	Procedure	¹ H NMR	¹³ C NMR
General Methods	S6		
General isocyanide	S7		
olefination procedure			
CF₃ ↓			
	S7	S49	S49
	01	010	010
S=O			
Ph 3b NC			
MeO CF ₃	0.0		
S ⁵⁰	S8	S50	S50
Ph NC			
3c			
MeO OMe	S8	S51	S51
S≷U ,(`O	00	001	001
Ph NC			
3d			
MeO			
	S9	S52	S52
Ph 3e NC			
MeQ			
O=S-	S9	S53	S53
MeQ			
	S9	S54	S54
Ph >			
O O≕S−An			
	S11	S55	S55
Sf NC			

O O=S-An PhNC	S11	S56	S56
	S12	S57	S57
O=S−An 3g NC	S13	S58	S58
General alkeneisocyanide	S14		
conjugate addition procedure	S14	S59-S60	S59-S60
Ph 4b NC	S15	S61	S61
$ \begin{array}{c} & MeO \\ & & CF_3 \\ S \\ S \\ & & O \\ Ph \\ & NC \\ 6a \end{array} $	S16	S62-S63	S62-S63
MeO CF_3 Ph O	S17	S64	S64
$ \begin{array}{c} Ph & NC \\ $	S18	S65	S65

MeO O Bu O S Ph 8a ^{NC}	S19	S66	S66
Me S-An Ph 8b	S20	S67-S68	S67-S68
0, 0 ,,, N-0 Ph 8c NC	S21	S69-S70	S69-S70
S S Ph 8d NC	S22	S71	S71
Ph S-An Ph NC 8e	S23	S72	S72
MeO O S-An Ph NC 8f	S23	S73-S74	S73-S74
O O S-An Ph NC ⁸ g	S24	S75-S76	S75-S76
$ \begin{array}{c} $	S25	S77-S78	S77-S78
	S27	S79	S79

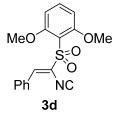
$ \xrightarrow{O_{\mathcal{N}}^{\mathcal{N}}}_{S-An} $	S28	S80	S80
Ph O S-An Ph NC 8 j	S28	S81-S82	S81-S82
O, O S-An Ph NC 8k	S29	S83-S84	S83-S84
$ \begin{array}{ccc} & O \\ & O \\$	S30	S85-S86	S85-S86
$\begin{array}{ccc} O & O \\ NC & S - An \\ & S - An \\ Ph & NC \\ \end{array}$	S31	S89	S89
NC NC NC NC NC 8n	S32	S88	S88
$ \begin{array}{c} $	S33	S89	S89
$EtO_2C \xrightarrow{O}_{NC} \overset{O}{S-An} \overset{O}{\mathbf{S}-An}$	S34	S90	S90
General isocyanide NaBH4 reduction procedure	S34		
Ts Ph 4c NC	S35	S91	S91
Ph $\frac{4c}{4c}$ NC $O_{N'}^{O}$ S-An Ph NC 8q	S35	S92	S92
Ph NC O O $S^{\prime\prime}$ S^{-An} $8r$	S36	S93	S93

$ \xrightarrow{O_{\mathcal{V}_{\mathcal{V}}}^{O} S-An}_{NC} \mathbf{8s} $	S36	S94	S94
Ph Me O ,, S-An Ph NC 9a	S36	S95	S95
Ph Pr O 0 S-An Ph NC 9b	S37	S96	S96
Ph NC 9c	S38	S97	S97
$ \begin{array}{c} $	S39	S98	S98
N N N N 16a	S40	S99	S99
N N N Ph 16b	S41	S100	S100
N Ph OBz 16c	S41	S101	S101
N N N N H 16d	S42	S102	S102

MeO			
N vi	S42	S103-S104	S103-S104
MeO			
VII N N NPMB ₂	S43	S105	S105
0 N 17 N NPMB ₂	S44	S106	S106
0 0 0=S-An			
	S44	S107	S107
NPMB ₂			
$N = NC$ $N = NC$ $N = NPMB_2$	S45	S108-S109	S108-S109
N N N N N N N N N N	S47	S110-S111	S110-S111
References	S112		

General Methods.

All nonaqueous reactions were performed in oven- or flame-dried glassware under a nitrogen atmosphere. All chemicals were purchased from commercial vendors and used as received unless otherwise specified. Anhydrous tetrahydrofuran (THF) and diethyl ether were distilled from benzophenone-sodium under N₂ before use, dichloromethane, dimethylsulfoxide (DMSO) and diisopropylamine were obtained from a solvent purification system (Innovative Technology Inc., model PS-MD7). Benzaldehyde was distilled under reduced pressure before use. Chlorotrimethylsilane, 3,5-dimethylisoxazole, DMPU and HMPA were dried over CaH₂ and distilled before use. MeLi, BuLi, *t*BuLi, PhLi and Bu₂Mg were used as solutions in Et₂O (1.6 M), hexanes (1.6 M), heptane (2 M), Bu₂O (1.45 M) and heptane (0.5 M) respectively. Arylsulfonylmethylisocyanides **2b-e**^{1,2} and 1-isocyano-2-phenyl-1-tosylethene **3a**³ were prepared by known methods. Reactions were magnetically stirred and monitored by thin layer chromatography (TLC) with 250 µm precoated silica gel plates. Preparative radial chromatography was performed on 1 or 2 mm plates prepared in-house that were coated with silica (PGF-Prep TLC w/Gypsum UV/254, 5-50 μ m). ¹H NMR and ¹³C NMR high resolution nuclear magnetic resonance spectra were recorded on a Varian Inova 300 (300 MHz/75 MHz), Varian Inova 500 (500 MHz/126 MHz), Bruker Avance 400 (400 MHz/106 MHz), and Bruker Avance 500 (500 MHz/126 MHz) spectrometers at 25 °C. Chemical shifts are reported relative to TMS (δ 0.00), MeCN-D₃ (δ 1.94), CD₃OD (δ 3.31), DMSO-d₆ (δ 2.50) for ¹H NMR and chloroform (δ 77.16), acetonitrile (δ 1.32 and 118.26), methanol (δ 49.00) or DMSO (δ 39.52) for ¹³C NMR. IR spectra were recorded as thin films (PerkinElmer Spectrum 100 FT-IR Spectrometer). High-resolution mass spectra were obtained on a Bruker 12.0 Tesla APEX – Qe FTICR-MS with and Apollo II ion source (positive electrospray ionization) and Thermo-Finnigan LTQ-FT 7T FT-ICR spectrometer with an atmospheric pressure chemical ionization (APCI) source with direct infusion run in positive ion mode at 5 kV.


General isocyanide olefination procedure.

A hexanes solution (2.6 mL) of BuLi (1.6 M, 2.1 eq.) was added dropwise to a -78 °C, THF solution (15 mL) of the isocyanide (2 mmol, 1 eq.). After 10 min, a THF solution (2.5 mL) of TMSCI (2 mmol, 1 eq.) was added dropwise over 10 min. After 15 min, a THF solution (2.5 mL) of the aldehyde (2 mmol, 1 eq.) was added dropwise. After 1-3 h the reaction was allowed to warm to -30 °C (isocyanides **3b**, **e**) or to 10 °C (isocyanides **3c**, **d**) and then the mixture was added to a -5 °C H₂O-MeOH (5:1) solution of NH₄CI (5%). After 15-30 min, methyl *tert*-butyl ether (MTBE) or CH₂Cl₂ (20 mL) was added, the phases were separated and aqueous phase was extracted with MTBE or CH₂Cl₂ (2 x 20 mL). The combined organic phase was washed with brine (2 x 10 mL), dried (Na₂SO₄), concentrated and purified by radial chromatography or crystallization to give the pure isocyanide.

CF_3 (*E*)-1-((1-Isocyano-2-phenylvinyl)sulfonyl)-4-(trifluoromethyl)-benzene (3b) was prepared from isocyanide $2b^4$ (500 mg, 2 mmol) according to the general method. Crystallization (CH₂Cl₂/hexanes, 1:3) afforded 398 mg Ph_{3b} NC (59%) of isocyanide 3b as pale-orange needles: mp 63-65 °C(dec); IR 2099, 1615, 1319, 1160 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.3 Hz, 2H), 7.90 (d, *J* = 8.3 Hz, 2H), 7.86-7.78 (m, 2H), 7.74 (s, 1H), 7.60-7.44 (m, 3H); ¹³C NMR (101 MHz,

CDCl₃) *δ* 179.67, 140.19, 136.59, 136.42 (q, *J* = 33.4 Hz), 133.23, 131.12, 129.86, 129.59, 129.53, 126.90 (q, *J* = 3.5), 124.43, 123.24, 121.71, 119.00; HRMS (ESI) calcd for C₁₆H₁₀F₃NO₂SNa [M+Na]⁺: 360.0277, found: 360.0276.

(*E*)-2-((1-lsocyano-2-phenylvinyl)sulfonyl)-1-methoxy-3-(trifluoro-MeO $+ 50^{\circ}_{NC}$ methyl)-benzene (3c) was prepared from isocyanide 2c⁴ (560 mg, 2 mmol) according to the general method. Purification (2 mm plate, 3c hexanes/Et₂O/CH₂Cl₂, 4:1:1) afforded 375 mg (51%) of isocyanide 3c as a white crystalline solid. Crystallization (MeOH) afforded analytical sample of isocyanide 3c as pale-yellow crystals: mp 96-98 °C(dec.); IR 2101, 1619, 1356, 1162 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, *J* = 8.0 and 1.8 Hz, 2H), 7.74 (t, *J* = 8.2 Hz, 1H), 7.63 (s, 1H), 7.59 (d, *J* = 7.9 Hz, 1H), 7.56-7.46 (m, 3H), 7.32 (d, *J* = 8.5 Hz, 1H), 3.93 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 178.93, 159.20, 135.69, 135.60, 132.59, 132.18 (q, *J* = 33.5 Hz), 130.75, 130.05, 129.48, 126.37, 125.54, 124.46, 123.64, 120.87 (q, *J* = 7.5 Hz), 117.33, 57.14; HRMS (ESI) calcd for C₁₇H₁₂F₃NO₃SNa [M+Na]⁺: 390.0382, found: 390.0382.

(E)-2-((1-lsocyano-2-phenylvinyl)sulfonyl)-1,3-dimethoxybenzene

(3d) was prepared from isocyanide $2d^4$ (485 mg, 2 mmol) according to the general method. Purification (2 mm plate, hexanes/Et₂O/CH₂Cl₂,

from 6:1:1 to 4:1:1) afforded 425 mg (64%) of isocyanide 3d as a pale-

pink solid. Crystallization (MeOH) afforded pure isocyanide **3d** as yellow leaves: mp 103-105 °C(dec); IR 2100, 1619, 1327, 1154 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.89-7.75 (m, 2H), 7.60 (s, 1H), 7.56-7.43 (m, 4H), 6.65 (d, *J* = 8.5 Hz, 2H), 3.89 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 177.74, 160.14, 136.24, 133.93, 132.03, 130.49, 130.34, 129.28, 126.42, 113.32, 105.18, 100.00, 56.76; HRMS (+APCI) calcd for C₁₇H₁₆NO₄S [M+H]⁺: 330.0795, found: 330.0794.

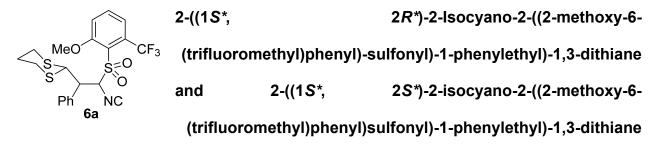
MeO (E)-1-((1-Isocyano-2-phenylvinyl)sulfonyl)-2-methoxybenzene (3e) was prepared from isocyanide $2e^4$ (423 mg, 2 mmol) according to the general method. Purification (2 mm plate, hexanes/Et₂O/CH₂Cl₂, 6:1:1) afforded 401 mg (67%) of isocyanide **3e** as a white crystalline solid. Crystallization (MeOH) afforded an analytical sample of isocyanide **3e** as pale-yellow crystals: mp 116-118 (dec.); IR 2101, 1618, 1331, 1157 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (dd, J = 7.9 and 1.6 Hz, 1H), 7.90-7.78 (m, 2H), 7.73 (s, 1H), 7.70-7.62 (m, 1H), 7.57-7.44 (m, 3H), 7.17 (t, J = 7.6 Hz, 1H), 7.04 (d, J = 8.1 Hz, 1H), 3.89 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 178.23, 157.72, 136.96, 136.72, 132.47, 132.26, 130.73, 130.26, 129.38, 123.71, 120.97, 112.63, 56.33; HRMS (ESI) calcd for C₁₆H₁₃NO₃SNa [M+Na]⁺: 322.0508, found: 322.0508.

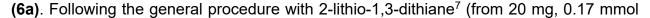
combined organic phase was washed with brine (30 mL), cold water (30 mL), dried (Na₂SO₄), concentrated and purified by column chromatography (PhMe/EtOAc, 90:10 to 75:25 and then triturating with cold Et₂O) to afford 1.29 g (38%) of formamide i as a white solid: mp 101-103 °C; IR 3290, 1704, 1299, 1145 cm⁻¹; HRMS (ESI) calcd for C₁₈H₁₉NO₄SNa [M+Na]⁺: 368.0927, found: 368.0926. The ¹H NMR indicated a 1.6:1 ratio of rotamers. For rotamer 1: ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.87 (dd, J = 7.9 and 1.6 Hz, 1H), 7.56-7.51 (m, 1H), 7.37 (br. s, 1H), 7.32-6.92 (m, 8H), 3.82 (s, 3H), 2.82 (q, J = 7.2 Hz, 2H), 2.48 (q, J = 7.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 163.71, 158.34, 140.64, 139.88, 136.08, 131.61, 130.85, 128.61, 128.50, 126.34, 125.39, 120.41, 112.86, 56.19, 33.78, 30.87. For rotamer 2: ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, J = 7.9 and 1.6 Hz, 1H), 7.67-7.56 (m, 1H), 7.46 (d, J = 11.0 Hz, 1H), 7.32-6.92 (m, 8H), 6.88 (d, J = 11.0 Hz, 1H), 3.82 (s, 3H), 2.82 (q, J = 7.2 Hz, 2H), 2.62 (q, J = 7.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.90, 157.44, 139.68, 139.00, 136.35, 135.24, 131.45, 128.76, 128.46, 126.71, 125.02, 121.07, 112.55, 56.26, 34.47, 29.61. Further elution (PhMe/EtOAc, 75:25) to 40:60) from the silica gel column afforded 0.29 g (8%) of the formamide ii, a pale-yellow solid, as a 9.2:1 ratio of diastereomers. Crystallization (CH₂Cl₂/hexanes, 1:2) afforded pure formamide ii as a white crystalline solid: mp 141-143 °C; IR 3323, 1670, 1312, 1146 cm⁻¹. For the major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.86 (dd, J = 7.8, 1.7 Hz, 1H), 7.66-7.56 (m, 1H), 7.40-7.27 (m, 2H), 7.24-7.12 (m, 3H), 7.12-6.96 (m, 2H), 6.66 (d, J = 10.2 Hz, 1H), 5.69 (d, J = 10.2 Hz, 1H), 4.83-4.72 (m, 1H), 4.01 (s, 3H), 3.03-2.93 (m, 1H), 2.89-2.66 (m, 2H), 1.98-1.82 (m, 1H), 1.81-1.67 (m, 1H). For the minor diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 7.8, 1.7 Hz, 1H), 7.71-7.66 (m, 1H), 7.40-7.27 (m, 3H), 7.24-7.12 (m, 3H), 7.12-6.96 (m, 2H), 6.66 (d, J = 10.2 Hz, 1H), 5.69 (d, J = 10.2 Hz, 1H), 4.67-4.58 (m, 1H), 3.97 (s, 3H), 3.11-3.03 (m, 1H), 2.89-2.66 (m, 2H), 1.98-1.82 (m, 1H), 1.81-1.67 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.27, 158.37, 140.94, 136.74, 131.60, 128.68, 128.58, 126.32, 123.67, 120.44, 112.77, 67.79, 66.53, 56.62, 35.56, 31.62; HRMS (ESI) calcd for C₁₈H₂₁NO₅SNa [M+Na]⁺: 386.1033, found: 386.1031.

(E)-1-((1-lsocyano-4-phenylbut-1-en-1-yl)sulfonyl)-2-methoxy-O=̇̀S−An Ph ŇС benzene (3f) and (E)-1-((1-isocyano-4-phenylbut-2-en-1-yl)sulfonyl)-2-methoxybenzene (iii). A CH₂Cl₂ solution (5 mL) of Et₃N Ph (1.31 g, 13 mmol, 1.8 mL) and a CH₂Cl₂ solution of POCl₃ (461 mg, 3 mmol, 0.28 mL) were added sequentially to a -25 °C, CH₂Cl₂ solution (25 mL) of formamide i (730 mg, 2.1 mmol). After 1 h the reaction was allowed to warm to -10 °C and then the mixture was poured into ice-cold water (30 mL). The phases were separated and the aqueous phase was then extracted with CH_2CI_2 (20 mL). The combined organic phase was washed with cold, saturated, aqueous NaHCO₃ (15 mL), cold water (15 mL), dried (Na₂SO₄), and concentrated to afford 705 mg of a mixture of isocyanides **3f:iii** (2.0:1, determined by ¹H NMR integration of the MeO signals at 3.78 and 3.98 ppm, respectively). Separation by column chromatography (hexanes/Et₂O/ CH₂Cl₂, 7:1:1 to 6:1:1) afforded 220 mg (32%) of isocyanide **3f** as a colorless crystalline solid and 181 mg (26%) of a mixture of **3f** and **iii** (1:5.9 by ¹H NMR integration). Repeated purification (2 mm plate, hexanes/Et₂O/CH₂Cl₂, 6:1:1) afforded 132 mg (19%) of pure isocyanide iii as a thick, colorless oil. For **3f**: mp 93-94 °C; IR 2110, 1592, 1333, 1155 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (dd, J = 7.9, 1.7 Hz, 1H), 7.73-7.57 (m, 1H), 7.35-7.26 (m, 2H), 7.25-7.20 (m, 1H), 7.20-7.04 (m, 4H), 7.00 (d, J = 8.4 Hz, 1H), 3.78 (s, 3H), 2.93-2.80 (m, 2H), 2.802.70 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 174.86, 157.75, 143.12, 139.37, 136.93, 132.09, 128.87, 128.35, 126.81, 123.87, 120.95, 112.54, 56.08, 33.65, 30.54; HRMS (ESI) calcd for C₁₈H₁₇NO₃SNa [M+Na]⁺: 350.0821, found: 350.0820. For **iii**: IR 2134, 1330, 1151 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.76-7.60 (m, 1H), 7.36-7.28 (m, 2H), 7.25-7.20 (m, 1H), 7.20-7.10 (m, 3H), 7.07 (d, *J* = 8.4 Hz, 1H), 6.32 (dtd, *J* = 14.8, 6.8 and 1.0 Hz, 1H), 5.69 (ddt, *J* = 14.8, 6.3 and 1.5 Hz, 1H), 5.62 (dd, *J* = 6.3 and 1.0 Hz, 1H), 3.98 (s, 3H), 3.52 (d, *J* = 6.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 165.50, 157.72, 141.56, 138.05, 137.07, 132.65, 128.82, 128.78, 126.78, 123.08, 121.34, 115.65, 112.63, 72.59, 56.65, 38.70; HRMS (+APCI) calcd for C₁₈H₁₈NO₃S [M+H]⁺: 328.1002, found: 328.1008.

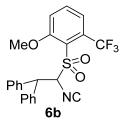
Meo *N*-(1-((2-Methoxyphenyl)sulfonyl)-2-methylprop-1-en-1-yl)formamide O^{-} S (iv). A THF solution (5 mL) of isocyanide 2e⁴ (1.290 g, 6.1 mmol) was added iv^{HN} O dropwise to a THF (25 mL) suspension of *t*-BuOK (0.959 g, 8.5 mmol) at -70 °C. After 15 min a yellow-orange solution was formed and then acetone (0.355 g, 6.1 mmol, 0.5 mL) was added dropwise. After 1.5 h the reaction was allowed to warm to -30 °C and then the mixture was poured into ice-cold water (50 mL) containing acetic acid (1 mL). The mixture was kept at -5 °C for 40 min and then filtered through a glass frit. The filtrate was extracted with CH₂Cl₂ (3 x 50 mL) and then the phases were separated. The combined organic phase was washed with brine (2 x 30 mL), dried (Na₂SO₄), concentrated and purified by triturating with Et₂O (3 x 5 mL) to afford 705 mg (43%) of formamide iv as a pale-orange solid. Crystallization (CH₂Cl₂/hexanes, 1:3) afforded a pure sample of formamide iv, a colorless solid, as a 1.8:1 ratio of rotamers: mp 165-166 °C; IR 3309, 1695, 1297, 1145 cm⁻¹; HRMS (ESI) calcd for C₁₂H₁₅NO₄SNa [M+Na]*: 292.0614, found: 292.0613. For the major rotamer: ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 1.1 Hz, 1H), 7.97 (dd, J = 7.6, 1.2 Hz, 1H), 7.62-7.50 (m, 2H), 7.09-7.04 (m, 1H), 7.00 (d, J = 8.4, 1H), 3.90 (s, 3H), 2.16 (s, 3H), 1.86 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.73, 157.84, 148.11, 135.60, 130.10, 127.83, 126.78, 120.33, 112.59, 56.39, 24.19, 20.55. For the minor rotamer: ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, J = 7.6, 1,2 Hz, 1H), 7.84 (d, J = 11.2 Hz, 1H), 7.62-7.50 (m, 1H), 7.15 (br. s, 1H), 7.13-7.09 (m, 1H), 7.01 (d, J = 8.4, 1H), 3.91 (s, 3H), 2.17 (s, 3H), 2.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.17, 157.36, 148.27, 135.85, 130.39, 129.91, 127.72, 120.93, 112.59, 56.53, 23.43, 20.59.

1-((1-Isocyano-2-methylprop-1-en-1-yl)sulfonyl)-2-methoxybenzene (3g). A CH_2Cl_2 solution (5 mL) of Et_3N (1.31 g, 13 mmol, 1.8 mL) and a CH_2Cl_2 3a NC solution (5 mL) of POCI₃ (461 mg, 3 mmol, 0.28 mL) were sequentially added to a -25 °C, CH₂Cl₂ solution (25 mL) of formamide iv (667 mg, 2.5 mmol). After 1 h the reaction was allowed to warm to -10 °C and then the mixture was poured into ice-cold water (30 mL). The phases were separated and then the aqueous phase was extracted with CH₂Cl₂ (20 mL). The combined organic phase was washed with cold, saturated, aqueous NaHCO₃ (15 mL), cold water (15 mL), dried (Na₂SO₄), and then concentrated to afford 573 mg of crude isocyanide as yellow oil (solidified upon cooling). Purification by column chromatography (EtOAc/hexanes, 15:85 to 40:60) afforded 523 mg (84%) of isocyanide **3g** as a white crystalline solid: mp 106-107 °C; IR 2106, 1618, 1323, 1151 cm⁻¹; ¹H NMR $(400 \text{ MHz}, \text{CDCI}_3) \delta 8.01 \text{ (dd}, J = 7.9, 1.7 \text{ Hz}, 1\text{H}), 7.72-7.54 \text{ (m, 1H)}, 7.20-7.09 \text{ (m, 1H)},$ 7.06 (d, J = 8.4 Hz, 1H), 3.96 (s, 3H), 2.20 (s, 3H), 2.13 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.92, 157.76, 152.39, 136.37, 130.67, 126.59, 120.64, 112.57, 56.27, 24.79, 19.83; HRMS (ESI) calcd for C₁₄H₁₆N₂O₃SNa [M+Na]⁺: 274.0508, found: 274.0508.

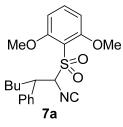

General alkeneisocyanide conjugate addition procedure.


