4500	1.8800	0.0020	0.0310		\checkmark	
miR-490	52	0.5500	1.8800	0.0020	0.0300		\checkmark	\checkmark
miR-203	242	0.4500	1.8800	0.0020	0.0290	\checkmark	\checkmark	\checkmark
miR-9	203	0.4800	1.8700	0.0000	0.0280	\checkmark	\checkmark	\checkmark
miR-369-3p	172	0.5200	1.8700	0.0020	0.0270		\checkmark	
miR-188	69	0.5200	1.8600	0.0020	0.0280		\checkmark	
miR-186	230	0.4600	1.8600	0.0030	0.0270		\checkmark	\checkmark
miR-200a	42	0.5600	1.8600	0.0070	0.0270		\checkmark	

Name	Direction	Sequence (5'-3')					
haa miD 104 5m	Forward	UGUAACAGCAACUCCAUGUGGA					
пза-пшк-194-эр	Reverse	mRQ 3' Primer*					
IDACAO	Forward	CCCAAAGGCAGCAAAAACAA					
HMGA2	Reverse	GCCTCTTGGCCGTTTTTCTC					
	Forward	AGGCTCAGAAAGGTAGCACA					
VAPA	Reverse	GTGAAGGAAGAGGACTGGTGA					
	Forward	TGCACCACCAACTGCTTAGC					
GAPDH	Reverse	GGCATGGACTGTGGTCATGAG					
	Forward	CCTGGATGATGATAAGCAAATG					
RNU44	Reverse	GAGCTAATTAAGACCTTCATGTTCA					
	Forward	TGGCTGATGTCATAGTTGCTCA					
miR-194-1 promoter	Reverse	GTGGGTGAAACCACTTACCAGT					
	Forward	TCTTGCAAAGCGTGTTCTCG					
miR-194-2 promoter	Poverse						
	Formula						
LIN28B	Porwaru	TCTCAATTCCACTCCTTCTCC					
	Reverse E	CTCACCACCACCATCCCATTC					
ERGIC2	rorward						
	Keverse						
ZBTB39	Forward	AAGAAIGIIGCCAGIGACGC					
	Reverse	AATGGACGTGAAGGGAGCAG					
MIB1	Forward	ATGAGTAACTCCCGGAATAACCG					
	Reverse	GCCGTTGTCCCACACTACC					
EPC2	Forward	CAGCGAGCAATTTCAGCACA					
	Reverse	TGCCTCAGGAACAGGAATGAC					
FBXW7	Forward	CGACGCCGAATTACATCTGTC					
	Reverse	CGTTGAAACTGGGGTTCTATCA					
SUMO2	Forward	GACGGGCAACCAATCAATGAA					
50102	Reverse	GTTCTGGAGTAAAGAAGCAGGT					
FURD1	Forward	ACCTCTACTTTACCACCACCAC					
	Reverse	CTCCAATACCAATCACTCACAAGG					
CEDIIC1	Forward	ACTTGTGTCATTCCTTTGAGGC					
SEPHSI	Reverse	CCCATCATGTAAGGGTCGTCTA					
CUDC	Forward	GCTTCACAAGCACACGGCTA					
CHD6	Reverse	GCAGGCTCCAGAAAGAACCT					
000000	Forward	TTGGCTCTTCCATTGCCACT					
STX16	Reverse	CACGCTCACACAAACGAGG					
	Forward	AGATTTGCTGCCTTCTCCTACC					
DEPDCIB	Reverse	GTCCACTTCATCCTTGGAACAC					
	Forward	TACATTCTGGCAGTCGGTGT					
ARHGAP5	Reverse	TCATCCACGGGTTTACTTGG					
	Forward	CACACTCAGGTCAACAGGACA					
RSBN1	Reverse	ACGAGACTTATCTGCCGCAT					
	Forward	GTCGAAATAGGTGTTCACAGGTC					
QKI	Reverse	TGCAGTTGGCTTGAGAGGAT					
	Forward	GTAAGAGACCTGCGAGGCAA					
CHD4	Reverse	GTAAGGACATGCTGGCGAGA					
	Forward	AAGCGTTGGAACTCACTGGT					
NCL	Reverse	AAGTGTTCTCGCATCTCGCT					
	Forward	TTGGGTCTCGGGAAATGCTC					
CEP350	Reverse						
	Forward						
KLF12	Porward						
	Keverse						
PAN3	Forward						
	Reverse	ATCCCATCGGAACTAGCCTCT					
YTHDF1	Forward	ICAACCGCAGTATCAGAGCC					
	Reverse	AGGAGAGTIGCTATCGCTGC					
AP1G1	Forward	GCGCCTACAAGCAAACCATC					
	Reverse	AGCCCATCCAACAAGAAGGG					
*mRQ 3' Primer were supplied with Mir-X [™] miRNA First-Strand							