A solution of the organo-metallic reagent (0.35-0.5 mmol) was added dropwise over 1 min to a cold (-78, -100, or -105 °C), THF solution (0.07 M) of the alkeneisocyanide **3a-g** (0.35 mmol). After 5-20 min, brine (3 mL) was added, the organic layer was separated, and then the aqueous phase was extracted with Et₂O, CH₂Cl₂, MTBE, or EtOAc (10-15 mL). The combined organic phase was washed with brine (2 x 5 mL) and dried (Na₂SO₄). Concentration of the solution and purification of the residue (dr ratio was determined from the crude ¹H NMR in CDCl₃ by integration of the ArSO₂CH signals) by radial chromatography afforded the pure isocyanide, typically as a mixture of diastereomers.⁵ Solutions of Bu₃MgLi were prepared by adding a hexanes solution of BuLi (1 eq.) to a -78 °C, THF solution (3 mL) of Bu₂Mg (1 eq.) and used after 10 min. Solutions of BnBu₂MgLi and AllylBu₂MgLi⁶ were prepared by adding a hexanes solution of BuLi (2 eq.) to a -30 °C, THF solution of BnMgBr (1 eq.) or AllylMgCl (1 eq.), respectively, and then the solutions were allowed to warm to 0 °C for 30 min.

p-Tol Bu Ph 4a NC1-(((1*R**, 2*S**)-1-isocyano-2-phenylhexyl)sulfonyl)-4-methylbenzene (4f). Following the general procedure with Bu₃MgLi (0.18 mmol) and isocyanide **3a** (51 mg, 0.18 mmol) at -100 °C then warming to -95 °C over 15 min (extraction with CH₂Cl₂) afforded a mixture of the diastereomers (1*S**, 2*S**:1*R**, 2*S**, 1:1.6 ratio) that were purified (1 mm plate, 5 °C hexanes/Et₂O/CH₂Cl₂, 6:1:1 to 4:1:1, under N₂) to afford 42 mg (69%) of a mixture of diastereomers from which an enriched sample of (1R*, 2S*)-4a was obtained by repeated purification (1 mm plate, hexanes/CH₂Cl₂/Et₂O, 6:1:1, under N₂) as a pale-yellow oil: IR 2133, 1335, 1154 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₃NO₂SNa [M+Na]⁺: 364.1342, found: 364.1343. For (1*R**, 2S*)-4a: ¹H NMR (400 MHz, CDCl₃) δ7.85 (d, J = 8.3 Hz, 2H), 7.39 (d, J = 8.3 Hz, 2H), 7.37-7.27 (m, 5H), 4.52 (d, J = 2.4, 1H), 3.65 (dt, J = 12.0 and 2.8 Hz, 1H), 2.46 (s, 3H), 2.21-2.05 (m, 1H), 2.04-1.90 (m, 1H), 1.40-1.24 (m, 2H), 1.24-1.05 (m, 2H), 0.84 (t, J = 7.3 Hz, 3H); ¹H NMR (400 MHz, CD₃CN) δ 7.80 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.40-7.22 (m, 5H), 5.03 (d, J = 4.1, 1H), 3.48 (dt, J = 11.6, 3.6 Hz, 1H), 2.46 (s, 3H), 2.071.96 (m, 1H), 1.93-1.82 (m, 1H), 1.40-1.21 (m, 2H), 1.21-0.97 (m, 2H), 0.80 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 166.70, 146.58, 139.52, 132.72, 130.29, 129.84, 129.22, 128.14, 127.97, 77.36, 42.94, 29.07, 22.53, 21.93, 14.00; ¹³C NMR (101 MHz, CD₃CN) δ 166.99, 147.81, 139.87, 133.60, 131.09, 130.56, 129.74, 129.17, 128.76, 77.69, 44.10, 30.36, 29.45, 22.93, 21.75, 14.10. For (1S*, 2S*)-4a: ¹H NMR (400 MHz, CDCl₃) 7.69 (d, J = 8.4, 2H), 7.43-7.28 (m, 7H), 4.70 (d, J = 5.3 Hz, 1H), 3.58-3.50 (m, 1H), 2.43 (s, 3H), 2.21-2.05 (m, 1H), 2.04-1.90 (m, 1H), 1.40-1.24 (m, 2H), 1.24-1.05 (m, 2H), 0.84 (t, J = 7.3 Hz, 3H); ¹H NMR (400 MHz, CD₃CN) δ 7.77 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.40-7.22 (m, 5H), 5.13 (d, J = 5.6 Hz, 1H), 3.40 (dt, J = 11.6 and 4.0, 1H), 2.46 (s, 3H), 2.08-1.96 (m, 1H), 1.93-1.82 (m, 1H), 1.40-1.21 (m, 2H), 1.21-0.97 (m, 2H), 0.74 (t, J = 7.2 Hz, 3H). Reaction of isocyanide **3a** (52 mg, 0.18 mmol) with BuLi (0.18 mmol, 0.12 mL) at -95 °C (11 min) following the general procedure afforded, after purification (1 mm plate, 5 °C hexanes/Et₂O/CH₂Cl₂, 6:1:1, under N₂), 15 mg (24%) of a mixture of (1S*, 2S*)- and (1R*, 2S*)-4a (1:1.2 ratio) spectrally identical to material previously characterized.


Ts 2-((1S*, 2R*)-2-lsocyano-1-phenyl-2-tosylethyl)-1,3-dithiane and 2-Ph 4b NC ((1S*, 2S*)-2-isocyano-1-phenyl-2-tosylethyl)-1,3-dithiane (4b).

Following the general procedure with 2-lithio-1,3-dithiane⁷ and isocyanide **3a** (0.46 mmol, 129 mg) at -78 °C for 18 min (extraction with MTBE) afforded crude 4b as a mixture of diastereomers (1S*, 2S*:1S*, 2R*, 1:5.0 ratio) that was purified (2 mm plate, hexanes/CH₂Cl₂/Et₂O, 6:1:1) to afford 123 mg (67%) of a diastereomeric mixture of isocyanide 4b (1S*, 2S*:1S*, 2R*, 1:8.3 ratio) as a pale-yellow oil: IR 2133, 1336, 1152 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₁NO₂S₃Na [M+Na]⁺: 426.0627, found: 426.0624. For $(1S^*, 2R^*)$ -**4b**: ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.3 Hz, 2H), 7.50-7.20 (m, 7H), 5.56 (d, J = 3.7 Hz, 1H), 4.34 (d, J = 10.5 Hz, 1H), 4.08 (dd, J = 10.5 and 3.7 Hz, 1H), 3.10-2.92 (m, 1H), 2.92-2.77 (m, 2H), 2.77-2.61 (m, 1H), 2.42 (s, 3H), 2.18-2.01 (m, 1H), 2.011.85 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 167.99, 146.25, 133.35, 132.34, 129.95, 129.77, 129.75, 128.97, 128.45, 73.93, 47.44, 47.05, 28.51, 28.31, 25.27, 21.81. For (1S*, 2S*)-**4b**: ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.3 Hz, 2H), 7.50-7.20 (m, 7H), 5.30 (d, J = 9.1 Hz, 1H), 4.74 (d, J = 5.2 Hz, 1H), 3.73 (dd, J = 9.1, 5.2 Hz, 1H), 3.10-2.92 (m, 1)1H), 2.92-2.77 (m, 2H), 2.77-2.61 (m, 1H), 2.44 (s, 3H), 2.18-2.01 (m, 1H), 2.01-1.85 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 167.15, 146.41, 133.35, 132.46, 130.07, 129.75, 129.66, 128.99, 128.32, 73.93, 51.30, 50.33, 30.85, 30.79, 25.43, 21.85.


of 1,3-dithiane and 0.11 mL, 0.18 mmol of BuLi) and isocyanide 3c (50 mg, 0.14 mmol) at -78 °C for 17 min (extraction with MTBE) afforded crude 6a as a mixture of diastereomers (1S*, 2S*:1S*, 2R*, 1:4.9 ratio). Purification (1 mm plate, hexanes/ CH₂Cl₂/Et₂O, 6:1:1 to 3:1:1) afforded 48 mg (72%) of isocyanide **6a** as a mixture of diastereomers from which pure $(1S^*, 2R^*)$ -6a was obtained by repeated purification (1 mm plate, hexanes/CH₂Cl₂/Et₂O, 6:1:1 to 4:1:1) as a white solid. For (1S*, 2R*)-6a: mp 98-100 °C (dec.); IR 2134, 1305, 1154 cm⁻¹; NMR ¹H (500 MHz, CDCl₃) δ 7.74 (t, J = 8.2 Hz, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.47-7.41 (m, 2H), 7.41-7.37 (m, 3H), 7.36 (d, J = 7.9 Hz, 1H), 6.34 (d, J = 4.4 Hz, 1H), 4.51 (d, J = 9.8 Hz, 1H), 4.16 (dd, J = 9.8, 4.4 Hz, 1H), 4.09 (s, 3H), 3.04-2.94 (m, 1H), 2.94-2.81 (m, 2H), 2.81-2.70 (m, 1H), 2.16-2.05 (m, 1H), 1.99-1.86 (m, 1H); NMR ¹³C NMR (126 MHz, CDCl₃) δ 168.00, 159.74, 135.92, 133.50, 132.48 (q, J = 33.4 Hz), 129.87, 129.11, 128.53, 124.89, 123.02, 121.07 (q, J = 7.5 Hz), 117.70, 72.72, 57.82, 48.54, 47.06, 29.35, 29.18, 25.51; HRMS (ESI) calcd for C₂₁H₂₀F₃NO₃S₃Na [M+Na]⁺: 510.0449, found: 510.0447. For (1S*, 2S*)-6a: ¹H NMR (500 MHz, CDCl₃) δ 7.66 (t, J = 8.2 Hz, 1H), 7.49 (d, J = 7.9 Hz, 1H), 7.37-7.32 (m, 2H), 7.32-7.28 (m, 3H), 7.25 (d, J = 7.6 Hz, 1H), 5.98 (d, J = 10.5 Hz, 1H), 4.73 (d, J = 4.2 Hz, 1H), 4.06 (s, 3H), 4.02 (dd, J = 10.5, 4.2 Hz, 1H), 3.06-2.95 (m, 1H), 2.95-2.82 (m, 2H), 2.81-2.69 (m, 1H), 2.15-1.99 (m, 1H), 1.84-1.68 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 167.75, 159.29, 135.55, 132.35 (q, J = 33.4 Hz), 132.04, 129.63, 129.04, 128.16, 124.72, 120.93 (q, J = 7.7 Hz), 120.39, 117.46, 74.66, 57.84, 52.48, 49.05, 31.33, 31.26, 25.49.

(2-Isocyano-2-((2-methoxy-6-(trifluoromethyl)phenyl)sulfonyl)-

ethane-1,1-diyl)dibenzene (**6b**). Following the general procedure with PhLi (0.17 mmol) and isocyanide **3c** (52 mg, 0.14 mmol) at -100 °C then warming to -79 °C over 30 min (extraction with MTBE) and

purification (1 mm plate, hexanes/CH₂Cl₂/Et₂O, 5:1:1 to 3.5:1:1) afforded 55 mg (87%) of isocyanide **6b** as a white solid: mp 92-93 °C (dec.); IR 2144, 1343, 1140 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (t, *J* = 8.3 Hz, 1H), 7.50 (d, *J* = 7.9 Hz, 1H), 7.45-7.14 (m, 11H), 6.03 (d, *J* = 8.6 Hz, 1H), 4.93 (d, *J* = 8.6 Hz, 1H), 4.01 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.64, 159.54, 138.37, 138.06, 135.80, 131.73 (q, *J* = 33.4 Hz), 128.98, 128.94, 128.81, 128.22, 128.00, 127.94, 125.15, 123.40, 121.17 (q, *J* = 7.3 Hz), 120.67, 117.87, 76.03, 57.99, 50.50; HRMS (ESI) calcd for C₂₃H₁₈F₃NO₃SNa [M+Na]⁺: 468.0852, found: 468.0849.

2-(((1*R**, 2*S**)-1-lsocyano-2-phenylhexyl)sulfonyl)-1,3-dimethoxy-benzene and 2-(((1*S**, 2*S**)-1-isocyano-2-phenylhexyl)sulfonyl)1,3-dimethoxybenzene (7a). Following the general procedure with

¹⁴ Bu₃MgLi (0.52 mmol) and isocyanide **3d** (172 mg, 0.52 mmol) at -95 °C then warming to -78 °C over 15 min (extraction with CH₂Cl₂) afforded a mixture of diastereomers (1*S**, 2*S**:1*R**, 2*S**, 1.4:1 ratio) that were purified (1 mm plate, hexanes/CH₂Cl₂/Et₂O, 5:1:1 to 4:1:1) to afford 107 mg (53%) of isocyanide **7a** as a colorless oil: IR 2135, 1334, 1105 cm⁻¹; HRMS (ESI) calcd for C₂₁H₂₅NO₄SNa [M+Na]⁺: 410.1397, found: 410.1399. For (1*S**, 2*S**)-**7a**: ¹H NMR (400 MHz, CDCl₃) δ 7.50 (t, *J* = 8.5 Hz, 1H), 7.40-7.23 (m, 5H), 6.65 (d, *J* = 8.5 Hz, 2H), 5.19 (d, *J* = 7.6 Hz, 1H), 3.92 (s, 6H), 3.65-3.50 (m, 1H), 2.03-1.77 (m, 2H), 1.39-1.22 (m, 4H), 0.83 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.69, 160.47, 137.92, 136.32, 128.85, 128.60, 127.99, 113.48, 105.35, 56.90, 46.53, 44.45, 25.70, 23.22, 11.77, 11.46. For (1*R**, 2*S**)-**7a**: ¹H NMR (400 MHz, CDCl₃) δ 7.47 (t, *J* = 8.5 Hz, 1H), 7.40-7.23 (m, 5H), 6.60 (d, *J* = 8.5 Hz, 2H), 5.14 (d, *J* = 3.5 Hz, 1H), 3.88 (s, 6H), 3.65-3.50 (m, 1H), 2.33-2.17 (m, 2H), 1.22-1.05 (m, 4H), 0.83 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.45, 160.52, 139.31, 136.37, 128.84, 127.79, 127.71, 112.86, 105.31, 56.88, 46.53, 44.45, 25.70, 23.22, 11.77, 11.46.

Bu O 1-(((1R*, 2S*)-1-Isocyano-2-phenylhexyl)sulfonyl)-2-methoxybenzene and 1-(((1S*, 2S*)-1-isocyano-2-phenylhexyl)sulfonyl)-2-

methoxybenzene (**8a**). Following the general procedure with Bu₃MgLi (0.23 mmol) and isocyanide **3e** (70 mg, 0.23 mmol) at -105 °C and, after 13 min, allowing the reaction to warm to -95 °C (extraction with EtOAc) afforded a mixture of diastereomers (1*S**, 2*S**:1*R**, 2*S**, 1:1.8 ratio) that were purified (1 mm plate, hexanes/CH₂Cl₂/Et₂O, 6:1:1 to 5:1:1) to afford 52 mg (62%) of isocyanide **8a** as a colorless oil: IR 2134, 1331, 1154 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₃NO₃SNa [M+Na]*: 380.1291, found: 380.1298; For (1*S**, 2*S**)-**8a**: ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.67-7.60 (m, 1H), 7.38-7.26 (m, 5H), 7.19-7.09 (m, 1H), 7.07 (d, *J* = 8.4 Hz, 1H), 5.24 (d, *J* = 5.9 Hz, 1H), 4.02 (s, 3H), 3.71-3.55 (m, 1H), 2.40-2.18 (m, 2H), 1.40-1.08 (m, 4H), 0.86 (t, *J* = 6.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.70, 157.32, 137.41, 136.75, 132.12, 128.99, 128.53, 127.95, 124.16, 121.18, 112.46, 74.65, 56.50, 43.86, 31.59, 28.92, 22.25, 14.13. For (1*R**, 2*S**)-**8a**: ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.68-7.60 (m, 1H), 7.38-7.26 (m, 5H), 7.19-7.09 (m, 1H), 2.18-1.87 (m, 2H), 1.40-1.08 (m, 4H), 5.14 (d, *J* = 3.1 Hz, 1H), 3.91 (s, 3H), 3.71-3.55 (m, 1H), 2.18-1.87 (m, 2H), 1.40-1.08 (m, 4H),

0.85 (t, J = 6.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.12, 157.32, 139.39, 136.82, 132.34, 128.99, 127.95, 127.89, 123.66, 121.18, 112.46, 75.81, 56.50, 42.59, 32.55, 29.19, 22.38, 13.87. Reaction of isocyanide **3e** (54 mg, 0.18 mmol) with BuLi (0.18 mmol, 0.11 mL) at -102 °C to -89 °C (12 min) afforded **8a** as a mixture of diastereomers (1*S**, 2*S**:1*R**, 2*S**, 1:1.8 ratio) that were purified (1 mm plate, hexanes/CH₂Cl₂/Et₂O, 6:1:1 to 5:1:1) to afford 34 mg (53%) of **8a** as a mixture of diastereomers (1*S**, 2*S**; 1*R**, 2*S**; 1*R**, 2*S**; 1*R**, 2*S**; 1*R**, 2*S**; 1:2.0) spectrally identical to material previously characterized.

NC NC O 1-(((1*R**, 2*S**)-1-Isocyano-2-phenylpropyl)sulfonyl)-2-methoxybenzene and 1-(((1*S**, 2*S**)-1-isocyano-2-phenylpropyl)sulfonyl)-2-methoxybenzene (8b). An Et₂O solution of MeLi·LiBr (0.69 mmol, 0.40 mL) was added to a -110 °C, THF solution (10 mL) of isocyanide 3e (148 mg, 0.49 mmol). After 10 min the reaction was allowed to warm to -95 °C and then DMPU (532 mg, 4.15 mmol, 0.5 mL) was added. After 30 min, the mixture was allowed to warm to -78 °C and then brine (5 mL) was added. Extraction with MTBE afforded a mixture of diastereomers (1S*, 2S*:1R*, 2S*, 1:1.3 ratio) that were purified (1 mm plate, hexanes/CH₂Cl₂/Et₂O, 7:1:1 to 6:1:1) to afford 112 mg (72%) of a mixture of diastereomers. Pure samples of each diastereomer were identified by ¹H NMR analysis of separate fractions obtained during chromatography. For (1S*, 2S*)-**8b**: mp 105-106 °C (dec.); IR 2135, 1329, 1151 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.97 (dd, J = 7.9, 1.7 Hz, 1H), 7.70-7.60 (m, 1H), 7.447.30 (m, 5H), 7.18-7.10 (m, 1H), 7.07 (d, J = 8.4 Hz, 1H), 5.13 (d, J = 7.6 Hz, 1H), 4.01 (s, 3H), 3.76 (dg, J = 7.6 and 7.0 Hz, 1H), 1.65 (d, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.57, 157.57, 139.72, 136.94, 131.99, 128.83, 128.29, 128.15, 124.19, 121.27, 112.58, 75.90, 56.72, 39.64, 19.27; HRMS (ESI) calcd for C17H17NO3SNa [M+Na]*: 338.0821, found: 338.0820. For (1R*,

2*S**)-**8b**: mp 101-102 °C(dec.); IR 2133, 1328, 1151 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) *δ* 7.99 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.70-7.57 (m, 1H), 7.46-7.21 (m, 5H), 7.18-7.10 (m, 1H), 7.04 (d, *J* = 8.3 Hz, 1H), 5.21 (d, *J* = 2.7 Hz, 1H), 3.93 (s, 3H), 3.91-3.83 (m, 1H), 1.65 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) *δ* 166.12, 157.34, 141.12, 137.02, 132.31, 129.06, 127.90, 127.30, 123.41, 121.22, 112.60, 75.96, 56.61, 37.05, 15.30; HRMS (ESI) calcd for C₁₇H₁₇NO₃SNa [M+Na]⁺: 338.0821, found: 338.0820. Reaction of isocyanide **3e** (327 mg, 1.1 mmol) with MeLi (1.31 mmol, 0.82 mL) at -105 °C to -80 °C (20 min) afforded **8b** as a mixture of diastereomers (1*S**, 2*S**:1*R**, 2*S**, 1:3.0 ratio) that were purified (2 mm plate, hexanes/CH₂Cl₂/Et₂O, 7:1:1 to 6:1:1) to afford 214 mg (62%) of isocyanide **8b** spectrally identical to material previously characterized.

 i_{N-0} j_{Ph} j_{NC} j_{Ph} j_{Ph}

CDCl₃) δ 168.78, 166.93, 159.98, 157.42, 137.13, 135.82, 132.33, 128.95, 128.81, 128.77, 123.67, 121.26, 112.62, 103.89, 72.71, 56.55, 41.93, 30.45, 11.53; HRMS (ESI) calcd for C₂₁H₂₀N₂O₄SNa [M+Na]⁺: 419.1036, found: 419.1034. For (2*S**, 3*R**)-**8c**: mp 97-99 °C (dec.); IR 2133, 1328, 1152 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.75-7.61 (m, 1H), 7.40-7.26 (m, 5H), 7.23-7.12 (m, 1H), 7.06 (d, *J* = 8.4 Hz, 1H), 5.62 (s, 1H), 5.24 (d, *J* = 2.6 Hz, 1H), 4.13 (dt, *J* = 12.0, 2.6 Hz, 1H), 3.94 (s, 3H), 3.77 (dd, *J* = 15.2, 3.2 Hz, 1H), 3.48 (dd, *J* = 15.2, 12.0 Hz, 1H), 2.14 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.01, 167.45, 159.72, 157.54, 137.66, 137.36, 132.60, 129.29, 128.61, 127.82, 123.07, 121.47, 112.71, 103.38, 74.89, 56.75, 41.02, 27.29, 11.49; HRMS (ESI) calcd for C₂₁H₂₀N₂O₄SNa [M+Na]⁺: 419.1036, found: 419.1035.

2-((1*S**, 2*R**)-2-Isocyano-2-((2-methoxyphenyl)sulfonyl)-1-phenylethyl)-1,3-dithiane and 2-((1*S**, 2*S**)-2-isocyano-2-((2-methoxy-Ph 8d NC phenyl)sulfonyl)-1-phenylethyl)-1,3-dithiane (8d). Following the

general procedure with isocyanide **3e** (225 mg, 0.75 mmol) and 2-lithio-1,3-dithiane⁷ (1.05 mmol) at -102 °C and, after 17 min, allowing the reaction to warm to -78 °C (extraction with MTBE) afforded a mixture of diastereomers (1*S**, 2*S**:1*S**, 2*R**, 1:9.1 ratio) that were purified by triturating with hot MeOH (5 mL) to afford 480 mg (83%) of a diastereomeric mixture of isocyanide **8d** as a white solid that was recrystallized (MeOH) to afford a mixture of diastereomers (1*S**, 2*S**:1*S**, 2*R**, 1:24.5) of isocyanide **8d**: mp 141-142 °C (dec.); IR 2134, 1334, 1154 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₁NO₃S₃Na [M+Na]⁺: 442.0576, found: 442.0574. Repeated crystallization (MeOH) gave a pure material whose structure was secured by X-ray diffraction⁹. For (1*S**, 2*S**)-**8d**: ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.53-7.49 (m, 1H), 7.24-7.16 (m, 5H), 6.92 (d, *J* = 8.6 Hz,

1H), 6.93-6.85 (m, 1H), 5.82 (d, J = 9.9 Hz, 1H), 4.79 (d, J = 4.7 Hz, 1H), 3.98 (s, 3H), 3.89 (dd, J = 9.9, 4.7 Hz, 1H), 3.16-2.96 (m, 1H), 2.96-2.66 (m, 3H), 2.18-2.04 (m, 1H), 2.04-1.90 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 167.21, 157.37, 136.56, 133.34, 132.35, 131.35, 129.70, 128.12, 124.67, 121.16, 112.33, 70.78, 56.73, 52.07, 50.12, 30.03, 26.68, 25.59. For (1*S**, 2*R**)-**8d**: ¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, J = 7.9, 1.7 Hz, 1H), 7.75-7.57 (m, 1H), 7.50-7.38 (m, 5H), 7.16-7.09 (m, 1H), 7.08 (d, J = 8.5 Hz, 1H), 6.28 (d, J = 3.3 Hz, 1H), 4.41 (d, J = 10.8 Hz, 1H), 4.19 (dd, J = 10.8, 3.3 Hz, 1H), 4.02 (s, 3H), 3.16-2.99 (m, 1H), 2.96-2.66 (m, 3H), 2.18-2.04 (m, 1H), 2.04-1.90 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 167.21, 157.37, 137.04, 133.64, 132.48, 129.80, 129.07, 128.47, 123.81, 121.24, 112.61, 71.19, 56.61, 47.52, 46.04, 28.60, 28.33, 25.42.

(2-Isocyano-2-((2-methoxyphenyl)sulfonyl)ethane-1,1-diyl)dibenzene $Ph_{Be} NC$ (8e). Following the general procedure with PhLi (0.45 mmol, 0.33 mL) and isocyanide 3e (128 mg, 0.43 mmol) at -100 °C for 12 min, and then allowing the reaction to warm to -80 °C (extraction with MTBE) and purification (1 mm plate, hexanes/CH₂Cl₂/Et₂O, 6:1:1 to 4:1:1), afforded 98 mg (61%) of isocyanide 8e as a white solid: mp 110-112 °C (dec.); IR 2134, 1328, 1151 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, J = 7.9, 1.6 Hz, 1H), 7.62-7.50 (m, 1H), 7.48-7.38 (m, 2H), 7.38-7.12 (m, 8H), 7.09-6.99 (m, 1H), 6.98 (d, J = 8.8 Hz, 1H), 5.84 (d, J = 6.8 Hz, 1H), 4.95 (d, J = 6.8 Hz, 1H), 3.95 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.20, 157.30, 138.73, 138.01, 136.82, 131.98, 129.20, 128.90, 128.75, 128.03, 127.98, 127.78, 124.13, 121.23, 112.59, 74.03, 56.73, 49.72; HRMS (ESI) calcd for C₂₂H₁₉NO₃SNa [M+Na]*: 400.0978, found: 400.0976. MeO 1-(((1*R**, 2*R**)-1-lsocyano-2-(4-methoxyphenyl)-2-phenylethyl)-O O sulfonyl)-2-methoxybenzene and 1-(((1*S**, 2*R**)-1-isocyano-2-(4-Ph NC methoxyphenyl)-2-phenylethyl)sulfonyl)-2-methoxybenzene (8f).

Following the general procedure with isocyanide 3e (170 mg, 0.57 mmol) and (4methoxyphenyl)lithium¹⁰ at -78 °C for 15 min and then allowing the reaction to warm to -60 °C (extraction with MTBE) afforded a mixture of diastereomers (1S*, 2R*:1R*, 2R*, 1:1 ratio) that were purified (2 mm plate, hexanes/CH₂Cl₂/ Et₂O, 6:1:1 to 3:1:1) to afford 176 mg (76%) of isocyanide **8f** from which a pure sample of (1*R**, 2*R**)-**8f** and an enriched sample of (1S*, 2R*)-8f were obtained. For (1R*, 2R*)-8f: mp 101-103 °C (dec.); IR 2134, 1328, 1151 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, J = 7.9, 1.7 Hz, 1H), 7.66-7.52 (m, 1H), 7.44-7.15 (m, 7H), 7.12-7.03 (m, 1H), 7.01 (d, J = 8.4 Hz, 1H), 6.87 (d, J = 8.8 Hz, 2H), 5.79 (d, J = 6.1 Hz, 1H), 4.95 (d, J = 6.1 Hz, 1H), 3.97 (s, 3H), 3.77 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.16, 159.22, 157.36, 139.33, 136.84, 132.18, 130.52, 129.86, 128.94, 127.92, 127.68, 124.14, 121.29, 114.09, 112.61, 74.13, 56.75, 55.29, 48.54; HRMS (ESI) calcd for C₂₃H₂₁NO₄SNa [M+Na]⁺: 430.1084, found: 430.1082. For (1S*, 2R*)-8f: mp 65-67 °C (dec.); IR 2134, 1328, 1151 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.77 (dd, J = 7.9, 1.7 Hz, 1H), 7.62-7.51 (m, 1H), 7.46-7.37 (m, 2H), 7.37-7.30 (m, 2H), 7.30-7.25 (m, 1H), 7.22 (d, J = 8.8 Hz, 2H), 7.09-7.01 (m, 1H), 6.99 (d, J = 8.4 Hz, 1H), 6.75 (d, J = 8.8 Hz, 1H), 5.79 (d, J = 7.3 Hz, 1H), 4.88 (d, J = 7.3 Hz, 1H), 3.98 (s, 3H),3.73 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.09, 159.01, 157.28, 138.44, 136.65, 131.91, 130.57, 129.23, 128.97, 128.79, 127.89, 124.43, 121.21, 114.26, 112.57, 74.34, 56.78, 55.32, 49.35; HRMS (ESI) calcd for C₂₃H₂₁NO₄SNa [M+Na]⁺: 430.1083, found: 430.1082.

2-((1*R**, 2*R**)-2-Isocyano-2-((2-methoxyphenyl)sulfonyl)-1-, 0,0 , -An phenylethyl)benzofuran and 2-((1*R**, 2*S**)-2-isocyano-2-((2-, -An NC ⁸g methoxyphenyl)sulfonyl)-1-phenylethyl)benzofuran (8g).

Following the general procedure with isocyanide 3e (155 mg, 0.52 mmol) and benzofuran-2-yllithium¹¹ at -78 °C and, after 1 h, allowing the reaction to warm to -40 °C (extraction with MTBE) afforded a mixture of diastereomers (1R*, 2S*:1R*, 2R*, 1.3:1 ratio) that was purified by column chromatography (CH₂Cl₂/EtOAc/hexanes, 1:1:6 to 1:1:4) to afford 169 mg (78%) of isocyanide **8g** from which a pure sample of (1*R**, 2*R**)-**8g** and an enriched sample of (1*R**, 2*S**)-8*q* were obtained. For (1*R**, 2*S**)-8*q*: IR 2132, 1332, 1153 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.75 (dd, J = 7.9, 1.7 Hz, 1H), 7.63-7.54 (m, 2H), 7.43-7.31 (m, 5H), 7.29 (d, J = 7.9 Hz, 1H), 7.23-7.18 (m, 1H), 7.18-7.11 (m, 1H), 6.94 (d, J = 8.4 Hz, 1H), 6.87-6.80 (m, 1H), 6.58 (s, 1H), 6.01 (d, J = 7.5 Hz, 1H), 5.06 (d, J = 7.5 Hz, 1H), 4.05 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.37, 157.42, 154.80, 152.83, 136.54, 135.00, 131.90, 129.39, 129.01, 128.81, 128.05, 124.43, 123.61, 123.16, 121.23, 120.93, 112.45, 111.14, 106.24, 72.52, 56.83, 45.12; HRMS (+APCI) calcd for C₂₄H₂₀NO₄S [M+H]⁺: 418.1108, found: 418.1116. For (1*R*^{*}, 2*R*^{*})-8g: IR 2133, 1336, 1155 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.81 (dd, J = 7.9, 1.7 Hz, 1H), 7.61-7.55 (m, 1H), 7.55-7.49 (m, 1H), 7.49-7.39 (m, 3H), 7.33-7.27 (m, 2H), 7.25-7.21 (m, 2H), 7.21-7.16 (m, 1H), 7.08-7.00 (m, 1H), 6.98 (d, J = 8.4 Hz, 1H), 6.88 (s, 1H), 5.73 (d, J = 7.1 Hz, 1H), 5.08 (d, J = 7.1 Hz, 1H), 4.00 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.54, 157.43, 155.13, 152.73, 136.89, 135.57, 132.01, 129.07, 128.69, 128.59, 128.09, 124.55, 124.21, 123.09, 121.40, 121.29, 112.55, 111.37, 106.53, 73.74, 56.80, 45.37; HRMS (+APCI) calcd for C₂₄H₂₀NO₄S [M+H]⁺: 418.1108, found: 418.1115.

2-((1*R**, 2*R**)-2-Isocyano-2-((2-methoxyphenyl)sulfonyl)-1-phenylo children ethyl)-1-methyl-1H-indole and 2-((1*R**, 2*S**)-2-isocyano-2-((2-N - S-An methoxyphenyl)sulfonyl)-1-phenylethyl)-1-methyl-1H-indole (8h).

Following the general procedure with isocyanide 3e (155 mg, 0.52 mmol) and (1-methyl-1H-indol-2-yl)lithium¹² at -78 °C and, after 1.5 h, allowing the reaction to warm to -40 °C (extraction with MTBE) afforded a mixture of diastereomers (1R*, 2S*:1R*, 2R*, 1:1.6 ratio) that was purified by column chromatography (EtOAc/hexanes, 1:4 to 1:2.5) to afford 170 mg (76%) of a mixture of diastereomers. Pure samples of each diastereomer were identified by ¹H NMR analysis of separate fractions obtained during chromatography. For (1R*, 2R*)-8h: mp 168-169 °C (dec.); IR 2134, 1332, 1152 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.88 (dd, J = 8.0, 1.5 Hz, 1H), 7.63-7.50 (m, 2H), 7.48-7.39 (m, 2H), 7.39-7.27 (m, 3H), 7.23-7.15 (m, 2H), 7.13-7.06 (m, 1H), 7.06-6.97 (m, 2H), 6.66 (s, 1H), 5.93 (d, J = 4.1 Hz, 1H), 5.31 (d, J = 4.1 Hz, 1H), 3.99 (s, 3H), 3.50 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.90, 157.47, 137.44, 137.43, 137.04, 134.82, 132.36, 130.23, 128.72, 128.65, 127.19, 123.58, 122.12, 121.22, 120.56, 119.95, 112.75, 109.27, 100.13, 73.62, 56.80, 41.53, 29.95; HRMS (+APCI) calcd for C₂₅H₂₃N₂O₃S [M+H]⁺: 431.1424, found: 431.1420. For (1*R**, 2*S**)-**8h**: light-yellow oil; IR 2134, 1331, 1153 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.82 (dd, J = 7.9, 1.7 Hz, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.58-7.49 (m, 1H), 7.39-7.29 (m, 2H), 7.29-7.13 (m, 5H), 7.12-7.06 (m, 1H), 7.05-6.98 (m, 1H), 6.96 (d, J = 8.4 Hz, 1H), 6.88 (s, 1H), 5.72 (d, J = 6.7 Hz, 1H), 5.17 (d, J = 6.7 Hz, 1H), 4.00 (s, 3H), 3.60 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.83, 157.34, 137.33, 136.83, 136.36, 135.08, 131.94, 129.15, 128.89, 128.44, 127.54, 124.37, 121.95, 121.26, 120.87, 119.80, 112.58, 109.27, 101.98, 74.77, 56.77, 43.00, 29.99; HRMS (+APCI) calcd for C₂₅H₂₃N₂O₃S [M+H]⁺: 431.1424, found: 431.1423. *Equilibration*: a THF solution (5 mL) of *t*-BuOK (31 mg, 0.28 mmol) was added to a -78 °C, THF solution (5 mL) of (1 R^* , 2 R^*)-**8h** (108 mg, 0.25 mmol). After 30 min, a THF solution (2 mL) of *t*-BuOH (1.6 mmol, 0.15 mL) was added. After 10 min, brine (5 mL) and MTBE (20 mL) were added sequentially. Organic phase was separated, aqueous phase was extracted with MTBE (10 mL), and then combined organic solution was washed with brine (2 x 5 mL), dried (Na₂SO₄) and concentrated. The crude (1 R^* , 2 S^* :1 R^* , 2 R^* , 1:2 ratio) was purified by column chromatography (EtOAc/hexanes, 1:4 to 1:2.5) to afford 27 mg (25%) of (1 R^* , 2 S^*)-**8h** and 58 mg (54%) of (1 R^* , 2 R^*)-**8h** spectrally identical to materials previously characterized.

Ph NC 8i diyl)dibenzene and ((3*S**, 4*R**)-4-Isocyano-4-((2-methoxyphenyl)sulfonyl)butane-1,3-

sulfonyl)butane-1,3-diyl)dibenzene (**8i**). Following the general procedure with PhLi (0.20 mmol, 0.15 mL) and isocyanide **3f** (48 mg, 0.15 mmol) at -100 °C for 18 min and then allowing the reaction to warm to -78 °C (extraction with MTBE) afforded a mixture of diastereomers ($3S^*$, $4S^*:3S^*$, $4R^*$, 1:2.1 ratio) that were purified (1 mm plate, hexanes/CH₂Cl₂/Et₂O, 7:1:1 to 6:1:1) to afford 45 mg (76%) of a diastereomeric mixture of isocyanide **8i** as a colorless oil: IR 2133, 1329, 1151 cm⁻¹; HRMS (ESI) calcd for C₂₄H₂₃NO₃SNa [M+Na]⁺: 428.1291, found: 428.1289. For ($3S^*$, $4R^*$)-**8i**: ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.66-7.59 (m, 1H), 7.42-7.23 (m, 7H), 7.23-7.15 (m, 1H), 7.15-7.07 (m, 3H), 6.99 (d, *J* = 8.4 Hz, 1H), 5.14 (d, *J* = 3.0 Hz, 1H), 3.88 (s, 3H), 3.60 (dt, *J* = 11.6, 3.1 Hz, 1H), 2.80-2.59 (m, 1H), 2.59-2.39 (m, 2H), 2.39-2.20 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 166.52, 157.40, 140.95, 139.01, 136.96, 132.44,

129.29, 128.57, 128.52, 128.25, 128.15, 126.18, 123.57, 121.32, 112.55, 75.75, 56.62, 42.30, 32.85, 31.03. For $(3S^*, 4S^*)$ -**8i**: ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, J = 7.9, 1.7 Hz, 1H), 7.66-7.55 (m, 1H), 7.42-7.23 (m, 7H), 7.23-7.15 (m, 1H), 7.15-7.07 (m, 3H), 7.05 (d, J = 8.4 Hz, 1H), 5.25 (d, J = 6.0 Hz, 1H), 3.99 (s, 3H), 3.73-3.63 (m, 1H), 2.59-2.39 (m, 3H), 2.39-2.20 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 166.01, 157.49, 140.78, 139.01, 136.93, 132.23, 129.20, 128.82, 128.61, 128.36, 128.15, 126.32, 124.15, 121.30, 112.63, 74.84, 56.69, 43.70, 34.64, 33.23.

 $\underbrace{\begin{array}{c} 0 \\ S^{\prime\prime} \\ S^{\prime\prime} \\ V \end{array}}_{\text{Pb}} \underbrace{\begin{array}{c} 0 \\ S^{\prime\prime} \\ S^{\prime\prime} \\ V \end{array}}_{\text{NC}} 1-(((1S^*, 2S^*)-1-\text{lsocyano-2-phenylbut-3-en-1-yl})\text{sulfonyl})-2-\text{methoxy-}_{\text{S}} \\ \underbrace{\begin{array}{c} 0 \\ S^{\prime\prime} \\ S^{\prime\prime} \\ V \end{array}}_{\text{Pb}} \underbrace{\begin{array}{c} 0 \\ S^{\prime\prime} \\ V \end{array}}_{\text{NC}} benzene and 1-(((1R^*, 2S^*)-1-\text{isocyano-2-phenylbut-3-en-1-yl})\text{sulfonyl})-2-\text{methoxy-}_{\text{S}} \\ \underbrace{\begin{array}{c} 0 \\ S^{\prime\prime} \\ V \end{array}}_{\text{NC}} benzene and 1-(((1R^*, 2S^*)-1-\text{isocyano-2-phenylbut-3-en-1-yl})\text{sulfonyl})-2-\text{methoxy-}_{\text{S}} \\ \underbrace{\begin{array}{c} 0 \\ S^{\prime\prime} \\ V \end{array}}_{\text{S}} \\ \underbrace{\begin{array}{c} 0 \\ S^{\prime} \\ V \end{array}}_{\text{S}} \\ \underbrace{\begin{array}{c} 0 \\ S^{\prime\prime} \\ V \end{array}}_{\text{S}} \\ \underbrace{\begin{array}{c} 0 \\ S^{\prime} \end{array}}_{\text{S}} \\ \underbrace{\begin{array}{c$ 2-methoxybenzene (v). Following the general procedure with vinyllithium¹³ and isocyanide 3e (273 mg, 0.91 mmol) at -78 °C for 13 min (extraction with MTBE) afforded a mixture of diastereomers (1S*, 2S*:1R*, 2S*, 1:2.5 ratio) that were purified by column chromatography (hexanes/CH₂Cl₂/Et₂O, 6:1:1 to 4:1:1) to afford 128 mg (43%) of isocyanide v that was approximately 90% pure. Repeated purification (1 mm plate, hexanes/CH₂Cl₂/Et₂O, 7:1:1 to 5:1:1) afforded 51 mg (17%) of isocyanide v as an oily mixture of diastereomers (1S*, 2S*:1R*, 2S*, 1:1): IR 2134, 1332, 1151 cm⁻¹; HRMS (-APCI) calcd for C₁₈H₁₆NO₃S [M-H]⁻: 326.0851, found: 326.0856. For (1S*, 2S*)- and (1R*, 2S*)-v: ¹H NMR (400 MHz, CDCl₃) δ 7.96 (dd, J = 7.6 and 2.0 Hz, 1H), 7.95 (dd, J = 7.6 and 2.0 Hz, 1H), 7.69-7.60 (m, 2H), 7.42-7.28 (m, 10H), 7.17-7.10 (m, 2H), 7.08 (d, J = 8.4 Hz, 1H), 7.03 (d, J = 8.3 Hz, 1H), 6.36 (ddd, J = 16.8, 10.4, 8.0 and 2.4 Hz, 1H), 6.20 (ddd, J = 16.8, 10.4, 8.0 and 2.4 Hz, 1H), 5.41 (dt, J = 10.4 and 1.2 Hz, 1H), 5.36 (d, J = 7.2 Hz, 1H), 5.32 (dt, J = 8.0 and 1.2, 1H), 5.30-5.22 (m, 3H), 4.39 (dd, J = 8.0 and 3.6 Hz, 1H), 4.33 (t, J = 7.6 Hz, 1H), 4.02 (s, 3H), 3.95 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.71 (166.22), 157.57 (157.43), 138.73 (137.04), 137.03 (136.99), 134.87 (133.27), 132.48 (132.17), 129.18 (128.96), 128.92 (128.31), 128.11 (128.08), 124.13 (123.75), 121.35 (121.31), 120.70 (119.03), 112.63 (112.61), 74.88 (74.06), 56.73 (56.69), 48.62 (46.89).

Ph ((3*R**, 4*R**)-4-Isocyano-4-((2-methoxyphenyl)sulfonyl)but-1-yne-1,3-((3*R**, 4*R**)-4-Isocyano-4-((2-methoxyphenyl)but-1-yne-1,3diyl)dibenzene and ((3*R**, 4*S**)-4-isocyano-4-((2-methoxyphenyl)-Ph NC ^{8j} sulfonyl)but-1-yne-1,3-diyl)dibenzene (8j). Following the general pro-

cedure with isocyanide **3e** (173 mg, 0.58 mmol) and (phenylethynyl)lithium¹⁴ at -78 °C for 2 h, and then allowing the reaction to warm to 4 °C (extraction with MTBE) afforded a mixture of diastereomers (3R*, 4S*:3R*, 4R*, 1:3.2 ratio) that were purified by column chromatography (hexanes/CH₂Cl₂/Et₂O, 6:1:1 to 4:1:1) to afford 156 mg (67%) of diastereometric isocyanides $(3R^*, 4R^*)$ - and $(3R^*, 4S^*)$ -8i as an orange oil. Although not fully separable, enriched fractions of the two diastereomers were obtained which allowed a complete spectral assignment. For $(3R^*, 4S^*)$ -8j: IR 2135, 1335, 1153 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 7.9, 1.7 Hz, 1H), 7.72-7.59 (m, 3H), 7.477.27 (m, 8H), 7.13-7.08 (m, 1H), 7.06 (d, J = 8.4 Hz, 1H), 5.42 (d, J = 6.6 Hz, 1H), 4.81 (d, J = 6.6 Hz, 1H), 4.03 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.13, 157.62, 137.07, 134.55, 132.18, 131.95, 129.52, 128.98, 128.84, 128.81, 128.35, 124.16, 122.33, 121.35, 112.65, 86.63, 84.96, 74.58, 56.80, 38.26. Pure $(3R^*, 4R^*)$ -8j was isolated by fractional crystallization (cyclohexane/CH₂Cl₂/pentane, 10:1:10) as a white crystalline solid: mp 98-100 °C (dec.); IR 2135, 1336, 1153 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, J = 7.9, 1.7 Hz, 1H), 7.72-7.59 (m, 1H), 7.59-7.46 (m, 4H), 7.46-7.27 (m, 6H), 7.20-7.09 (m, 1H), 7.02 (d, J = 8.4 Hz, 1H), 5.17 (d, J = 2.7 Hz, 1H), 4.98 (d, J = 2.7 Hz, 1H), 3.97 (s, 3H); ¹³C NMR (101

MHz, CDCl₃) δ 166.89, 157.70, 137.23, 136.23, 132.82, 132.09, 129.31, 128.74, 128.69, 128.32, 128.13, 123.38, 122.55, 121.33, 112.65, 88.10, 82.90, 75.86, 56.67, 37.79; HRMS (ESI) calcd for C₂₄H₁₉NO₃SNa [M+Na]⁺: 424.0978, found: 424.0977.

O 1-(((1*R**, 2*S**)-1-lsocyano-2-phenylpent-4-en-1-yl)sultonyl)-2-S-An 8k methoxybenzene and 1-(((1*S**, 2*S**)-1-isocyano-2-phenylpent-4-en-1yl)sulfonyl)-2-methoxybenzene (8k). Following the general procedure with isocyanide **3e** (165 mg, 0.55 mmol) and allyIMgBu₂Li⁶ (0.58 mmol) at -105 °C and, after 20 min, allowing the reaction to warm to -78 °C (extraction with MTBE) afforded a mixture of diastereomers (1S*, 2S*:1R*, 2S*, 1:1.4 ratio) that were purified (2 mm plate, hexanes/ CH₂Cl₂/Et₂O, 6:1:1 to 5:1:1) to afford 130 mg (69%) of isocyanide 8k from which enriched samples of both diastereomers were obtained. For (1R*, 2S*)-8k: mp 106-108 °C (dec.); IR 2133, 1330, 1152 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.90 (dd, J = 7.9, 1.7 Hz, 1H), 7.72-7.55 (m, 1H), 7.53-7.26 (m, 5H), 7.19-7.08 (m, 1H), 7.06 (d, J = 8.3 Hz, 1H), 5.91-5.52 (m, 1H), 5.42 (d, J = 4.4 Hz, 1H), 5.27-4.92 (m, 2H), 3.99 (s, 3H), 3.85-3.70 (m, 1H), 2.99-2.73 (m, 1H), 2.73-2.60 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 166.14, 157.37, 136.97, 136.91, 134.44, 132.39, 129.19, 128.55, 128.31, 124.13, 121.29, 118.86, 112.58, 73.14, 56.52, 42.59, 37.38; HRMS (ESI) calcd for C₁₉H₁₉NO₃SNa [M+Na]⁺: 364.0978, found: 364.0976. For (1S*, 2S*)-8k: IR 2134, 1330, 1151 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 7.9, 1.7 Hz, 1H), 7.747.53 (m, 1H), 7.50-7.26 (m, 5H), 7.20-7.11 (m, 1H), 7.01 (d, J = 8.4 Hz, 1H), 5.65-5.50 (m, 1H), 5.31-5.10 (m, 1H), 5.10-4.90 (m, 2H), 3.91 (s, 3H), 3.86-3.68 (m, 1H), 3.152.99 (m, 1H), 2.94-2.73 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 166.56, 157.41, 138.61, 137.06, 134.15, 132.41, 129.06, 128.22, 128.10, 123.52, 121.29, 118.00, 112.60, 75.39, 56.64, 42.59, 33.96.

((2S*, 3R*)-3-Isocyano-3-((2-methoxyphenyl)sulfonyl)propane-1,2-Bn diyl)dibenzene and ((2S*, 3S*)-3-isocyano-3-((2-methoxyphenyl)-81 Ρń sulfonyl)propane-1,2-diyl)dibenzene (81). Following the general procedure with Bu₂BnMgLi (0.65 mmol) and isocyanide **3e** (185 mg, 0.62 mmol) at -110 °C for 15 min, allowing the reaction to warm to -85 °C (extraction with MTBE), triturating of the residue (Et₂O/CH₂Cl₂, 6:1), filtration (filtrate **F**), and washing with cold Et₂O (3 x 2 mL) afforded 69 mg (29%) of isocyanide (2S^{*}, 3S^{*})-8I as a white solid. An analytically pure sample of $(2S^*, 3S^*)$ -8I was obtained by radial chromatography (1 mm plate, hexanes/CH₂Cl₂/Et₂O, 4:1:1 to 1:1:1). Evaporation of the filtrate **F** afforded a mixture of diastereomers (2S*, 3S*: 2S*, 3R*, 1:1.2) that were purified (1 mm plate, hexanes/CH₂Cl₂/Et₂O, 6:1:1 to 5.5:1:1) to afford 104 mg (43%) of a diastereomeric mixture of isocyanide 8I (2S*, 3S*:2S*, 3R*, 1:1.3) from which pure (2S*, 3R*)-8I was identified by ¹H NMR analysis of separate fractions obtained during chromatography. For (2S*, 3S*)-8I: mp 129-131 °C (dec.); IR 2134, 1334, 1152 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, J = 7.9, 1.7 Hz, 1H), 7.69-7.55 (m, 1H), 7.55-7.45 (m, 2H), 7.45-7.25 (m, 8H), 7.11-7.01 (m, 1H), 6.92 (d, J = 8.3 Hz, 1H), 5.20 (d, J = 3.5 Hz, 1H), 4.08-3.93 (m, 1H), 3.52 (s, 3H), 3.29 (dd, J = 14.0, 11.2 Hz, 1H), 3.19 (dd, J = 14.0, 5.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 166.36, 157.10, 137.88, 136.96, 136.81, 132.25, 129.30, 129.17, 129.03, 128.54, 128.45, 127.23, 123.86, 121.11, 112.33, 71.99, 56.00, 44.55, 39.37; HRMS (ESI) calcd for C₂₃H₂₁NO₃SNa [M+Na]⁺: 414.1134, found: 414.1132. For (2S*, 3R*)-8I: IR 2132, 1327, 1152 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, J = 7.9, 1.7 Hz, 1H), 7.74-7.59 (m, 1H), 7.26-7.06 (m, 9H), 7.06-6.96 (m, 3H), 5.26 (d, J = 2.8 Hz, 1H), 3.98-3.85 (m, 1H), 3.92 (s, 3H), 3.73 (dd, J = 13.8, 3.1 Hz, 1H), 3.19 (dd, J = 13.8, 11.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ

S31

166.76, 157.49, 138.67, 138.13, 137.11, 132.49, 129.35, 128.93, 128.30, 128.27, 128.06, 126.41, 123.56, 121.36, 112.63, 75.28, 56.67, 44.67, 36.54; HRMS (ESI) calcd for C₂₃H₂₁NO₃SNa [M+Na]⁺: 414.1134, found: 414.1133.

sulfonyl)-3-phenylbutanenitrile (8m). Following the general procedure with isocyanide 3e (76 mg, 0.25 mmol) and lithiated acetonitrile (from 0.30 mmol, 0.02 mL of MeCN and 0.30 mmol, 0.19 mL of BuLi in 5 mL of THF, -78 °C, 30 min) at -78 °C for 15 min (extraction with MTBE) afforded a mixture of diastereomers (3S*, 4S*:3S*, 4R*, 1:1.4 ratio) that were purified (1 mm plate, hexanes/CH₂Cl₂/Et₂O, 6:1:1 to 3:1:1) to afford 76 mg (88%) of a diastereomeric mixture of isocyanide 8m (3S*, 4S*:3S*, 4R*, 1:2.1) as a white solid: mp 118-122 °C (dec.); IR 2251, 2134, 1330, 1153 cm⁻¹; HRMS (ESI) calcd for C₁₈H₁₆N₂O₃SNa [M+Na]⁺: 363.0774, found: 363.0773. For (3*S*^{*}, 4*R*^{*})-8*m*: ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 8.0, 1.6 Hz, 1H), 7.77-7.62 (m, 1H), 7.45-7.38 (m, 5H), 7.23-7.15 (m, 1H), 7.06 (d, J = 8.4 Hz, 1H), 5.25 (d, J = 2.7 Hz, 1H), 4.14-3.98 (m, 1H), 3.95 (s, 3H), 3.46 (dd, J = 17.0, 4.0 Hz, 1H), 3.10 (dd, J = 16.9, 11.7 Hz, 1H); ¹³C NMR (126) MHz, CDCl₃) δ 168.46, 157.45, 137.56, 135.94, 132.45, 129.60, 129.31, 127.49, 121.41, 121.23, 116.80, 112.70, 73.42, 56.72, 39.11, 19.31. For (3S*, 4S*)-8m: ¹H NMR (400 MHz, CDCl₃) δ 7.96 (dd, J = 8.0, 1.6 Hz, 1H), 7.77-7.62 (m, 1H), 7.45-7.38 (m, 5H), 7.19-7.14 (m, 1H), 7.12 (d, J = 8.4 Hz, 1H), 5.61 (d, J = 7.6 Hz, 1H), 4.14-3.98 (m, 1H), 4.08 (s, 3H), 3.19 (dd, J = 17.1, 6.9 Hz, 1H), 3.10 (dd, J = 11.2, 6.0 Hz, 1H); ¹³C NMR (126) MHz, CDCl₃) δ 167.30, 157.59, 137.41, 135.12, 132.04, 129.31, 129.25, 128.18, 123.03, 122.24, 116.77, 112.70, 71.86, 56.70, 40.40, 22.32.