Table S2. Primers used for detecting gene expression levels in this study

Synthesis and SYBR qRT-PCR kit (Takara Bio Inc., Japan)

Figure S1. Distribution of global gene expression correlations to HMGA2 in CRC patients. To perform the correlation analysis between 20,606 genes and HMGA2 expressed in CRC patients, Pearson's correlation coefficient (PCC) was calculated and the frequency is shown.

Figure S2. HMGA2 overexpression enhanced the tumorigenesis ability of DLD1 cells. To examine the effects of HMGA2 on cell grow, we chose DLD1, a cell line express low levels of HMGA2, to perform the colony formation assay. (A) DLD1 cells overexpressing TurboGFP-HMGA2 or TurboGFP were seeded onto 6-well plates for 10 days until the colonies formed, and the number of colonies was counted. *** P < 0.001. (B) Cell migration was measured using transwell migration assay. Migrated cells were counted. Data was obtained from three independent experiments. *** P < 0.001. (C) Protein level of EMT markers. Quantification results were normalized to the level of β -ACTIN and compared to DLD1^{GPF} control cells.

Figure S3. Relative expression of miR-194 and HMGA2 in CRC cells. RNA was extracted by Trizol and reverse-transcribed into cDNA. The relative level of HMGA2 mRNA and miR-194 were determined by real-time PCR and normalized to GAPDH and RUN44, respectively. Data is presented by the difference between the internal controls ($-\Delta$ Ct).

Figure S4. Overexpression of miR-194 reduced cell migration and EMT process. (A) Wound-healing assay was performed to evaluate the cell migratory activity. were compared. Wound gap migration of stable clones harboring ZsGreen1 or ZsGreen1-miR-194 was imaged at time 0-hour (upper panel) and after 24 hours (lower panel). The yellow dashed lines mark the migratory front edges. (B) Protein levels of two EMT markers, E-cadherin and Twist1/2 were measured by western blot and β -Actin was used as loading control.

Figure S5. Knockdown of miR-194. To deplete miR-194 expression, we applied miRNA inhibitor, Anti-miRTM miR-194 inhibitor and the Anti-miRTM inhibitor negative control (NC). miR-194 inhibitor complementary binds to endogenous miR-194 and inhibits miR molecules.

Figure S6. Correlation of miR-194 and VAPA. Correlation between expression of HMGA2 and miR-194 in CRC cell lines in (A) CellMiner database and (B) our lab (data was adopted from Figure 5A and 5B).

Figure S7. VAPA was regulated by miR-194 in SW620. Expression levels of (A) miR-194 and (B) VAPA in miR-194 inhibitor transfected SW620 cells were measured and compared with those of scramble negative control (NC) transfected ones. RUN44 and GAPDH were used as internal control for normalizing miR-194 and VAPA, respectively.

Figure S8. 3'UTR luciferase assay. pMIR-Luc-VAPA 3'UTR and internal control β galactosidase reporter were transfected with anti-miR miR-194 inhibitor or scramble negative control (NC) into (A) HCT116 or (B) SW620 cells. Dual-light reporter assay was performed and compared with cells transfected with anti-miR inhibitor negative control (NC). ** *P* < 0.005.

Figure S9. Knockdown of VAPA reduced EMT markets and increased cell population in G₀/G₁ phase. Knockdown of VAPA in HCT116 cells was performed to inspect the function of VAPA. (A) mRNA level of selected EMT markers were measured by qPCR, normalized to GAPDH, and compared with that in cells transfected with shCTL. * P <0.05; ** P < 0.01; *** P < 0.001. (B) DNA content was analyzed with flow cytometry. Cells were fixed with 70% ethanol, RNA was digested, DNA was stained with propidium iodide (PI). * P < 0.05.