4-Isocyano-4-((2-methoxyphenyl)sulfonyl)-3,3-dimethylbutanenitrile NC \rightarrow S-An 8n (8n). Following the general procedure with lithiated acetonitrile (from 0.32 mmol, 0.02 mL of MeCN and 0.30 mmol, 0.19 mL of BuLi) and isocyanide **3g** (54 mg, 0.21 mmol) at -78 °C for 30 min (extraction with MTBE) and purification (1 mm plate, hexanes/CH₂Cl₂/Et₂O, 5:1:1 to 4.5:1:1) afforded 57 mg (91%) of pure isocyanide **8n** as a white solid: mp 107-108 °C; IR 2246, 2133, 1331, 1152 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.78-7.63 (m, 1H), 7.23-7.15 (m, 1H), 7.12 (d, *J* = 8.4 Hz, 1H), 5.22 (s, 1H), 4.06 (s, 3H), 3.30 (d, *J* = 16.9 Hz, 1H), 2.61 (d, *J* = 16.9 Hz, 1H), 1.52 (s, 3H), 1.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.66, 157.58, 137.39, 132.07, 124.08, 121.18, 117.02, 112.82, 75.05, 56.70, 38.67, 28.38, 26.55, 23.54; HRMS (ESI) calcd for C₁₄H₁₆N₂O₃SNa [M+Na]⁺: 315.0774, found: 315.0773.

N 1-((1*R**, 2*R**)-2-lsocyano-2-((2-methoxyphenyl)sulfonyl)-1-phenyl- $V_{III}^{V_{III}} \circ O_{S-An}^{O}$ ethyl)cyclohexane-1-carbonitrile and 1-((1*R**, 2*S**)-2-isocyano-2-Ph NC ⁸⁰ ((2-methoxyphenyl)sulfonyl)-1-phenylethyl)cyclohexane-1-carbo-

nitrile (8o). Following the general procedure with lithiated cyclohexanecarbonitrile (from 0.34 mmol of LDA and 0.34 mmol, 0.04 mL of cyclohexanecarbonitrile in 2 mL of THF, - 78 °C, 1 h) and isocyanide **3e** (93 mg, 0.31 mmol) at -78 °C for 35 min (extraction with MTBE) afforded a mixture of diastereomers ($1R^*$, $2S^*$: $1R^*$, $2R^*$, 1:10.6 ratio) that was purified by column chromatography (hexanes/ CH₂Cl₂/Et₂O, 6:1:1 to 4:1:1) to afford 106 mg (84%) of a diastereomeric mixture of isocyanide **8o** as a colorless oil: IR 2253, 2135, 1335, 1153 cm⁻¹; HRMS (ESI) calcd for C₂₃H₂₄N₂O₃SNa [M+Na]⁺: 431.1400, found: 431.1398. For ($1R^*$, $2R^*$)-**8o**: ¹H NMR (400 MHz, CDCl₃) δ 7.86 (dd, J = 7.8, 1.6 Hz, 1H), 7.77-7.51 (m, 3H), 7.51-7.29 (m, 3H), 7.18-7.04 (m, 2H), 5.79 (d, J = 1.5 Hz, 1H), 4.00 (s,

3H), 3.72 (d, J = 1.5 Hz, 1H), 2.33-2.06 (m, 1H), 1.99-1.32 (m, 7H), 1.32-1.03 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 169.47, 157.19, 137.25, 132.63, 132.49, 130.69, 129.03, 128.57, 122.57, 121.49, 121.27, 112.74, 70.00, 56.71, 48.71, 42.25, 35.62, 34.02, 24.71, 22.82, 22.63. For (1 R^* , 2 S^*)-**8o**: ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, J = 8.0, 1.6 Hz, 1H), 7.77-7.51 (m, 1H), 7.51-7.29 (m, 2H), 7.25-7.18 (m, 3H), 7.04-6.96 (m, 1H), 6.89 (d, J = 8.3 Hz, 1H), 5.77 (d, J = 6.9 Hz, 1H), 3.73 (s, 3H), 3.49 (d, J = 6.9 Hz, 1H), 3.00-2.62 (m, 1H), 1.99-1.32 (m, 7H), 1.32-1.03 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 169.53, 156.90, 136.78, 136.07, 131.36, 130.69, 128.79, 128.57, 123.72, 121.49, 121.27, 112.42, 73.95, 56.36, 48.71, 41.68, 36.10, 35.58, 24.64, 22.82, 22.63.

Ph NC ^{8p} dimethyl-3-phenylbutanoate (8p). Following the general procedure with isocyanide **3e** (156 mg, 0.52 mmol) and lithium 1-ethoxy-2-methylprop-1-en-1-olate (prepared from 0.74 mmol, 0.10 mL of ethyl isobutyrate and 0.79 mmol of LDA in 5 mL of THF, -78 °C, 30 min) at -78 °C for 35 min (extraction with MTBE) afforded a mixture of diastereomers ($3R^*$, $4S^*$: $3R^*$, $4R^*$, 1:3.6 ratio). Purification by column chromatography (hexanes/CH₂Cl₂/Et₂O, 6:1:1) afforded 165 mg (76%) of pure isocyanide ($3R^*$, $4R^*$)-**8p** as a white solid. The ($3R^*$, $4S^*$)-diastereomer was not eluted from the column. For ($3R^*$, $4R^*$)-**8p** imp 127-128 °C (dec.); IR 2136, 1719, 1331, 1152 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, J = 7.9, 1.7 Hz, 1H), 7.70-7.58 (m, 1H), 7.47-7.38 (m, 2H), 7.38-7.29 (m, 3H), 7.16-7.08 (m, 1H), 7.06 (d, J = 8.4 Hz, 1H), 5.86 (d, J = 1.5 Hz, 1H), 4.26-4.12 (m, 2H), 4.00 (s, 3H), 3.95 (d, J = 1.5 Hz, 1H), 1.32 (s, 3H), 1.30 (s, 3H), 1.28 (t, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.86, 167.22, 157.23, 136.85, 134.32, 132.60,

130.80, 128.31, 128.11, 122.96, 121.11, 112.53, 70.74, 61.32, 56.42, 48.75, 46.23, 25.52, 23.39, 13.97; HRMS (ESI) calcd for C₂₂H₂₅NO₅SNa [M+Na]⁺: 438.1346, found: 438.1343.

General isocyanide NaBH₄ reduction procedure.

Solid sodium borohydride (19 mg, 0.5 mmol) was added to a 0 °C, THF-MeOH-H₂O (7:7:1) solution (5 mL) of the alkeneisocyanide (0.25 mmol). After stirring overnight, the reaction was allowed to warm to room temperature, evaporated and partitioned between CH_2Cl_2 and H_2O (5:3). The phases were separated and then the aqueous phase was extracted with CH_2Cl_2 (5 mL). The combined organic phase was washed with cold water (2 x 5 mL), dried (Na₂SO₄), concentrated and then the crude isocyanide was purified by chromatography to give the pure isocyanide.

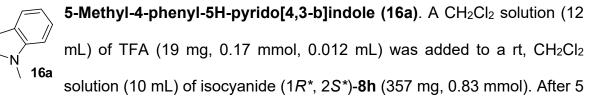
Ts **1-((1-Isocyano-2-phenylethyl)sulfonyl)-4-methylbenzene (4c)**. Isocyanide Ph $_{4c}$ NC **2a** (150 mg, 0.53 mmol) was reduced with NaBH₄ according to the general method and then purified by crystallization (ethyl acetate/cyclohexane/hexanes, 1:10:15) to afford 128 mg (85%) of isocyanide **4c** as a pale-orange solid: mp 96-98 °C (Lit.¹⁵, 93.5-94.5 °C); IR 2132, 1332, 1151 cm⁻¹; ¹H NMR (400 MHz, CDCI₃) δ 7.91 (d, *J* = 8.3 Hz, 2H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.39-7.12 (m, 5H), 4.61 (dd, *J* = 11.5, 2.9 Hz, 1H), 3.60 (dd, *J* = 13.8, 2.9 Hz, 1H), 2.99 (dd, *J* = 13.8, 11.5 Hz, 1H), 2.49 (s, 3H); ¹³C NMR (101 MHz, CDCI₃) δ 165.73, 146.90, 133.31, 131.05, 130.34, 130.21, 129.41, 129.15, 128.14, 74.27, 34.77, 21.95; HRMS (ESI) calcd for C₁₆H₁₅NO₂SNa [M+Na]⁺: 308.0716, found: 308.0716.

Isocyanide **3e** (75 mg, 0.25 mmol) was reduced with NaBH₄ according to the general method. Purification by radial chromatography (1 mm plate, hexanes/ Et₂O/CH₂Cl₂, 6:1:1 to 5:1:1) afforded 63 mg (84%) of isocyanide **8q** as a white crystalline solid: mp 118 °C; IR 2134, 1329, 1151 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.74-7.63 (m, 1H), 7.48-7.27 (m, 5H), 7.23-7.13 (m, 1H), 7.08 (d, *J* = 8.4 Hz, 1H), 5.16 (dd, *J* = 11.3, 3.0 Hz, 1H), 3.99 (s, 3H), 3.58 (dd, *J* = 13.9, 3.0 Hz, 1H), 3.24 (dd, *J* = 11.3, 13.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 165.40, 157.72, 137.22, 133.73, 132.52, 129.57, 129.15, 128.08, 122.62, 121.35, 112.63, 72.36, 56.70, 33.32; HRMS (ESI) calcd for C₁₆H₁₅NO₃SNa [M+Na]⁺: 324.0665, found: 324.0664.

Ph______8r Isocyanide **3f** (82 mg, 0.25 mmol) was reduced with NaBH₄ according to the general method with purification by filtration through a short SiO₂ plug (CH₂Cl₂) to afford 74 mg (90%) of isocyanide **8r** as a colorless oil which solidified upon cooling: mp 88-90 °C (dec.); IR 2135, 1328, 1150 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.75-7.57 (m, 1H), 7.40-7.25 (m, 2H), 7.25-7.11 (m, 4H), 7.07 (d, *J* = 8.1 Hz, 1H), 5.02 (dd, *J* = 10.1, 3.9 Hz, 1H), 3.96 (s, 3H), 2.72 (t, *J* = 7.5 Hz, 2H), 2.39-1.97 (m, 3H), 1.97-1.73 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 164.61, 157.64, 140.70, 137.06, 132.43, 128.63, 128.43, 126.33, 122.76, 121.23, 112.62, 70.83, 56.60, 35.00, 27.19, 26.53; HRMS (ESI) calcd for C1₈H₁₉NO₃SNa [M+Na]⁺: 352.0978, found: 352.0977.

MHz, CDCl₃) δ 8.01 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.77-7.58 (m, 1H), 7.24-7.13 (m, 1H), 7.10 (d, *J* = 8.4 Hz, 1H), 4.93 (d, *J* = 3.5 Hz, 1H), 4.00 (s, 3H), 2.90-2.59 (m, 1H), 1.28 (d, *J* = 6.7 Hz, 3H), 1.21 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.89, 157.45, 136.95, 132.30, 123.78, 121.21, 112.65, 75.89, 56.63, 27.45, 20.96, 17.32; HRMS (ESI) calcd for C₁₂H₁₅NO₃SNa [M+Na]⁺: 276.0665, found: 276.0664.

Ph Me O (2-Isocyano-2-((2-methoxyphenyl)sulfonyl)propane-1,1-diyl)di-Ph NC 9a benzene (9a). Phenyllithium (0.58 mmol, 0.4 mL) was added dropwise to a THF solution (5 mL) of isocyanide 3e (112 mg, 0.37 mmol) at -78 °C. After 15 min, neat DMPU (1.55 mmol, 0.2 mL) was added and after 2 min neat iodomethane (1.61 mmol, 228 mg, 0.1 mL) was added dropwise. The reaction was allowed to slowly warm to rt over 12 h, and then brine (5 mL) was added. The organic layer was separated and then the aqueous phase was extracted with MTBE (15 mL). The combined organic phase was washed with brine (2 x 5 mL) and dried (Na₂SO₄). Concentration of the solution and purification of the residue by radial chromatography (1 mm plate, hexanes/Et₂O/CH₂Cl₂, 7:1:1 to 4:1:1) afforded 116 mg (79%) of pure isocyanide **9a** as a colorless oil: IR 2123, 1324, 1148 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.52 (m, 5H), 7.52-7.43 (m, 1H), 7.39-7.27 (m, 2H), 7.27-7.21 (m, 1H), 7.21-7.06 (m, 3H), 6.90 (d, J = 8.2 Hz, 1H), 6.88-6.80 (m, 1H), 4.63 (s, 1H), 3.89 (s, 3H), 1.69 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.58, 158.58, 138.87, 137.97, 136.65, 133.88, 129.50, 129.27, 129.01, 128.31, 127.88, 127.66, 123.63, 120.44, 112.44, 81.92, 55.87, 54.70, 24.72; HRMS (ESI) calcd for C₂₃H₂₁NO₃SNa [M+Na]⁺: 414.1134, found: 414.1132. Repeating the reaction with HMPA instead of DMPU gave 110 mg (75%) of isocyanide **9a**. Performing the methylation without DMPU


gave 78 mg (53%) of isocyanide **9a** and unreacted **3e** (15%), as calculated by comparative integration from the crude ¹H NMR.

Ph Pr O (2-Isocyano-2-((2-methoxyphenyl)sulfonyl)pentane-1,1-diyl)-di-Ph NC 9b benzene (9b). Phenyllithium (0.54 mmol, 0.4 mL) was added dropwise to a THF solution (5 mL) of isocyanide **3e** (116 mg, 0.39 mmol) at -78 °C. After 15 min, neat DMPU (1.55 mmol, 0.2 mL) was added, and after 2 min, neat 1-iodopropane (1 mmol, 174 mg, 0.1 mL) was added dropwise. The reaction was allowed to slowly warm to rt over 12 h and then brine (5 mL) was added. The phases were separated and aqueous phase was extracted with MTBE (15 mL). The combined organic extract was dried (Na₂SO₄), concentrated and purified (2 mm plate, hexanes/Et₂O/CH₂Cl₂, 8:1:1 to 6:1:1) to afford 134 mg (82%) of isocyanide **9b** as a colorless oil: IR 2122, 1322, 1148 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.53 (m, 4H), 7.49-7.39 (m, 1H), 7.36 (dd, J = 8.0, 1.6 Hz, 1H), 7.33-7.25 (m, 2H), 7.25-7.18 (m, 1H), 7.13-7.03 (m, 3H), 6.88 (d, J = 8.3 Hz, 1H), 6.81-6.66 (m, 1H), 4.68 (s, 1H), 3.90 (s, 3H), 2.24-2.08 (m, 1H), 2.08-1.91 (m, 1H), 1.59-1.40 (m, 2H), 0.65 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.84, 158.58, 139.23, 138.11, 136.30, 133.06, 129.92, 129.00, 128.94, 128.27, 127.74, 127.58, 124.84, 120.27, 112.16, 85.54, 55.77, 53.68, 38.60, 17.34, 13.88; HRMS (ESI) calcd for C₂₅H₂₅NO₃SNa [M+Na]⁺: 442.1447, found: 442.1445.

2-((1*R**, 2*R**)-2-Isocyano-2-((2-methoxyphenyl)sulfonyl)-1-phenylpropyl)benzofuran and 2-((1*R**, 2*S**)-2-isocyano-2-((2-methoxy- $Me \xrightarrow{O}_{S-An} gc$ phenyl)sulfonyl)-1-phenylpropyl)benzofuran (9c). A THF solution (5.5 mL) of isocyanide **3e** (200 mg, 0.7 mmol) was added to a -78 °C, THF solution (10 mL) of benzofuran-2-yllithium¹¹ (1.3 mmol) at -78 °C. After 1 h, the reaction was allowed S38

to warm to -40 °C, and then DMPU (1 mL) and MeI (332 mg, 2.3 mmol, 0.15 mL) were added sequentially. The resulting mixture was allowed to warm to rt over 22 h, and then brine (5 mL) was added. The organic phase was separated and the aqueous phase was extracted with MTBE (20 mL). The combined organic extract was washed with brine (2 x 5 mL), dried (Na₂SO₄) and concentrated to afford a mixture of diastereomers (1 R^* , 2S*:1R*, 2R*, 3.1:1 ratio) that were purified bv column chromatography (CH₂Cl₂/Et₂O/hexanes, 1:1:6 to 1:1:4) to afford 236 mg (82%) of a diastereomeric mixture of isocyanide **9c** (1*R**, 2*S**:1*R**, 2*R**, 4.7:1) as a pale-pink oil: IR 2125, 1592, 1481, 1326, 1150 cm⁻¹; HRMS (+APCI) calcd for C₂₅H₂₂NO₄S [M+H]⁺: 432.1264, found: 432.1267. For $(1R^*, 2S^*)$ -9c: ¹H NMR (500 MHz, CDCl₃) δ 7.72 (dd, J = 8.0, 1.7 Hz, 1H), 7.64-7.57 (m, 2H), 7.43-7.22 (m, 6H), 7.22-7.15 (m, 1H), 7.15-7.08 (m, 1H), 6.78 (s, 1H), 6.75 (d, J = 8.4, 1H), 6.72-6.63 (m, 1H), 4.90 (s, 1H), 3.88 (s, 3H), 1.75 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.25, 158.66, 154.11, 153.04, 136.37, 135.39, 133.68, 129.70, 128.87, 128.49, 127.94, 124.10, 122.97, 122.74, 120.95, 119.96, 112.15, 111.09, 105.86, 81.31, 55.85, 49.05, 23.35; For (1*R**, 2*R**)-**9c**: ¹H NMR (500 MHz, CDCl₃) δ 7.75 (dd, *J* = 8.0, 1.7) Hz, 1H), 7.70-7.67 (m, 1H), 7.57-7.53 (m, 1H), 7.53-7.50 (m, 1H), 7.48 (d, J = 8.2 Hz, 1H), 7.43-7.22 (m, 5H), 7.22-7.15 (m, 1H), 6.99 (d, J = 8.4 Hz, 1H), 6.98-6.90 (m, 1H), 6.77 (s, 1H), 5.05 (s, 1H), 3.93 (s, 3H), 1.92 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.41, 158.89, 154.95, 153.01, 136.87, 136.40, 134.81, 134.28, 130.36, 128.40, 128.36, 127.86, 124.38, 123.00, 121.15, 120.43, 112.72, 111.29, 107.07, 81.70, 55.97, 49.15, 22.59.

2-((1R*, 2S*)-2-Isocyano-2-((2-methoxyphenyl)sulfonyl)-1-phenylpropyl)-1-methyl-1H-indole (9d). A THF solution (6 mL) of isocyanide 3e (200 mg, 0.7 mmol) was added to a -78 °C, THF solution (10 mL) of (1-methyl-1H-indol-2-yl)lithium¹² (1.3 mmol). After 1 h, the reaction was allowed to warm to -40 °C, and then DMPU (1 mL) and MeI (342 mg, 2.4 mmol, 0.15 mL) were added sequentially. The resulting mixture was allowed to warm to rt over 23 h, and then brine (5 mL) was added. The organic phase was separated and the aqueous phase was extracted with MTBE (25 mL). The combined organic extract was washed with brine (2 x 5 mL), dried (Na₂SO₄) and concentrated to afford a mixture of diastereomers (1R*, 2S*:1R*, 2R*, 3.8:1 ratio) that was purified by column chromatography (EtOAc/hexanes, 1:6 to 1:2) to afford 187 mg (63%) of isocyanide $(1R^*, 2S^*)$ -9d as a white solid whose configuration was secured by crystallographic analysis.¹⁶ Isocyanide (1*R**, 2*R**)-9d was not isolated because of partial adsorption and decomposition on silica gel. For (1R*, 2S*)-9d: mp 140-142 °C (dec.); IR 2124, 1319, 1148 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.57-7.46 (m, 2H), 7.40-7.30 (m, 3H), 7.30-7.25 (m, 2H), 7.19-7.12 (m, 1H), 7.12-7.05 (m, 2H), 7.02-6.91 (m, 1H), 6.86 (s, 1H), 6.67 (d, J = 8.4 Hz, 1H), 6.43 (t, J = 7.6 Hz, 1H), 4.79 (s, 1H), 3.86 (s, 3H), 3.61 (s, 3H), 1.79 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.05, 158.44, 136.23, 136.13, 135.97, 134.66, 132.35, 130.09, 129.05, 128.43, 127.45, 123.88, 121.76, 120.74, 119.67, 119.46, 112.05, 108.96, 101.67, 82.51, 55.93, 46.62, 29.44, 24.41; HRMS (+APCI) calcd for C₂₆H₂₅N₂O₃S [M+H]⁺: 445.1580, found: 445.1575.

Ρh

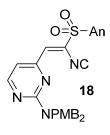
days, the ¹H NMR showed complete consumption of isocyanide (1*R**, 2*S**)-**8h**. The reaction was concentrated and then the residue was dissolved in CH₂Cl₂ (15 mL). The resulting solution was washed with saturated, aqueous NaHCO₃ (2 x 5 mL), dried (Na₂SO₄), and concentrated to afford the crude γ -carboline **16a** that was purified by radial chromatography (2 mm plate, EtOAc/hexanes, 1:4 to 1:1) to afford 186 mg (87%) of γ -carboline **16a**. Repeated purification by column chromatography (CH₂Cl₂/*i*-PrOH, 100:0 to 50:1) afforded **16a** as a pale-pink solid: mp 107-109 °C; IR 3053, 1580 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 9.31 (s, 1H), 8.38 (s, 1H), 8.20 (dd, *J* = 7.8, 0.5 Hz, 1H), 7.58-7.52 (m, 1H), 7.52-7.43 (m, 5H), 7.39 (d, *J* = 8.2 Hz, 1H), 7.37-7.32 (m, 1H), 3.43 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 146.55, 142.35, 141.98, 141.88, 137.00, 130.42, 128.36, 128.08, 126.99, 121.36, 120.85, 120.56, 120.09, 109.32, 32.41; HRMS (+APCI) calcd for C₁₈H₁₅N₂ [M+H]*: 259.1230, found: 259.1231.

3,5-Dimethyl-4-phenyl-5H-pyrido[4,3-b]indole (16b). А CH_2CI_2 solution (7 mL) of TFA (11 mg, 0.1 mmol) was added to a rt, CH₂Cl₂ 16b Ρh solution (7 mL) of isocyanide 9d (223 mg, 0.50 mmol). After 5 days the reaction was concentrated and then the residue was dissolved in CH₂Cl₂ (15 mL). The resulting solution was washed with saturated, aqueous NaHCO₃ (2 x 5 mL), dried (Na₂SO₄), and concentrated to afford the crude γ -carboline **16b**. Purification by radial chromatography (1 mm plate, EtOAc/hexanes, 1:3 to 1.5:1) afforded 119 mg (87%) of pure y-carboline **16b**¹⁷ as a thick, yellow oil: IR 2159, 1700, 1199 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 9.21 (s, 1H), 8.15 (d, J = 7.3 Hz, 1H), 7.58-7.42 (m, 4H), 7.42-7.34 (m, 2H), 7.34-7.27 (m, 2H), 3.18 (s, 3H), 2.43 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 152.33, 143.35, 141.95, 140.93, 137.41, 130.65, 128.68, 128.07, 126.53, 121.26, 120.64, 120.29, 119.50, 118.57, 109.13, 31.62, 23.20; HRMS (+APCI) calcd for C₁₉H₁₇N₂ [M+H]⁺: 273.1386, found: 273.1383.

(4-Phenyl-5H-pyrido[4,3-b]indol-5-yl)methyl benzoate (16c). A CCl4 solution (8 mL) of y-carboline **16a** (71 mg, 0.27 mmol) and 70% dibenzoyl Ph peroxide (160 mg, 0.46 mmol) was heated to reflux. After 12 h the solution 16c was allowed to cool to rt.¹⁸ The reaction was concentrated and then the residue was dissolved in CH₂Cl₂ (20 mL). The resulting solution was washed with saturated, aqueous NaHCO₃ (2 x 5 mL), the phases were separated, and the aqueous phase was extracted with CH₂Cl₂ (10 mL). The combined organic phase was washed with water (5 mL), dried (Na₂SO₄) and concentrated. The resulting residue was purified by radial chromatography (1 mm plate, CH₂Cl₂/*i*-PrOH, 100:0 to 30:1) to afford 69 mg (67%) of pure γ-carboline **16c** as an oil: IR 3057, 1717 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 9.35 (s, 1H), 8.43 (s, 1H), 8.20 (dd, J = 7.8, 0.4 Hz, 1H), 7.96-7.82 (m, 2H), 7.62 (d, J = 8.3 Hz, 1H), 7.59-7.49 (m, 4H),7.48-7.33 (m, 6H), 6.09 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 165.61, 147.16, 142.16, 141.91, 140.77, 135.88, 133.53, 129.88, 129.76, 129.22, 128.63, 128.54, 127.66, 122.30, 122.02, 121.09, 120.69, 110.14, 67.81; HRMS (+APCI) calcd for C₂₅H₁₉N₂O₂ [M+H]⁺: 379.1441, found: 379.1443.

4-Phenyl-5H-pyrido[4,3-b]indole (16d). A MeOH solution (4 mL) of NaOH (7 mg, 0.18 mmol) was added to a rt MeOH solution (3 mL) of γ -Carboline **16c** (50 mg, 0.13 mmol)¹⁸. The reaction was stirred overnight,

concentrated *in vacuo* and the residue was dissolved in CHCl₃ (40 mL). The resulting solution was washed with saturated, aqueous NaHCO₃ (10 mL). Aqueous phase was extracted with CHCl₃ (15 mL) and combined organic phase was washed with brine (2 x 5


mL), dried (Na₂SO₄) and evaporated *in vacuo* to afford 32 mg (100%) of pure γ -carboline **16d** as almost colorless solid: IR 3450, 2799, 1595 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 9.30 (s, 1H), 8.64 (s, 1H), 8.55 (s, 1H), 8.25-8.11 (m, 1H), 7.73-7.64 (m, 2H), 7.64-7.53 (m, 2H), 7.53-7.43 (m, 3H), 7.39-7.31 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 144.25, 142.06, 141.92, 139.42, 135.97, 129.67, 128.49, 128.39, 127.20, 122.00, 121.22, 121.04, 111.26; HRMS (+APCI) calcd for C₁₇H₁₃N₂ [M+H]⁺: 245.1073, found: 245.1071.

4-(Dimethoxymethyl)pyrimidin-2-amine (vi)¹⁹. Guanidine hydro-MeO、_OMe chloride (7.55 g, 79 mmol) was added in portions to a 0 °C, methanolic solution (200 mL) of MeONa (4.77 g, 88 mmol). After 5 min, a methanolic solution (65 mL) of (*E*)-4-(dimethylamino)-1,1-dimethoxybut-3-en-2-one²⁰ was added dropwise. After 20 min, the solution was heated to reflux and, after 20 h, the reaction was allowed to cool to rt. The solution was concentrated and then the solid residue was extracted with hot i-PrOH (3 x 200 mL) and then the combined extracts were filtered through a glass frit. The resulting filtrate was concentrated to 250 mL and then cooled to 0 °C. After 20 h, the crystalline product was filtered, washed sequentially with cold *i*-PrOH (2 x 15 mL) and hexanes (2 x 30 mL), and then dried under vacuum to afford 10.30 g (81%) of pure amine vi as a colorless crystalline solid:²¹ IR 3314, 1659, 1569, 1342, 1197 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.34 (d, J = 5.0 Hz, 1H), 6.84 (d, J = 5.0 Hz, 1H), 5.34 (br. s, 2H), 5.14 (s, 1H), 3.39 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 166.22, 163.11, 159.10, 108.68, 102.29, 53.40; ¹H NMR (300 MHz, DMSO- d_6) δ 8.26 (d, J = 5.0 Hz, 1H), 6.70 (br. s, 2H), 6.62 (d, J = 5.0 Hz, 1H), 5.01 (s, 1H), 3.29 (s, 6H); ¹³C NMR (75 MHz, DMSO-d₆) δ 166.00, 163.93, 159.26, 107.04, 103.27, 53.78; HRMS (+APCI) calcd for C₇H₁₂N₃O₂ [M+H]⁺: 170.0924, found: 170.0924.

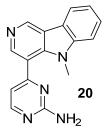
MeO___OMe Vii Vii (vii). Amine vi (1.27 g, 7.5 mmol) was added to a 0 °C, DMF suspension (35 mL) of sodium hydride (0.73 g, 30.3 mmol). After 30 min, a DMF

solution (5 mL) of PMBCI (2.41 g, 15.4 mmol) was added dropwise. The reaction was allowed to warm to rt over 18 h, and then the DMF was removed by vacuum distillation. The resulting solid was partitioned between 0 °C CH₂Cl₂ (150 mL) and water (20 mL). After 5 min, the mixture was filtered through a celite plug that was subsequently washed with CH₂Cl₂ (3 x 15 mL). The organic phase was washed with brine (20 mL), dried (Na₂SO₄), and concentrated. The residue was purified by column chromatography (EtOAc/hexanes, 10:90 to 15:85) to afford 2.86 g (93%) of amine **vii** as a thick, colorless oil: IR 2833, 1577, 1242 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.38 (d, *J* = 4.9 Hz, 1H), 7.18 (d, *J* = 8.6 Hz, 4H), 6.83 (d, *J* = 8.6 Hz, 4H), 6.74 (d, *J* = 4.9 Hz, 1H), 5.07 (s, 1H), 4.78 (s, 4H), 3.78 (s, 6H), 3.41 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 165.77, 162.11, 158.70, 130.46, 129.10, 113.79, 106.42, 103.89, 55.26, 54.05, 48.09; HRMS (+APCI) calcd for C₂₃H₂₈N₃O₄ [M+H]⁺: 410.2074, found: 410.2073.

2-(bis(4-Methoxybenzyl)amino)pyrimidine-4-carbaldehyde (17). An emulsion of acetal vii (9.62 g, 23.5 mmol) in aqueous hydrochloric acid (25 NPMB₂ mL, 3M, 75.2 mmol) was heated to 60 °C. After 8 h, the heating was discontinued and then the reaction was allowed to cool to rt overnight. The reaction mixture was extracted with CH₂Cl₂ (150 mL), the phases were separated, and then the organic phase was washed with saturated aqueous NaHCO₃ (2 x 20 mL), water (20 mL), dried (Na₂SO₄) and then concentrated. The crude aldehyde was purified by column chromatography (EtOAc/hexanes, 5:95 to 10:90) to afford 8.02 g (94%) of pure aldehyde **17** as a yellow solid: mp 73-75 °C; IR 2836, 1718, 1245 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 9.84 (d, *J* = 0.8 Hz, 1H), 8.56 (d, *J* = 4.7 Hz, 1H), 7.20 (d, *J* = 8.5 Hz, 4H), 7.01 (d, *J* = 4.7 Hz, 1H), 6.85 (d, *J* = 8.7 Hz, 4H), 4.84 (s, 4H), 3.79 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 194.18, 163.00, 160.12, 158.89, 129.85, 129.05, 113.95, 105.05, 55.28, 48.31; HRMS (+APCI) calcd for C₂₁H₂₂N₃O₃ [M+H]⁺: 364.1656, found: 364.1657.

(E)-4-(2-Isocyano-2-((2-methoxyphenyl)sulfonyl)vinyl)-N,N-bis-(4-

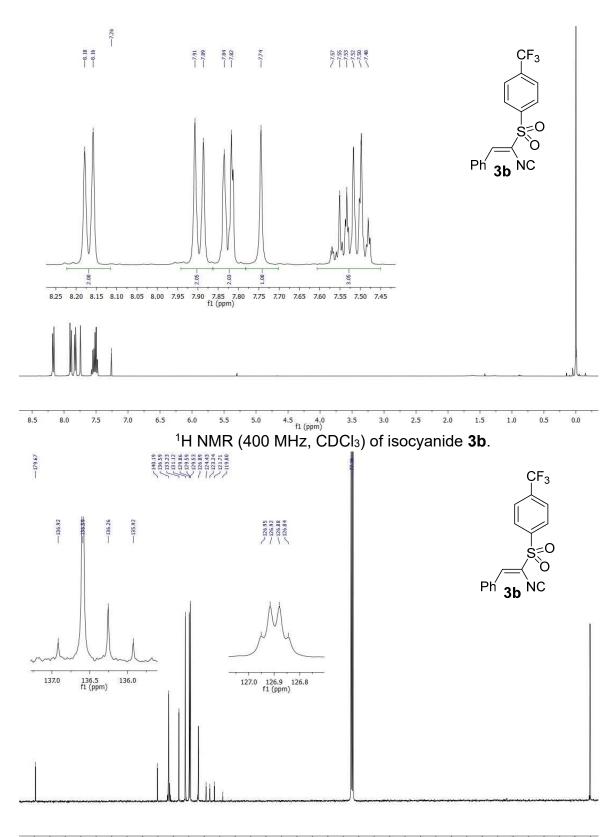
methoxybenzyl)pyrimidin-2-amine (18). A hexanes solution of BuLi (2.2 mL, 3.4 mmol) was added dropwise to a -78 °C, THF solution (35 mL) of isocyanide **2e** (690 mg, 3.3 mmol). After 10 min, a THF solution (5

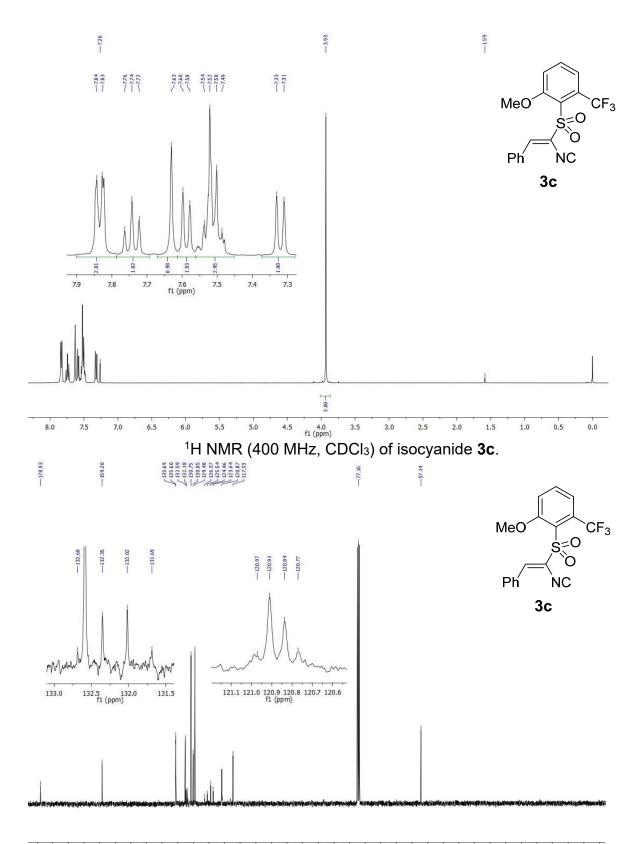

mL)

of TMSCI (365 mg, 3.4 mmol, 0.45 mL) was added, and then after 10 min a hexanes solution of BuLi (2.2 mL, 3.4 mmol) was added dropwise. After 10 min, a THF solution (15 mL) of aldehyde **17** (1.22 g, 3.4 mmol) was added dropwise. After 2.5 h the reaction was allowed to warm to -28 °C and then poured into a -5 °C, methanol-water solution (100 mL of water and 15 mL of MeOH) of NH₄Cl (3 g). MTBE (100 mL) was added and, after 10 min, the organic phase was separated. The aqueous phase was extracted with MTBE (50 mL), the organic phase was combined, washed with brine (2 x 20 mL), dried (Na₂SO₄) The and then concentrated. resulting solid was recrystallized from CH₂Cl₂:cyclohexane:hexanes (1:2:6) to afford 1.31 g (72%) of pure isocyanide **18** as yellow powder: mp 86-90 °C (dec.); IR: 2104, 1566, 1350, 1158 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.51 (d, J = 4.8 Hz, 1H), 8.07 (dd, J = 7.9, 1.6 Hz, 1H), 7.70-7.61 (m, 1H), 7.55 (s, 1H), 7.22-7.11 (m, 1H), 7.16 (d, J = 8.6 Hz, 4H), 7.02 (d, J = 8.4 Hz, 1H), 6.88-6.79 (m, 1H), 6.83 (d, J = 8.6 Hz, 4H), 4.80 (s, 4H), 3.84 (s, 3H), 3.78 (s, 6H); ¹³C NMR (126 MHz,

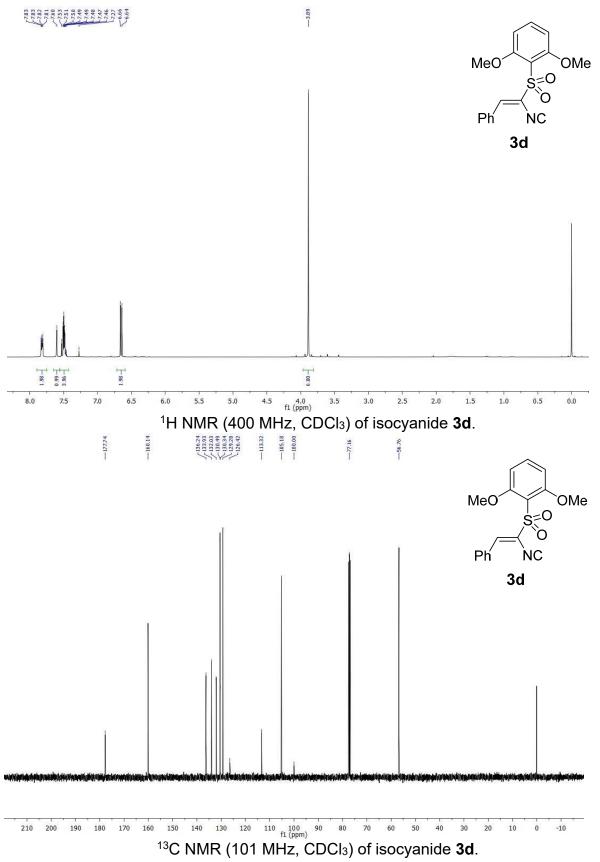
CDCl₃) δ 162.38, 159.98, 158.80, 157.78, 156.65, 137.15, 134.69, 132.27, 129.92, 129.01, 123.08, 120.98, 113.89, 112.61, 110.69, 109.99, 56.21, 55.28, 48.20; HRMS (+APCI) calcd for C₃₀H₂₉N₄O₅S [M+H]⁺: 557.1853, found: 557.1852.

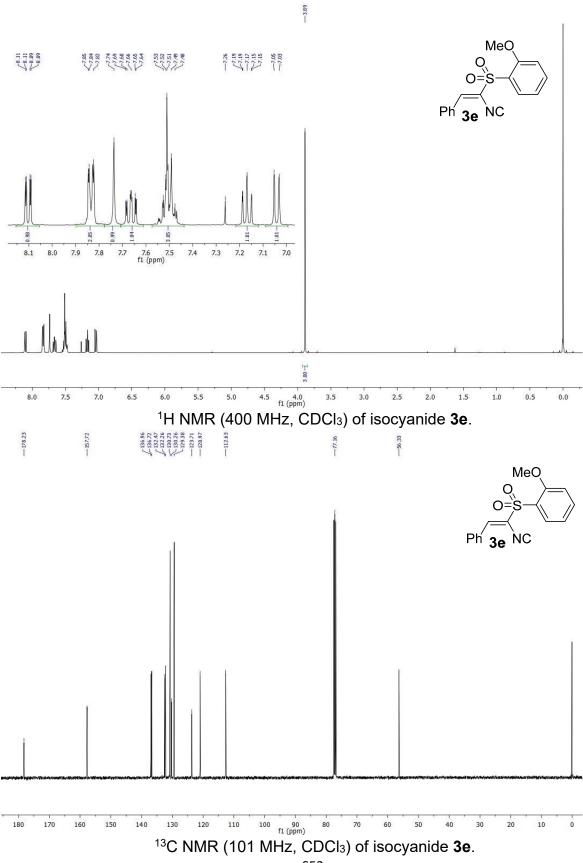
4-((1*S**, 2*R**)-2-Isocyano-2-((2-methoxyphenyl)sulfonyl)-1-(1-N + ((1*S**, 2*R**)-2-Isocyano-2-((2-methoxybenzyl)pyrimidin-2-N + NC amine and 4-((1*S**, 2*S**)-2-isocyano-2-((2-methoxyphenyl)-N + 19 NPMB₂ sulfonyl)-1-(1-methyl-1H-indol-2-yl)ethyl)-N,N-bis(4-methoxy-

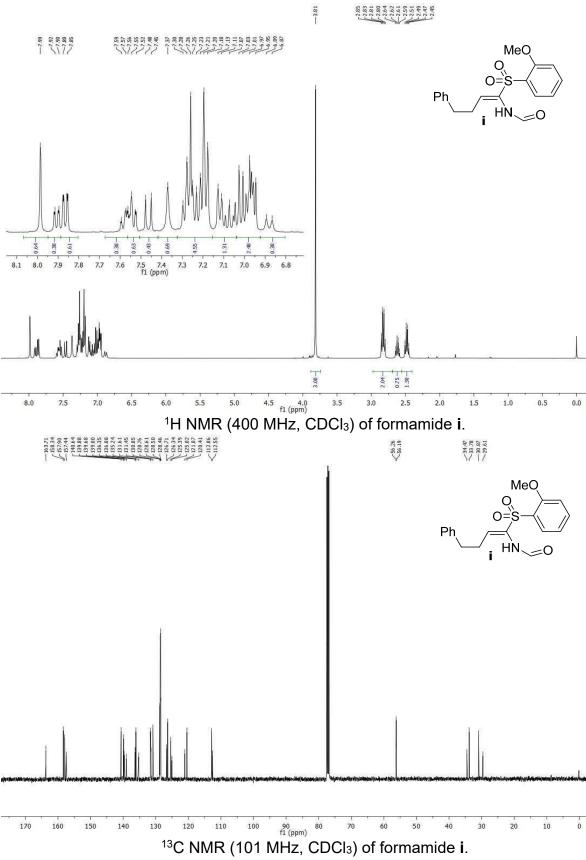

benzyl)pyrimidin-2-amine (19). A THF solution (5 mL) of isocyanide 18 (157 mg, 0.28 mmol) was added to a -78 °C, THF solution (10 mL) of (1-methyl-1H-indol-2-yl)lithium¹² (0.51 mmol). After 40 min the reaction was allowed to warm to -30 °C, brine (5 mL) and MTBE (15 mL) were added sequentially, and then the mixture was allowed to warm to 0 °C. After 5 min, the organic phase was separated, the aqueous phase was extracted with MTBE (10 mL), and then the organic phases were combined and washed with brine (2 x 5 mL), dried (Na₂SO₄) and concentrated. The crude isocyanide diastereomers ($1S^*$, 2S*:1S*, 2R*, 1:1 ratio) were purified by column chromatography (EtOAc/hexanes, 1:3) to afford 122 mg (63%) of isocyanide **19** as a thick, yellow-orange oil. For (1S*, 2R*)-**19**: IR: 2132, 1350, 1155 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.30 (d, J = 4.9 Hz, 1H), 7.35 (dd, J = 7.9, 1.6 Hz, 1H), 7.19 (d, J = 8.6 Hz, 4H), 7.14-7.05 (m, 4H), 6.94-6.89 (m, 1H), 6.85 (d, J = 8.6 Hz, 4H), 6.65 (d, J = 8.4 Hz, 1H), 6.50 (d, J = 4.9 Hz, 1H), 6.49-6.44 (m, 1H), 6.16 (d, J = 10.1 Hz, 1H), 6.07 (s, 1H), 4.90 (d, J = 15.4 Hz, 2H), 4.78 (d, J = 10.1 Hz, 1H), 4.77 (br. s, 2H), 3.80 (s, 6H), 3.76 (s, 3H), 3.72 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.53, 165.23, 162.38, 159.23, 158.85, 156.63, 136.96, 135.66, 132.34, 130.08, 129.41, 128.90, 126.94, 124.09, 121.94, 120.35, 119.99, 119.54, 114.01, 111.78, 109.33, 108.96, 102.41, 73.98, 56.20, 55.31, 48.80, 45.11, 29.81; HRMS (+APCI) calcd for C₃₉H₃₈O₅N₅S [M+H]⁺: 688.2588, found: 688.2591. For (1S*, 2S*)-19: IR 2130, 1349, 1156 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.24 (d, J = 5.0 Hz, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.59-7.51 (m, 1H), 7.49 (d, J = 7.8 Hz, 1H), 7.36-7.30 (m, 1H), 7.25-7.10 (m, 1H), 7.19 (d, J = 8.2 Hz, 4H), 7.10-7.06 (m, 1H), 7.06-7.00 (m, 1H), 6.90 (d, J = 8.5 Hz, 1H), 6.85 (d, J = 8.2 Hz, 4H), 6.44 (s, 1H), 6.42 (d, J = 6.6 Hz, 1H), 6.38 (d, J = 5.0 Hz, 1H), 5.15 (d, J = 6.6 Hz, 1H), 5.01 (d, J = 14.9 Hz, 2H), 4.56 (d, J = 15.3 Hz, 2H), 3.83 (s, 3H), 3.80 (s, 6H), 3.70 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.57, 165.02, 161.76, 159.04, 158.94, 157.61, 137.43, 136.85, 133.15, 132.06, 130.08, 128.95, 127.48, 123.67, 122.02, 121.03, 120.80, 119.77, 114.03, 112.52, 109.53, 109.20, 103.51, 72.34, 56.37, 55.31, 48.53, 42.52, 30.21; HRMS (+APCI) calcd for C₃₉H₃₈O₅N₅S [M+H]⁺: 688.2588, found: 688.2586. *Equilibration*: a THF solution (4 mL) of t-BuOK (25 mg, 0.22 mmol) was added to a -78 °C, THF solution (5 mL) of (1S*, 2R*)-19 (138 mg, 0.20 mmol). After 30 min, a THF solution (1.5 mL) of t-BuOH (1.1 mmol, 0.1 mL) was added. After 10 min, brine (5 mL) and MTBE (25 mL) were added sequentially. Organic phase was separated, aqueous phase was extracted with MTBE (15 mL), and then combined organic solution was washed with brine (2 x 5 mL), dried (Na₂SO₄) and concentrated. The crude (1S^{*}, 2R^{*}:1S^{*}, 2S^{*}, 1:1 ratio) was purified by chromatography (12g-SiO₂, Reveleris X2, EtOAc/hexanes, 5:95 to 25:75) to afford 51 mg (37%) of (1S*, 2S*)-19, 21 mg (15%) of a 1:1 mixture of 1S*, 2R*:1S*, 2S* and 48 mg (35%) of $(1S^*, 2R^*)$ -**19** spectrally identical to materials previously characterized.

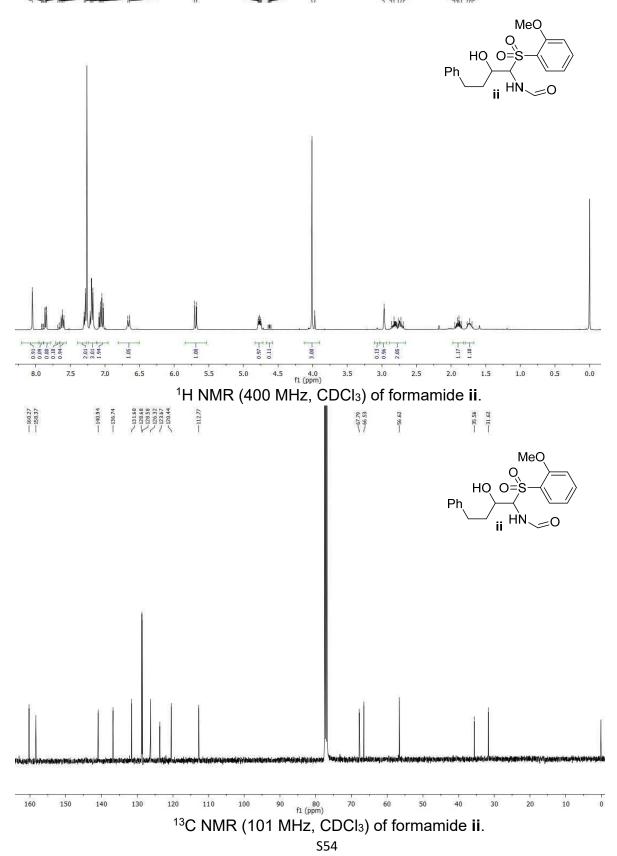

4-(5-Methyl-5H-pyrido[4,3-b]indol-4-yl)pyrimidin-2-amine (20). A

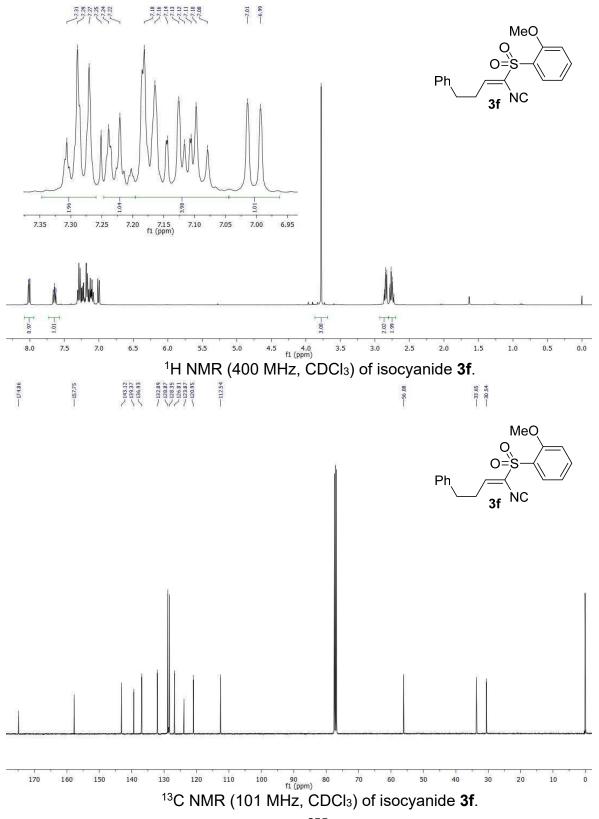
CH₂Cl₂ solution (1.5 mL) of TFA (2.3 mg, 0.02 mmol) was added to a rt, CH₂Cl₂ solution (4 mL) of isocyanide (1 S^* , 2 S^*)-**19** (34 mg, 0.05 mmol). After 6 days, the solution was concentrated, the resulting material (HRMS

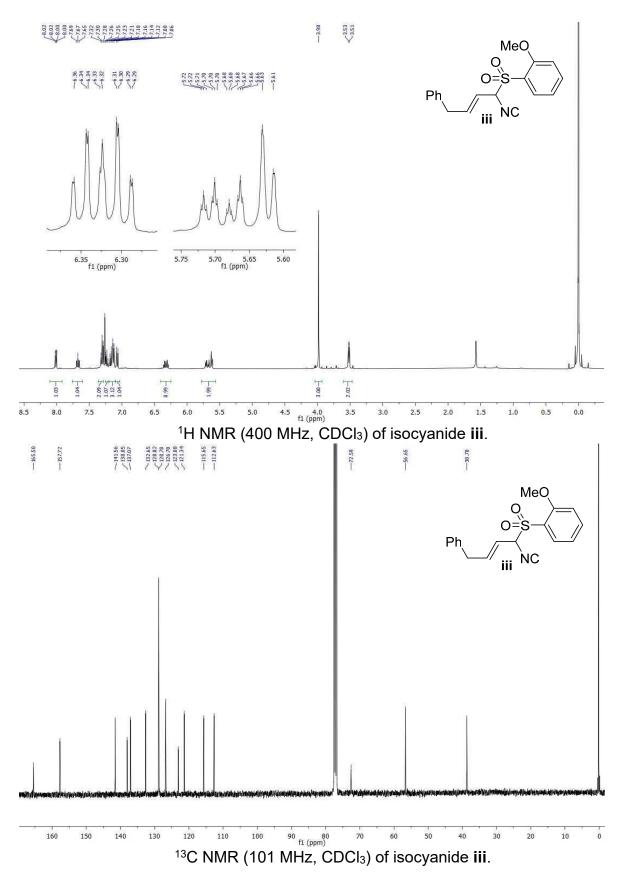

(+APCI) calcd for C₃₂H₃₀O₂N₅ [M+H]⁺: 516.2394, found: 516.2395) was dissolved in TFA (4 mL) and the solution was heated to reflux. After 20 h, the solution was allowed to cool to rt and then the solvent was removed under vacuum to afford a residue that was partitioned between CH₂Cl₂ (15 mL) and saturated aqueous NaHCO₃ (5 mL). The organic phase was separated, the aqueous phase was extracted with CH₂Cl₂ (10 mL), and then the organic phases were combined and washed with saturated, aqueous NaHCO₃ (5 mL), dried (Na₂SO₄) and concentrated. The crude carboline was purified by column chromatography (CH₂Cl₂/*i*-PrOH, 13:1 to 5:1) and then crystallized from CCl₄ to afford 11 mg (82%) of y-carboline **20** as an almost colorless solid: mp > 200 °C (dec.); IR 3307, 1630, 1571, 1232 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 9.37 (s, 1H), 8.54 (s, 1H), 8.47 (d, J = 5.0 Hz, 1H), 8.19 (d, J = 7.8 Hz, 1H), 7.63-7.54 (m, 1H), 7.47 (d, J = 8.2 Hz, 1H), 7.43-7.33 (m, 1H), 6.98 (d, J = 5.0 Hz, 1H), 5.25 (s, 2H), 3.68 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 164.97, 162.47, 158.92, 145.60, 142.86, 142.00, 127.36, 121.18, 121.08, 120.52, 112.21, 109.51, 33.18; ¹H NMR (300 MHz, CD₃OD) δ 9.34 (s, 1H), 8.45 (d, J = 5.1 Hz, 1H), 8.44 (s, 1H), 8.28 (d, J = 7.8 Hz, 1H), 7.69-7.59 (m, 2H), 7.47-7.36 (m, 1H), 7.03 (d, J = 5.1 Hz, 1H), 3.72 (s, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 165.75, 164.34, 160.05, 145.06, 143.63, 143.49, 142.59, 129.01, 122.65, 122.02, 121.63, 112.30, 111.05, 33.58; HRMS (+APCI) calcd for C₁₆H₁₄N₅ [M+H]⁺: 276.1244, found: 276.1243.

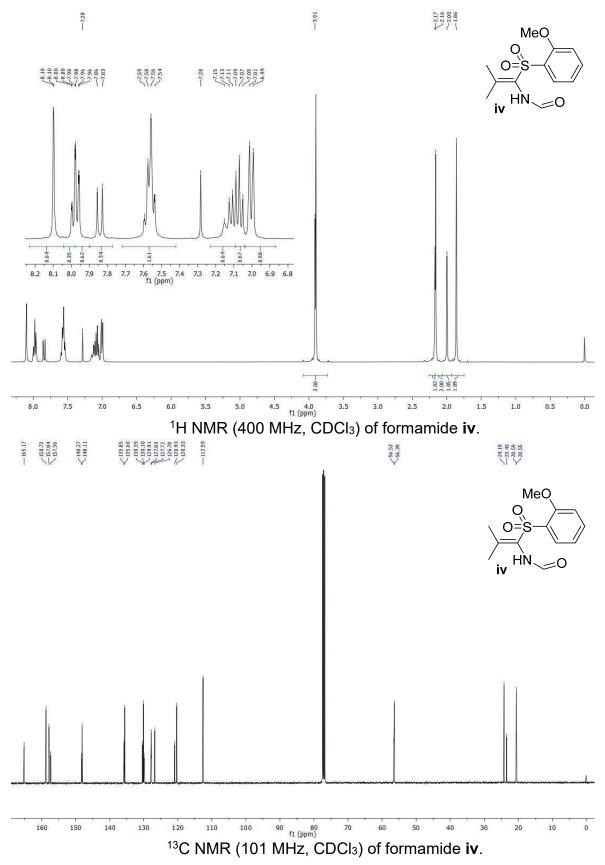


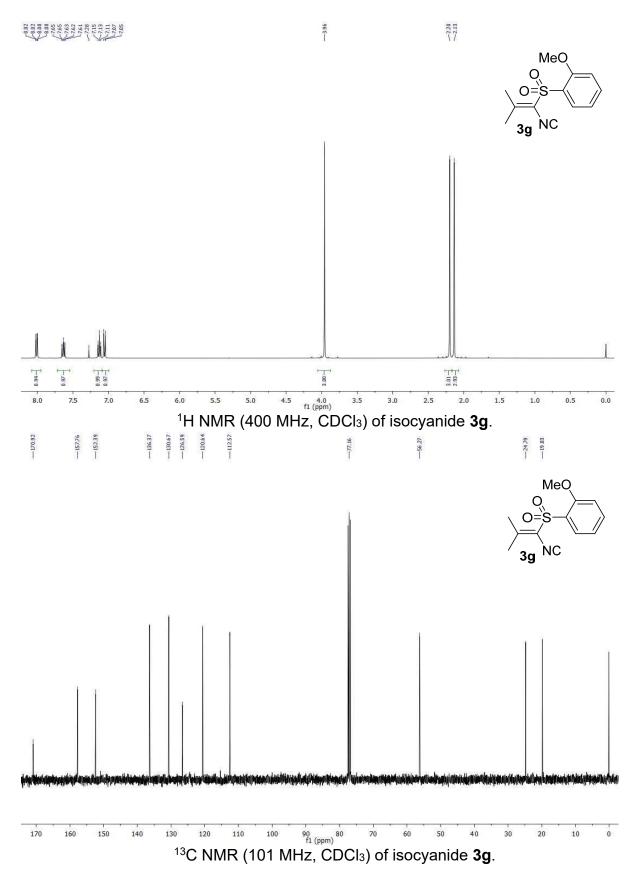

100 90 f1 (ppm) ¹³C NMR (101 MHz, CDCl₃) of isocyanide **3b**.

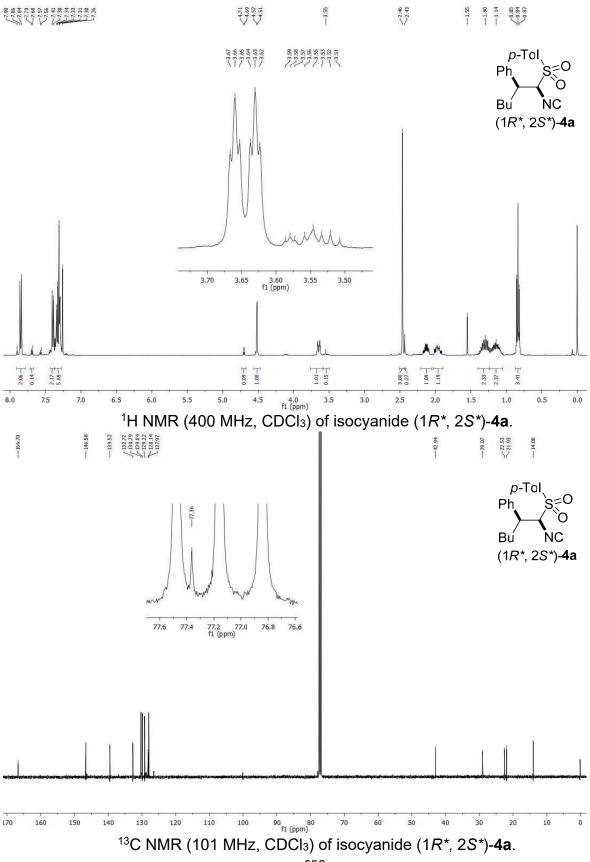

100 90 f1 (ppm) ¹³C NMR (101 MHz, CDCl₃) of isocyanide **3c**.

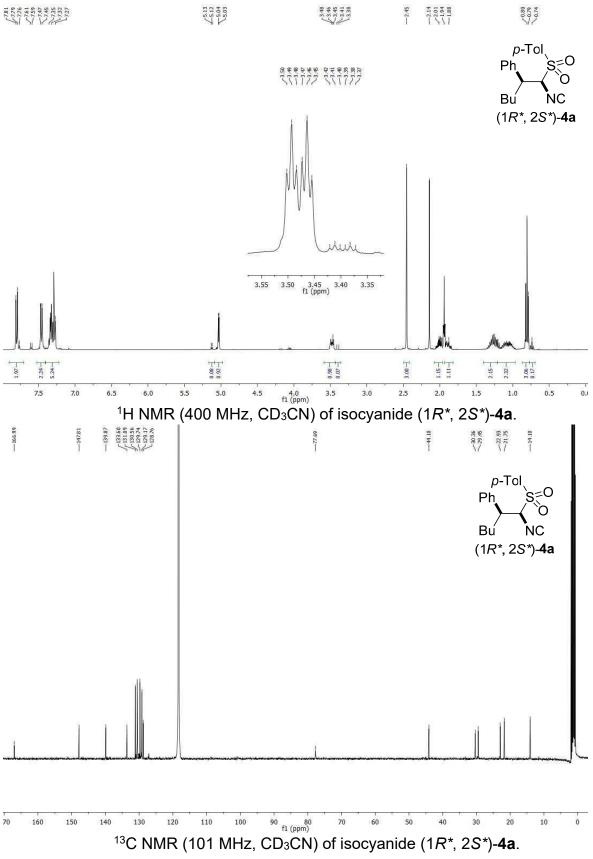




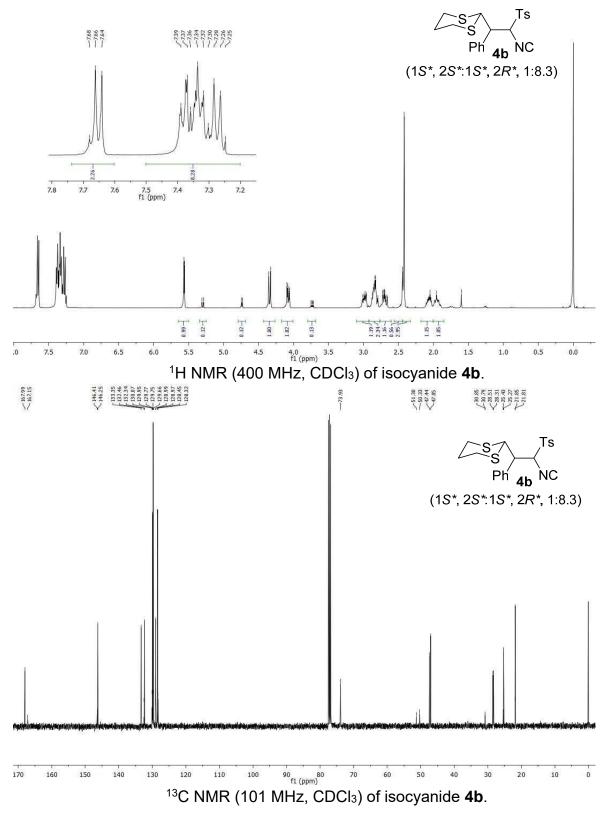


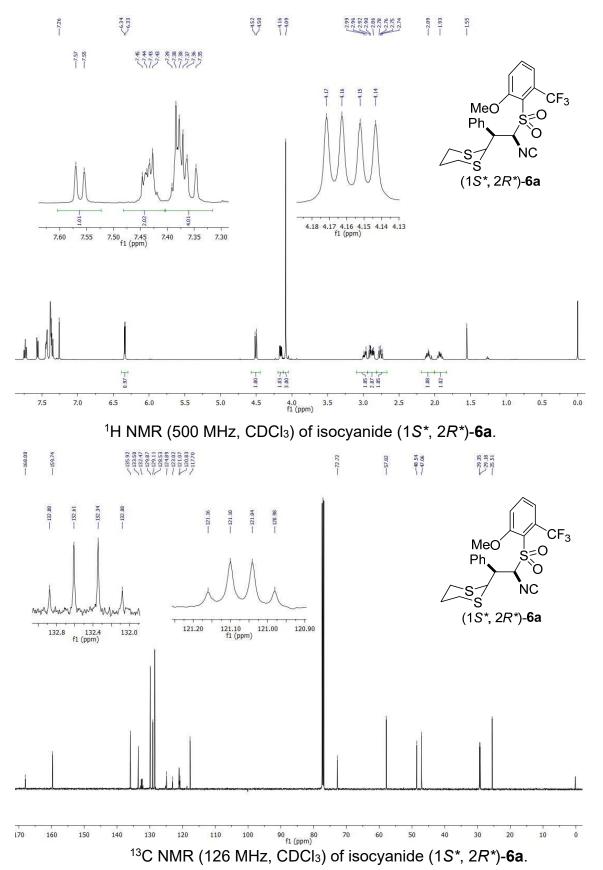

802 802 800 766 766 766 -3.78 2.85 2.73 2.75 2.75

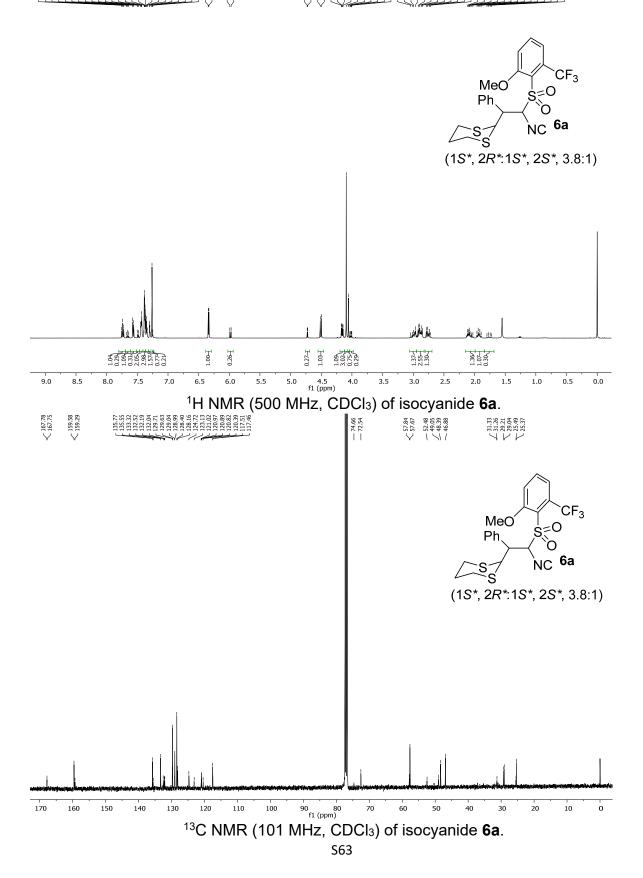


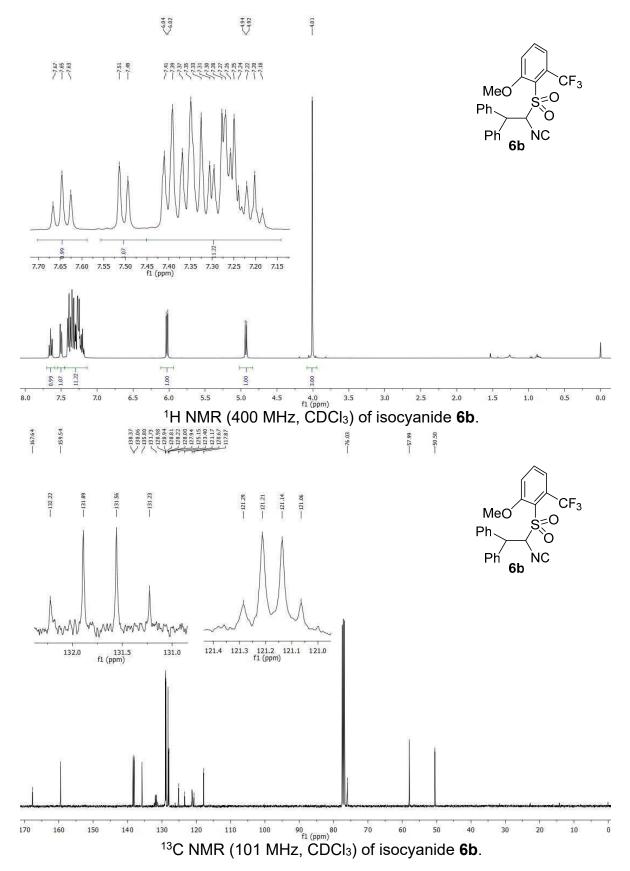


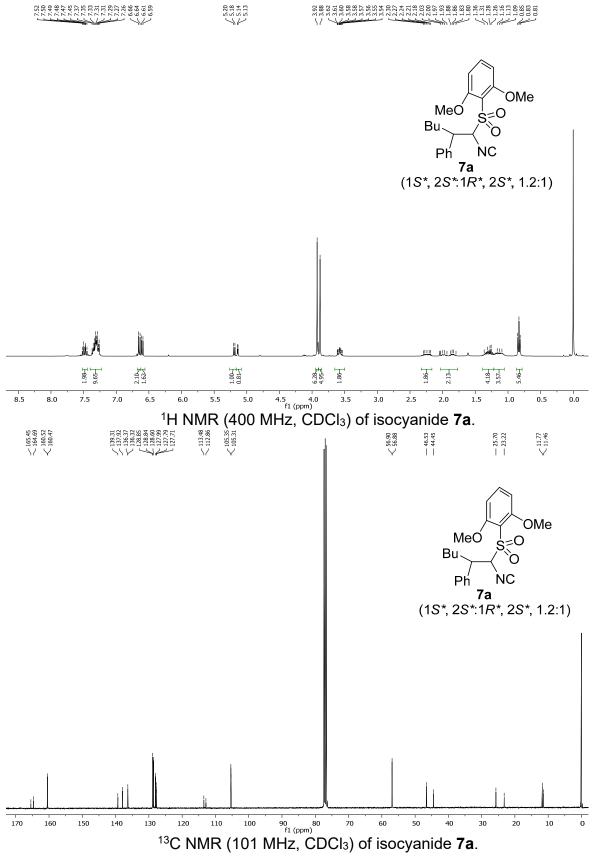
S56

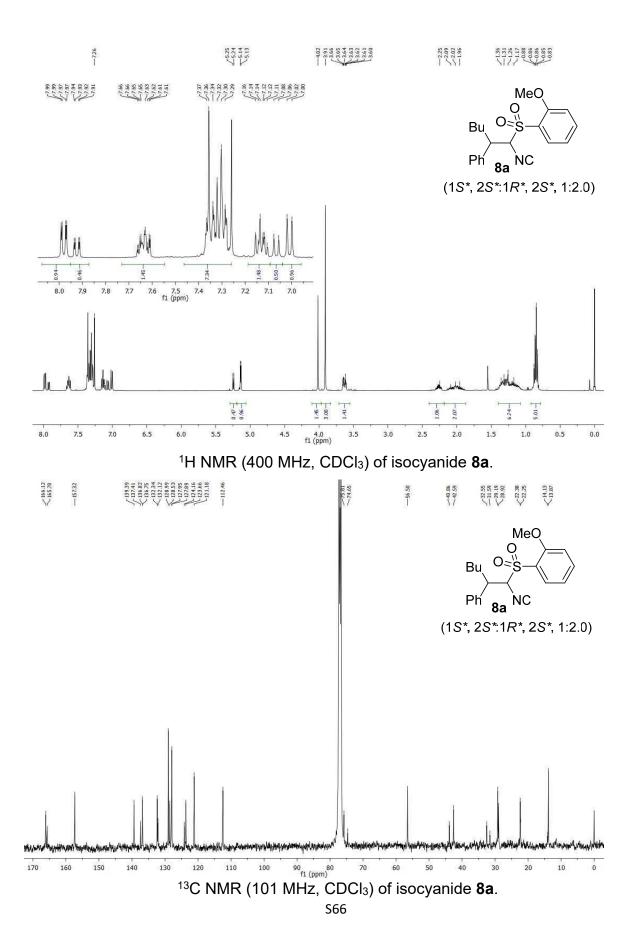


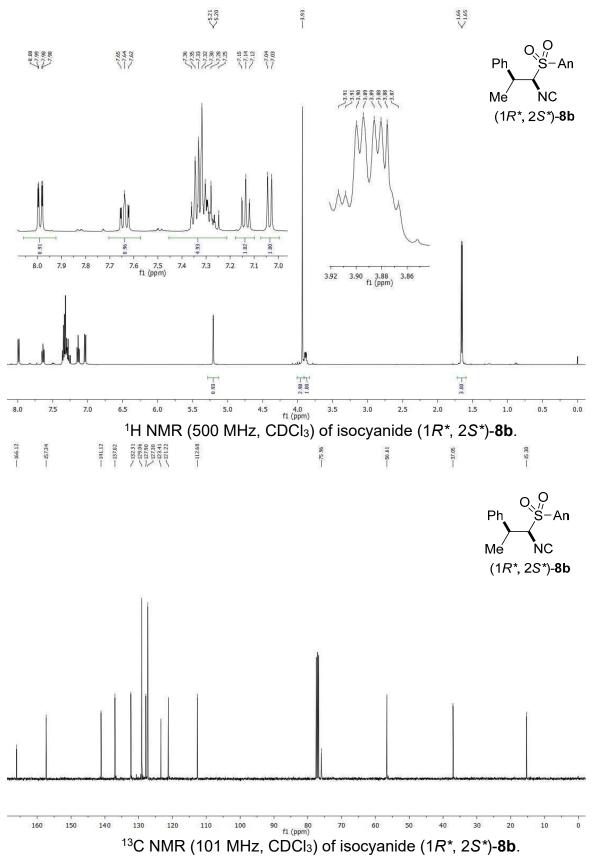


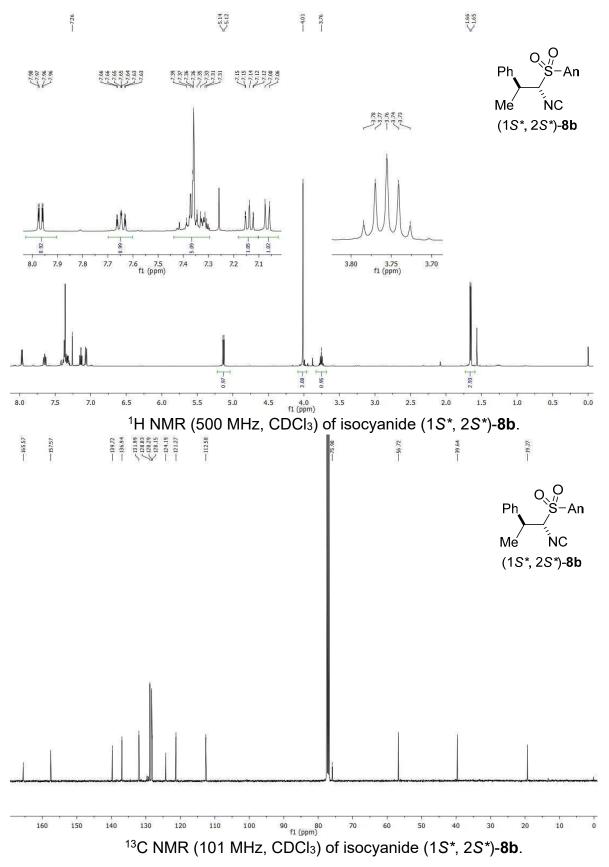


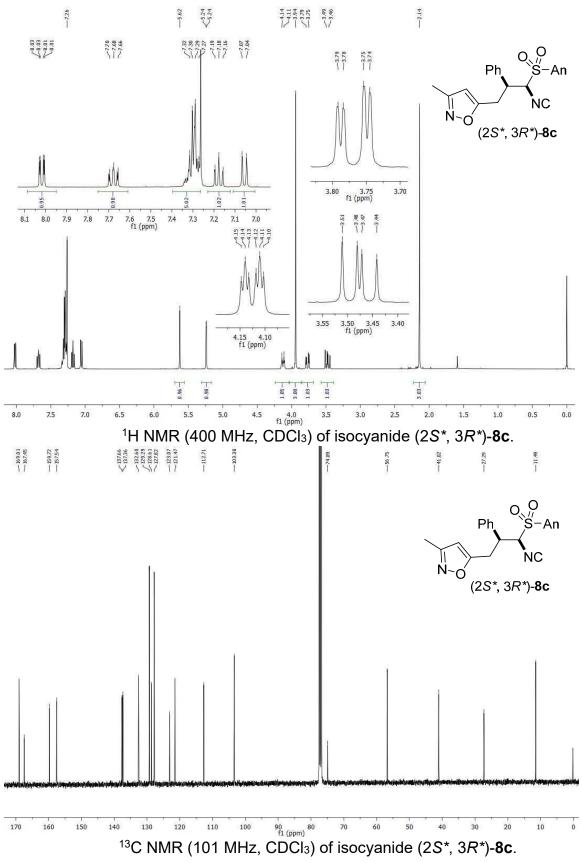


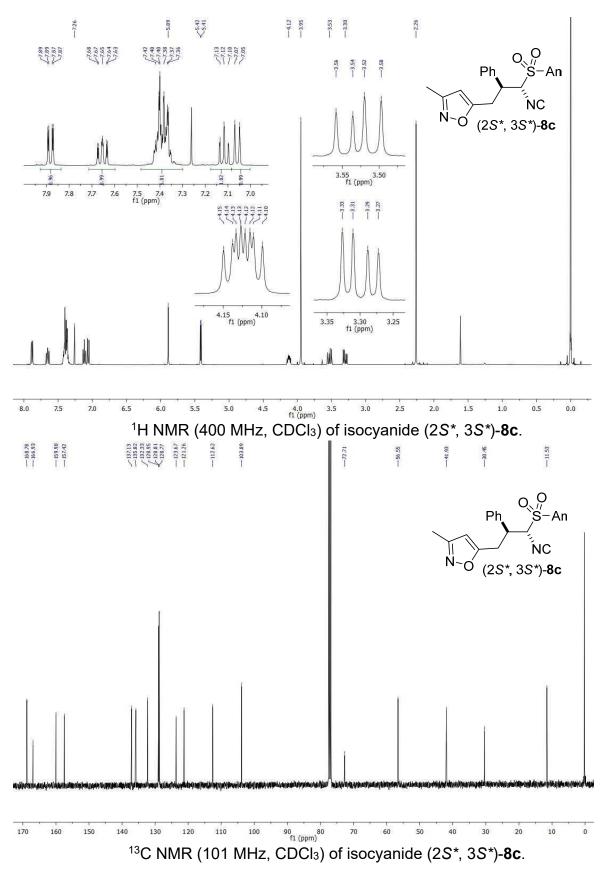


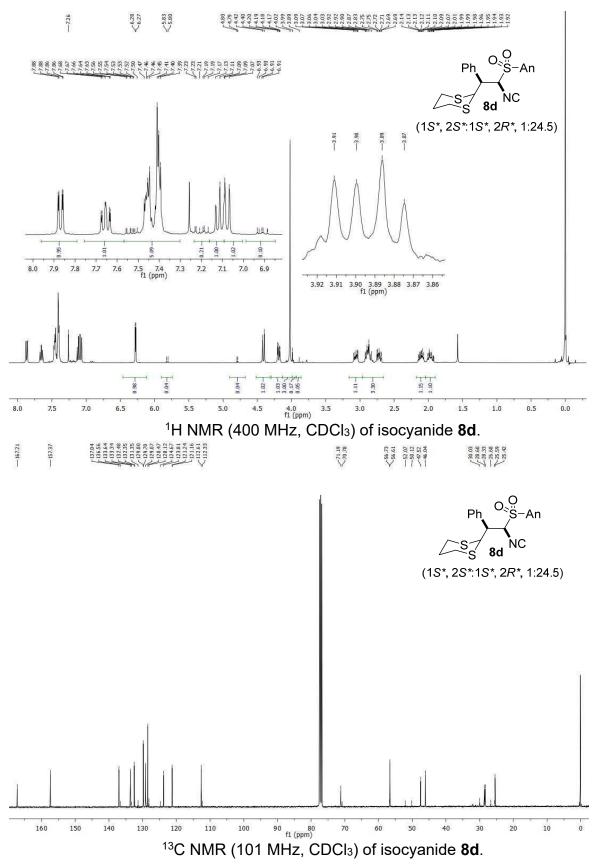

 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1
 4.1</td

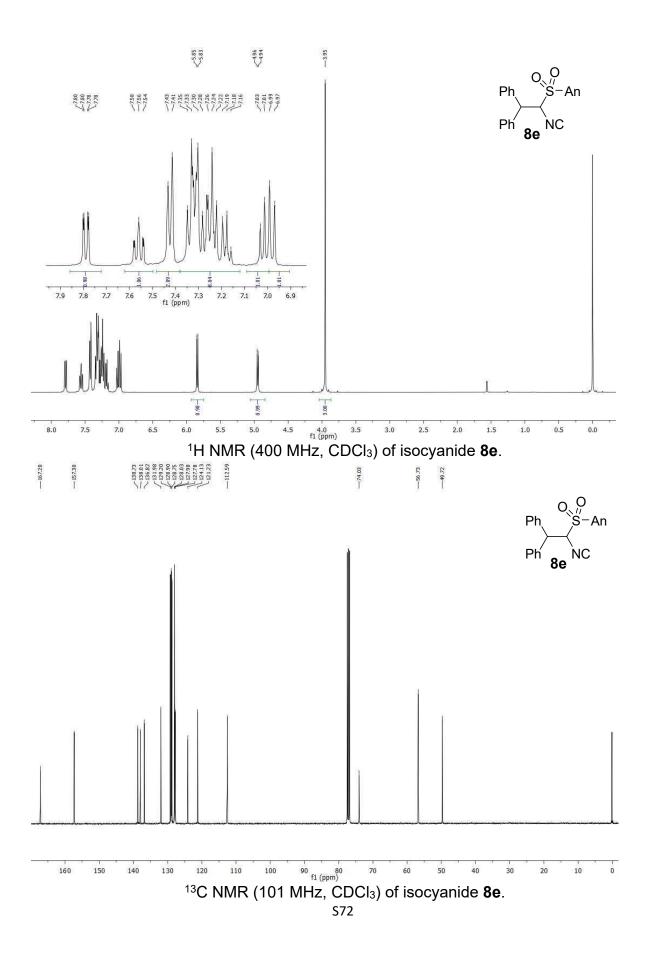


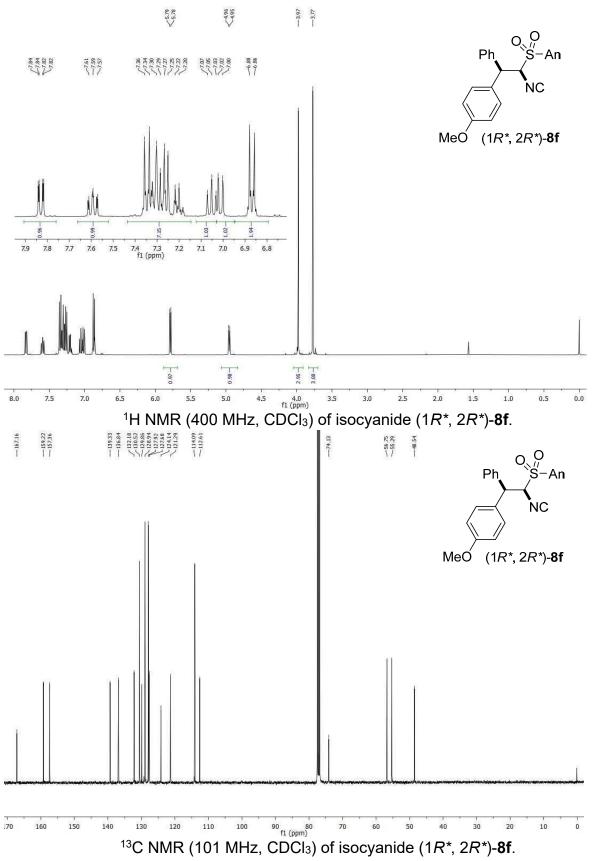


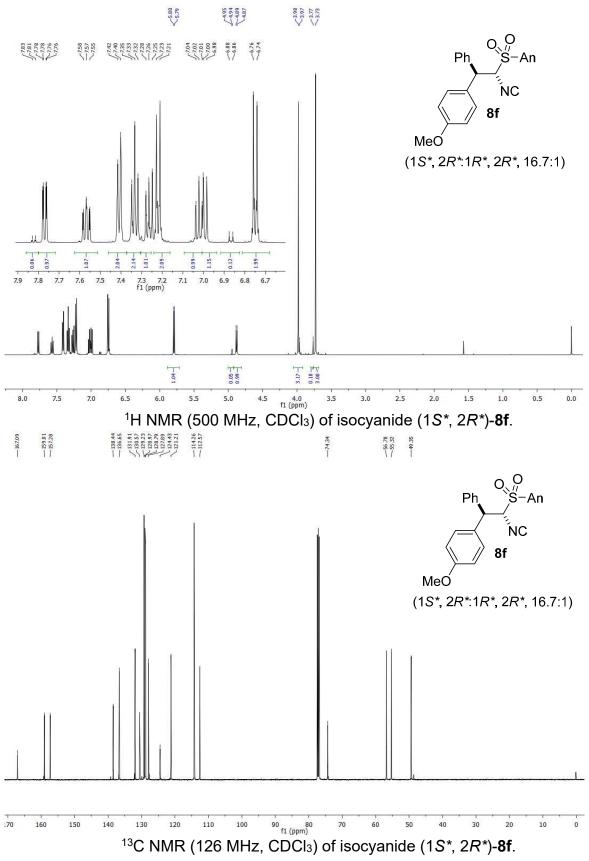


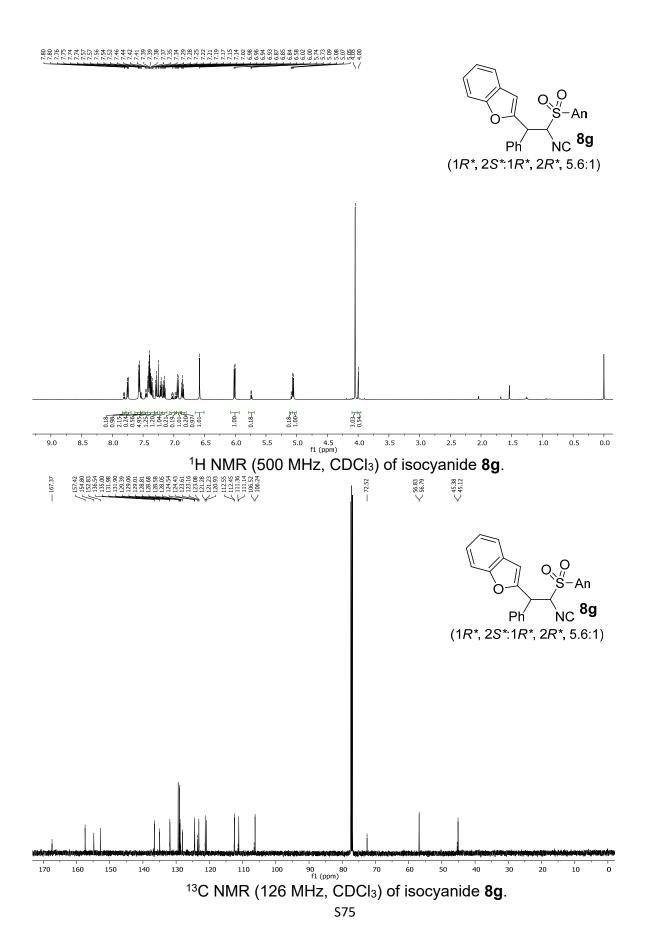


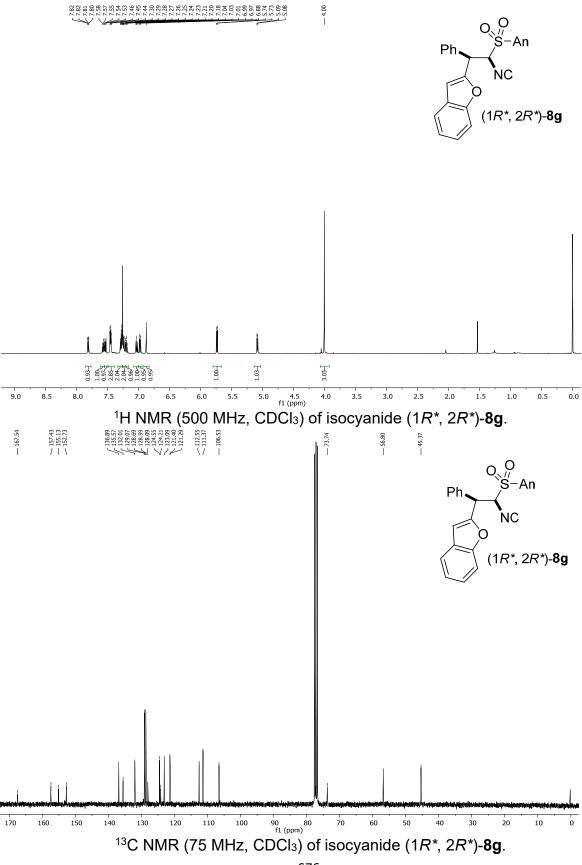


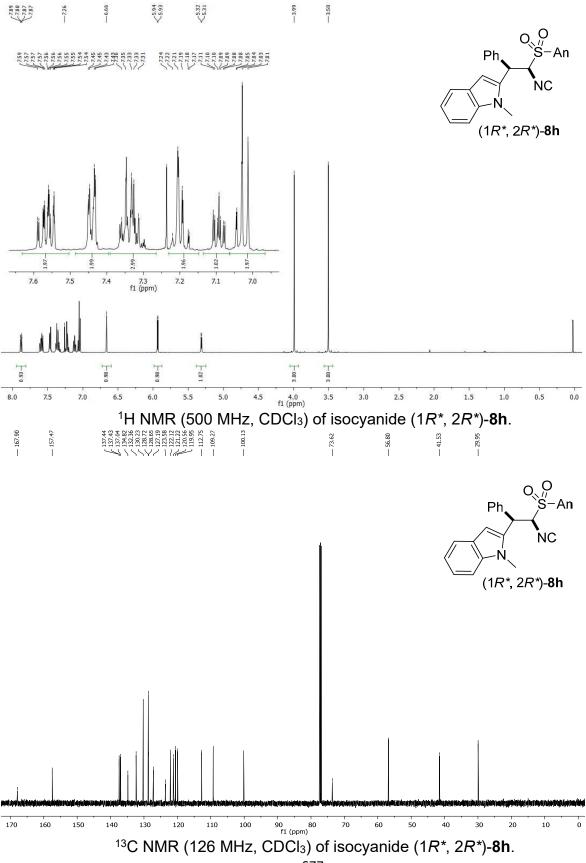

S68

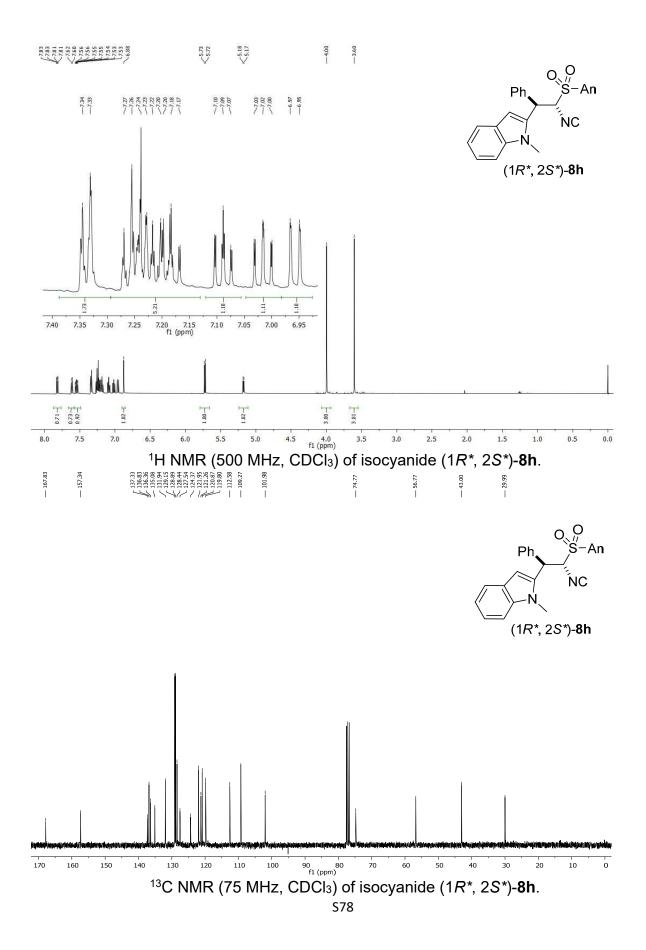


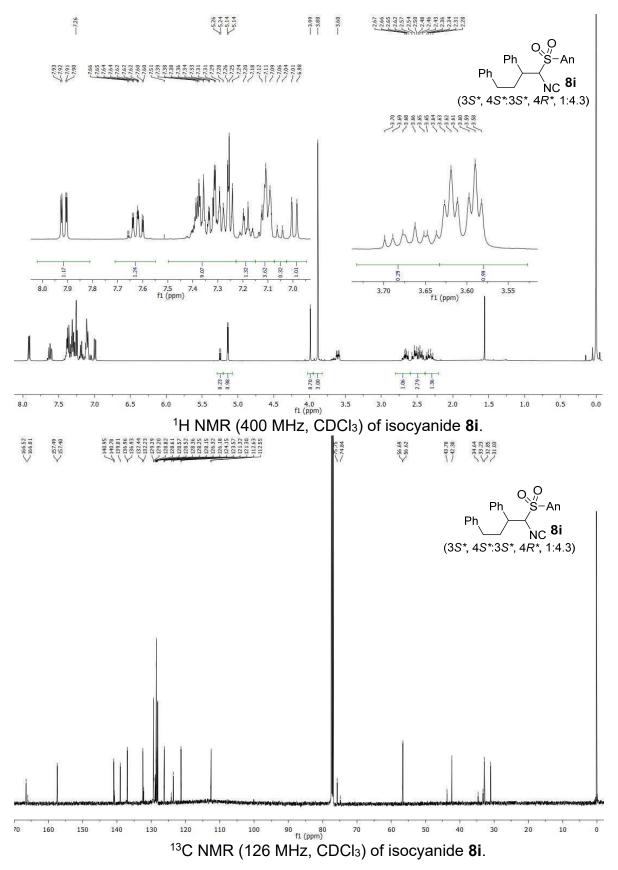


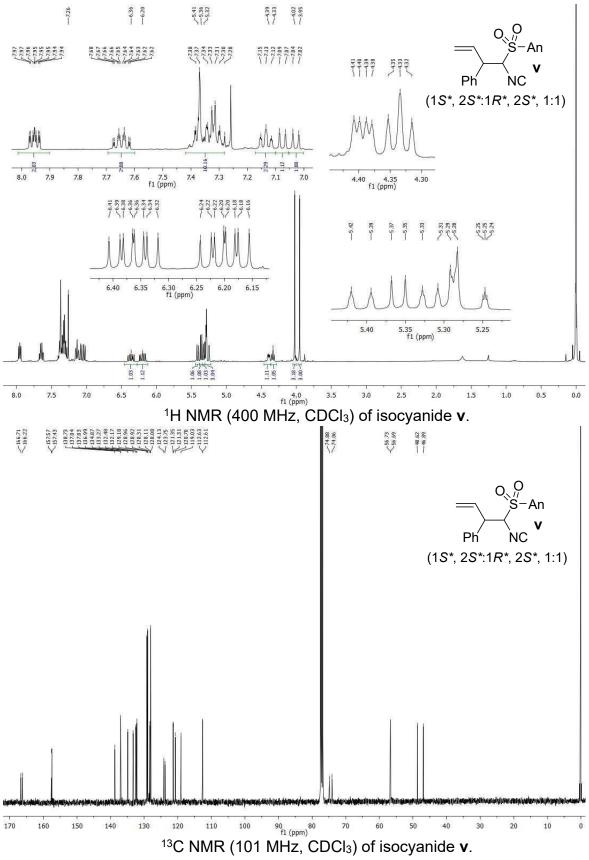


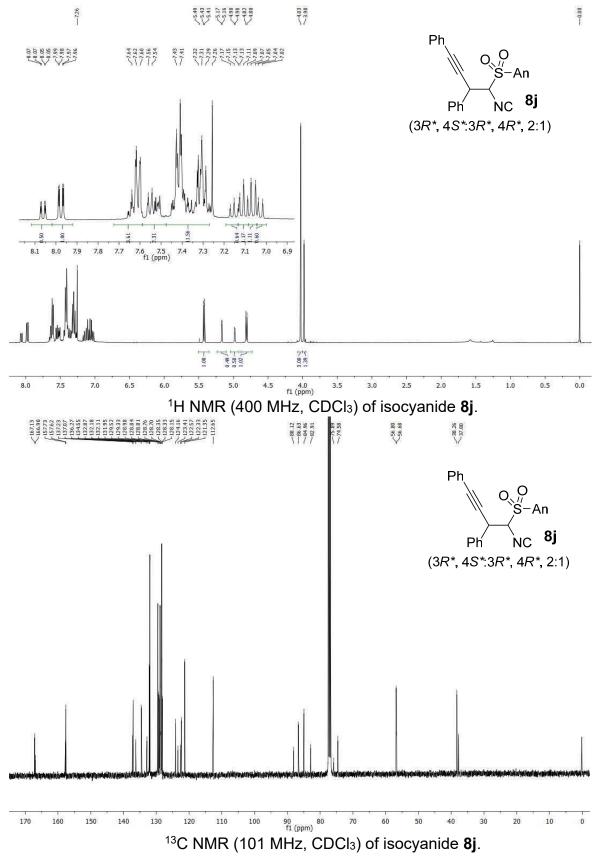


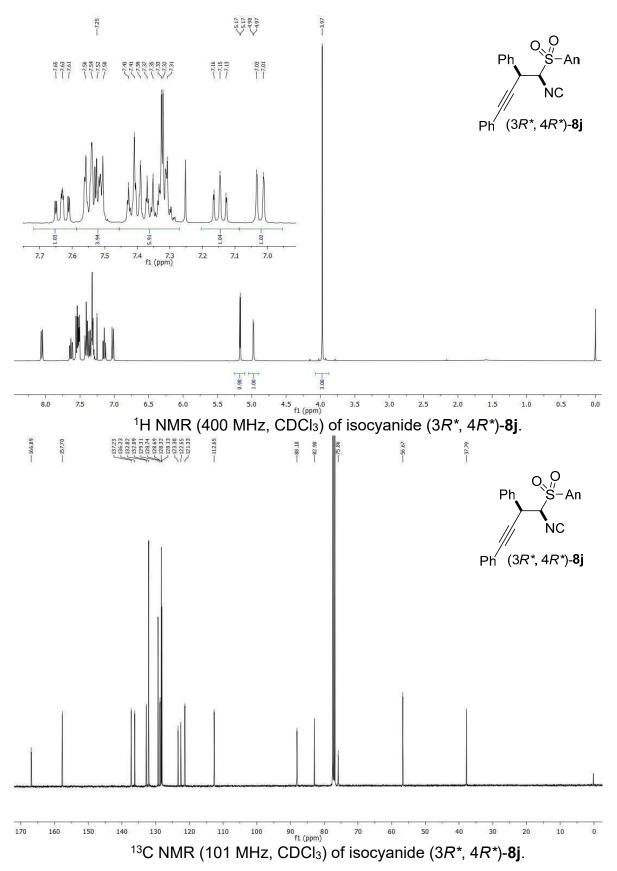


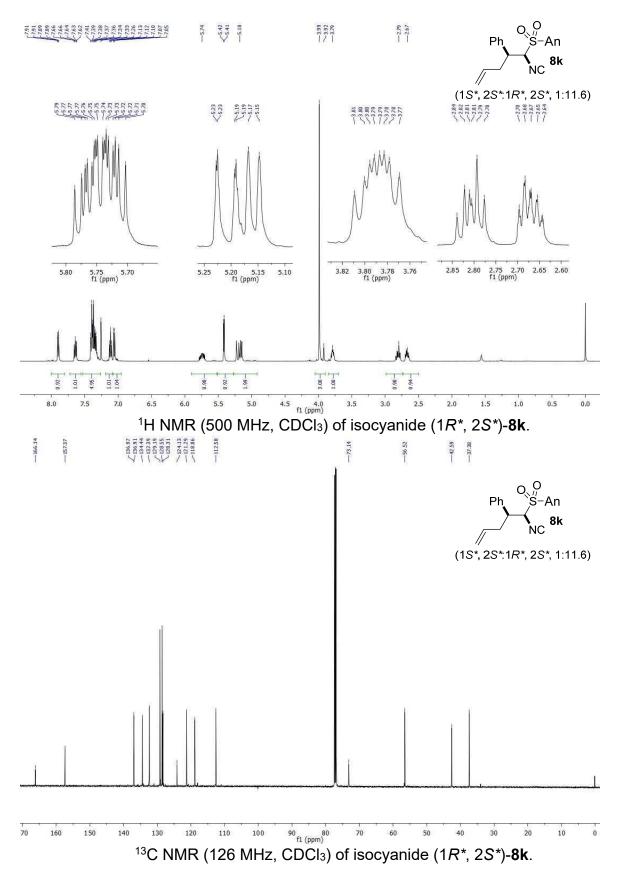




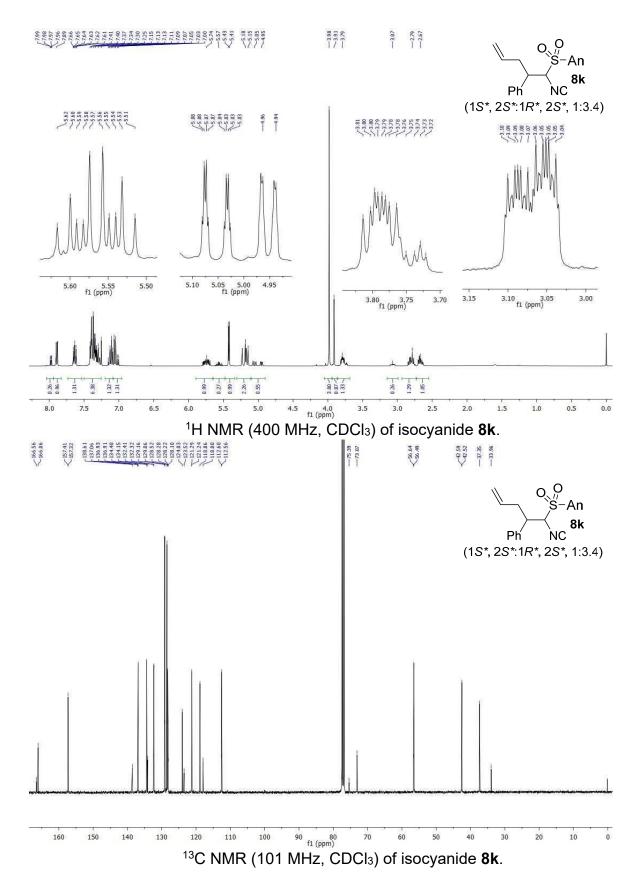


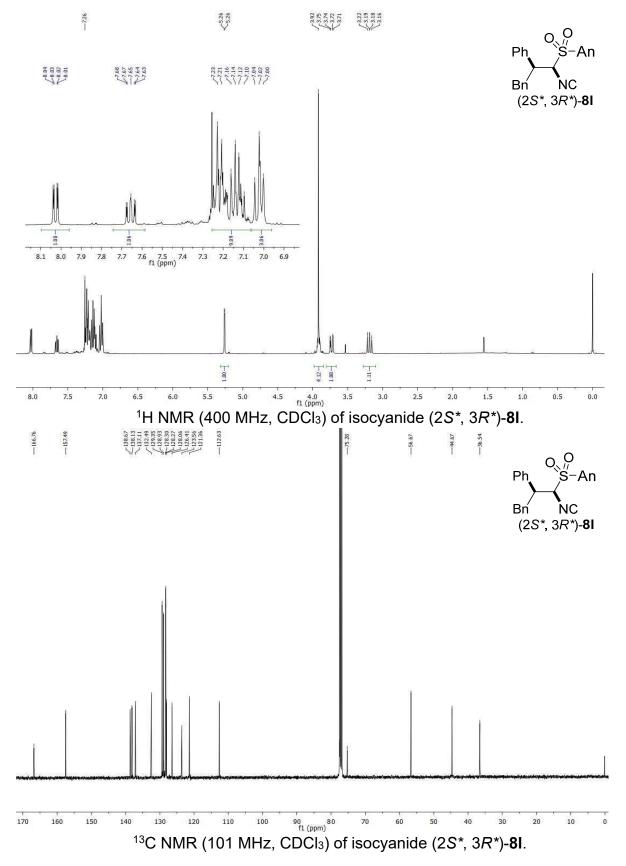

S77

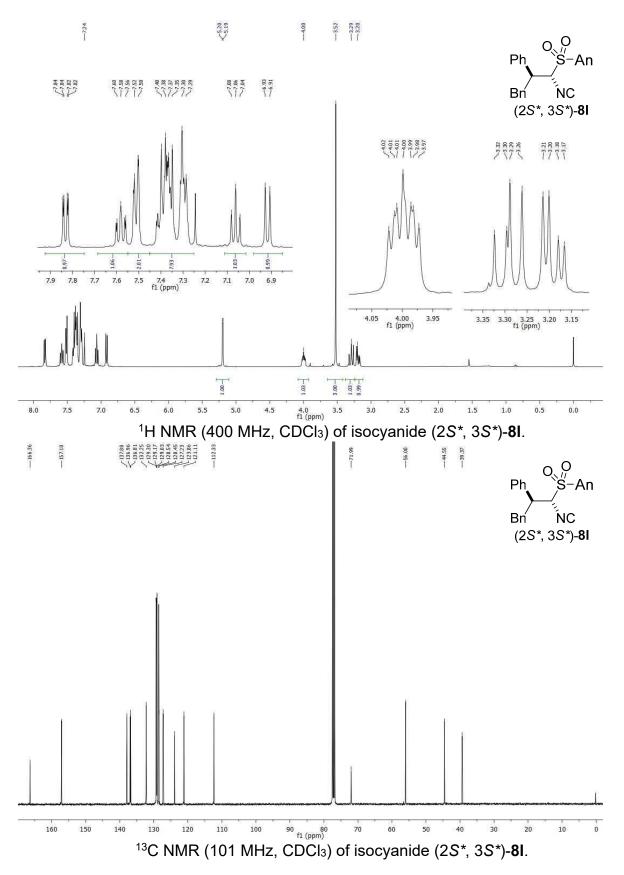




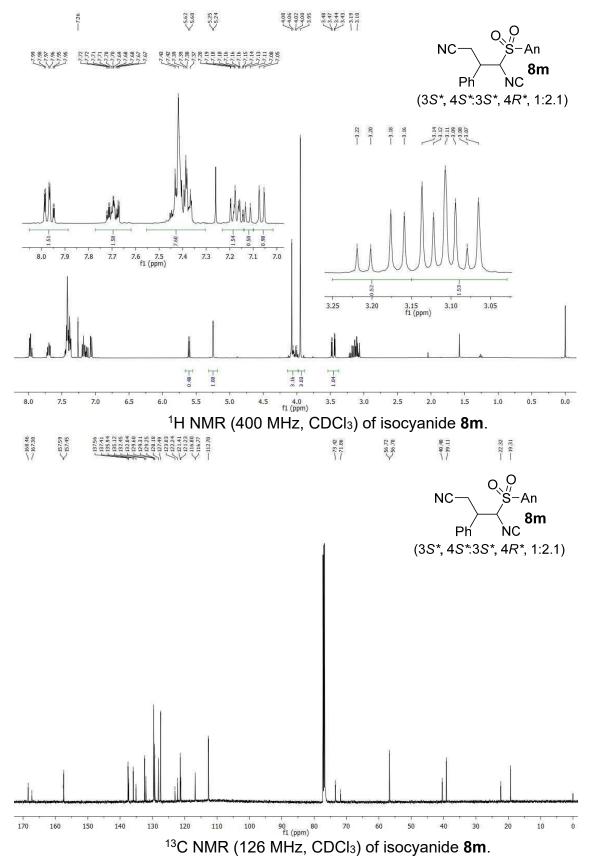
S80

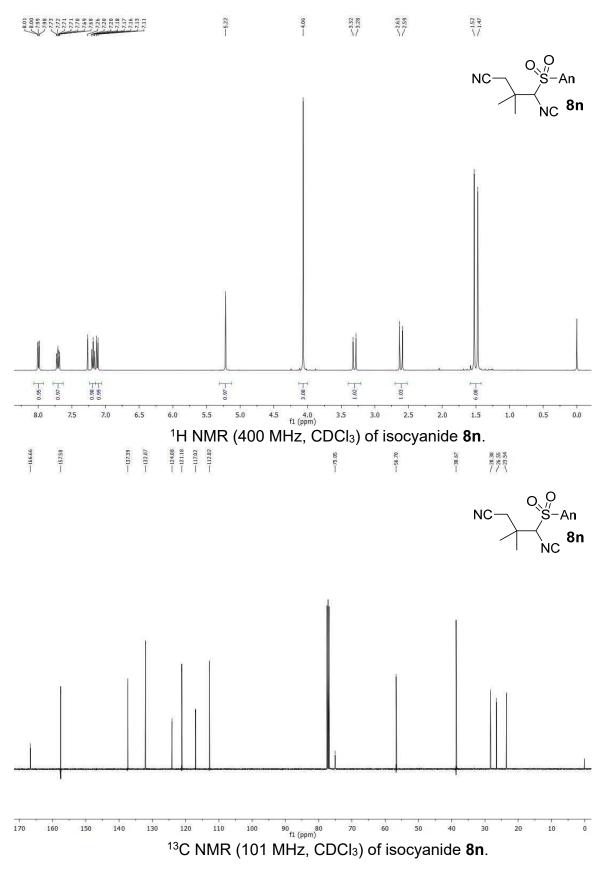


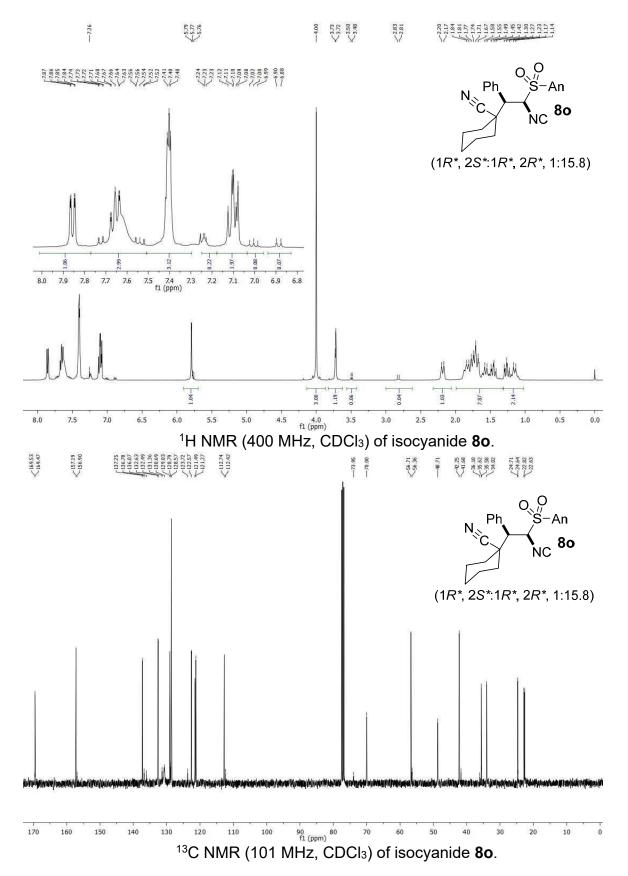

S81

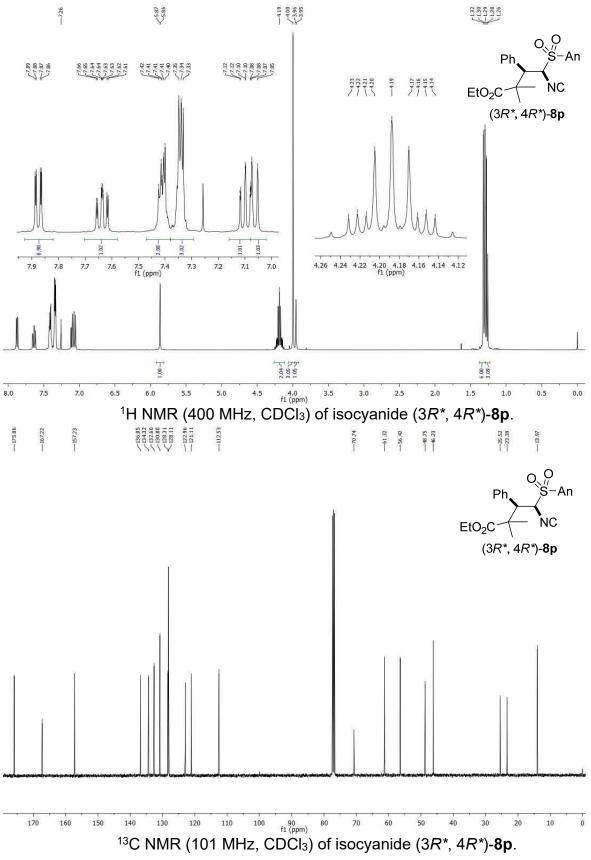


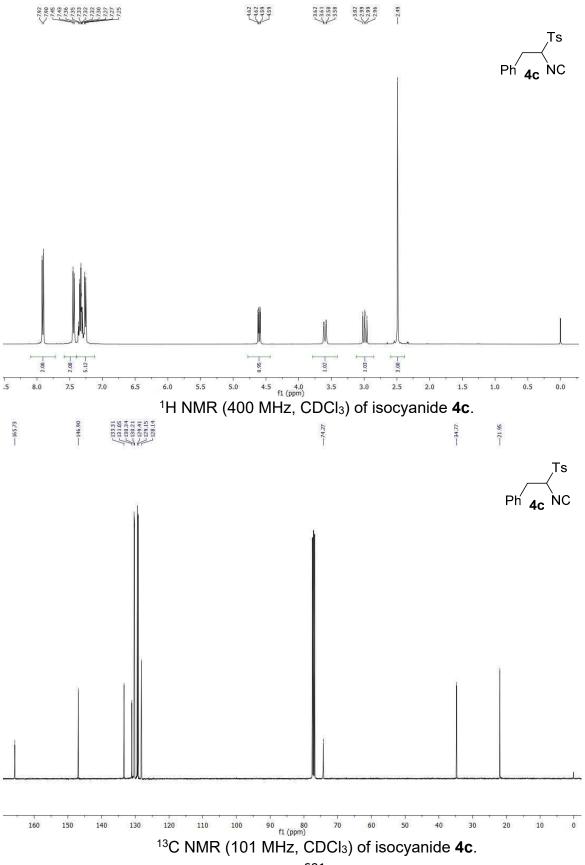
S83

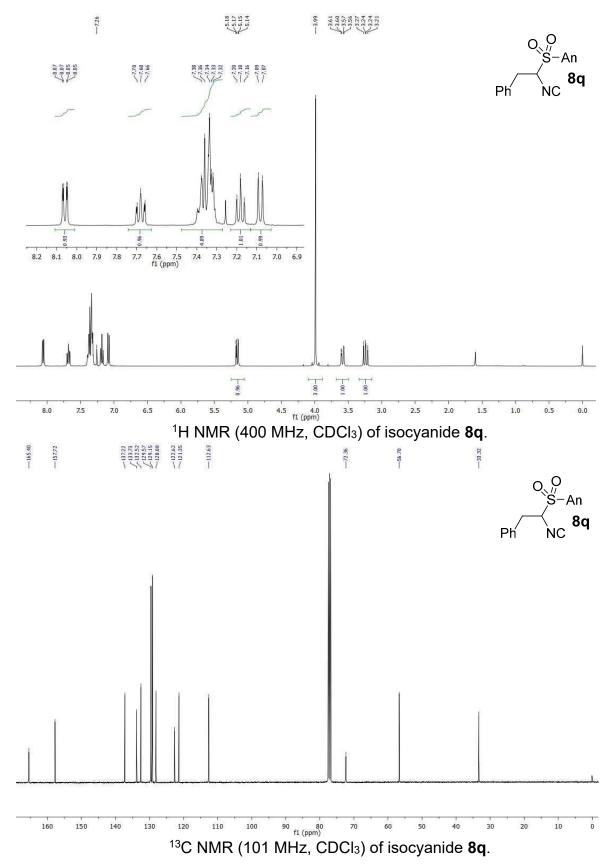


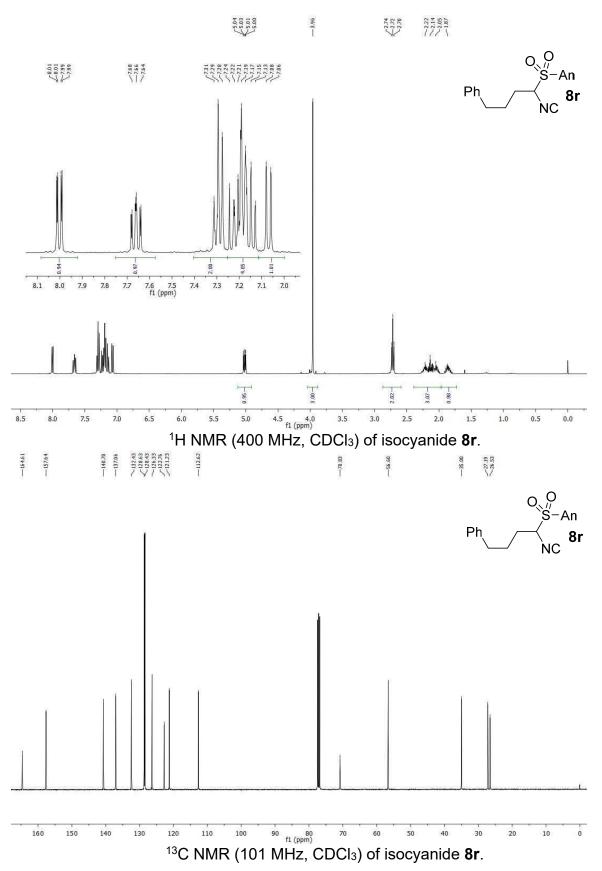

S85

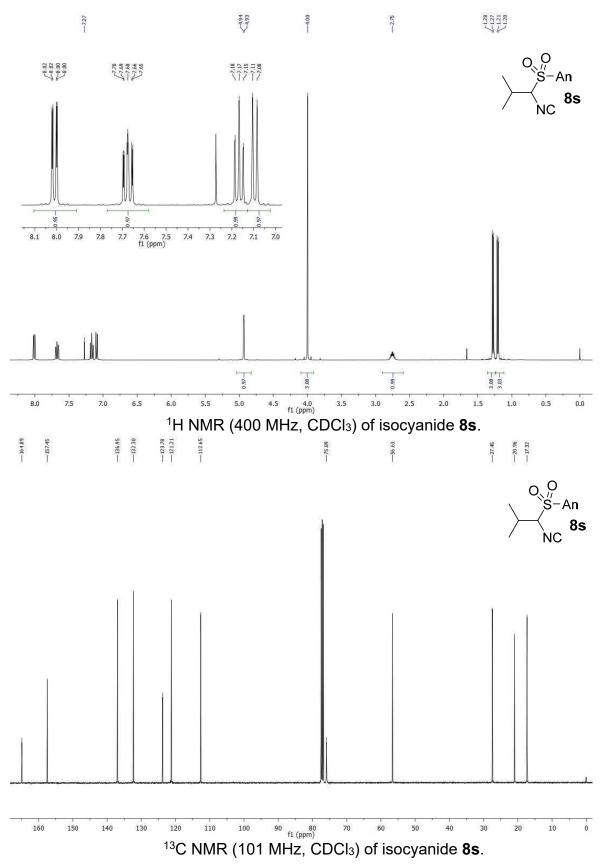


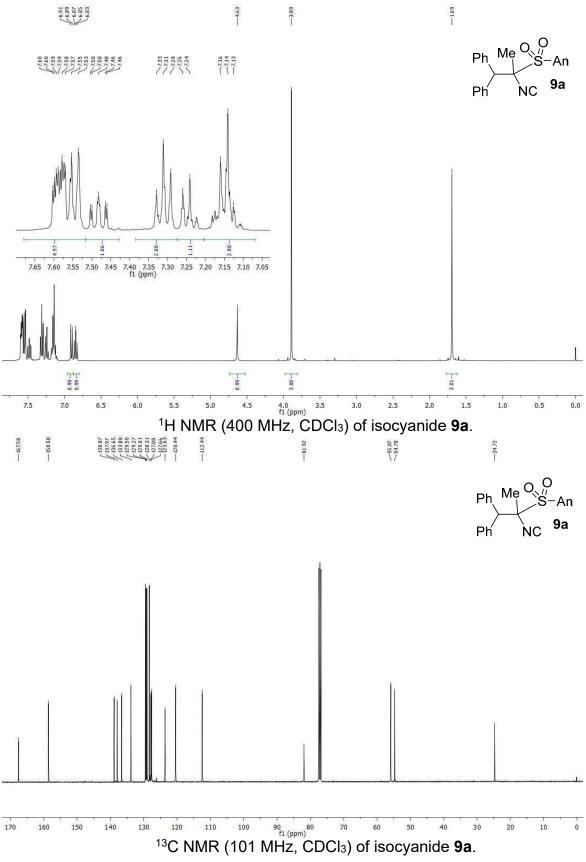


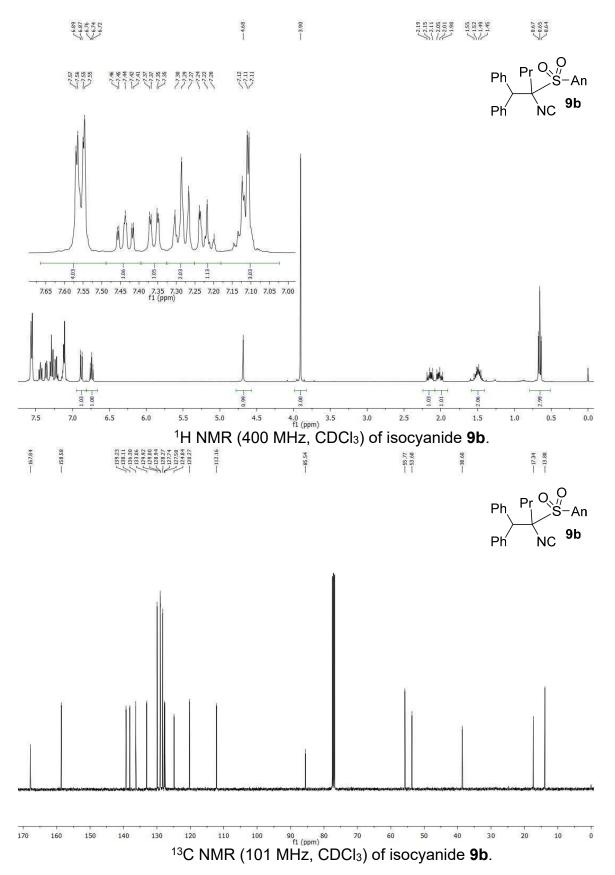

S87

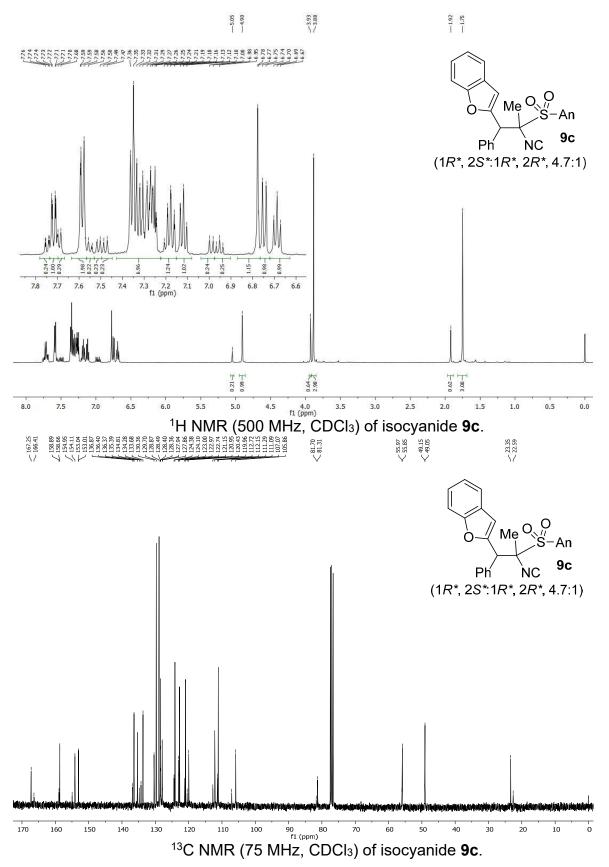


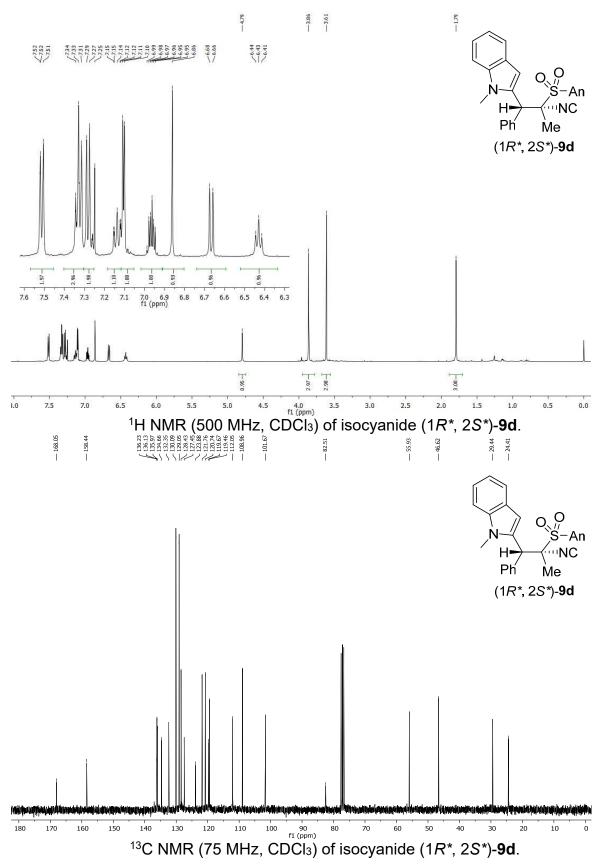


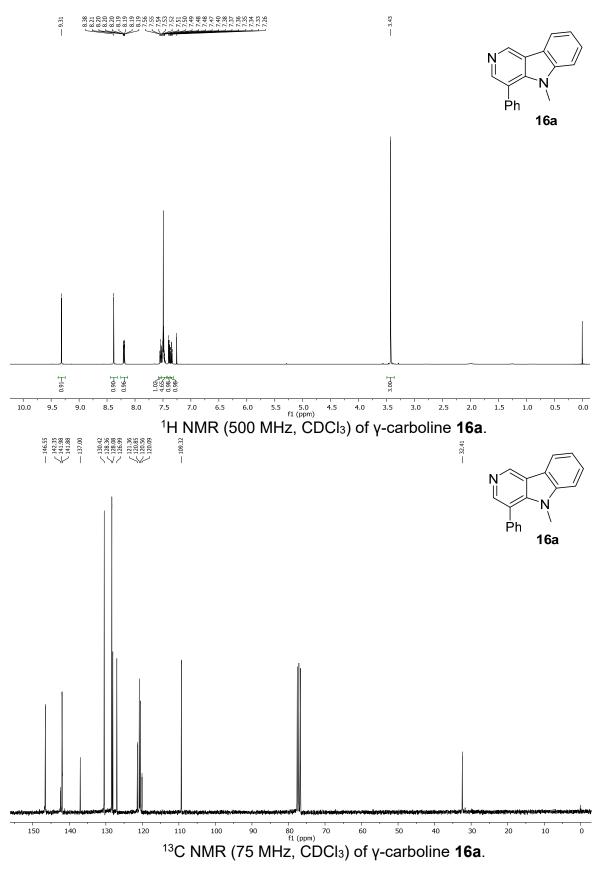




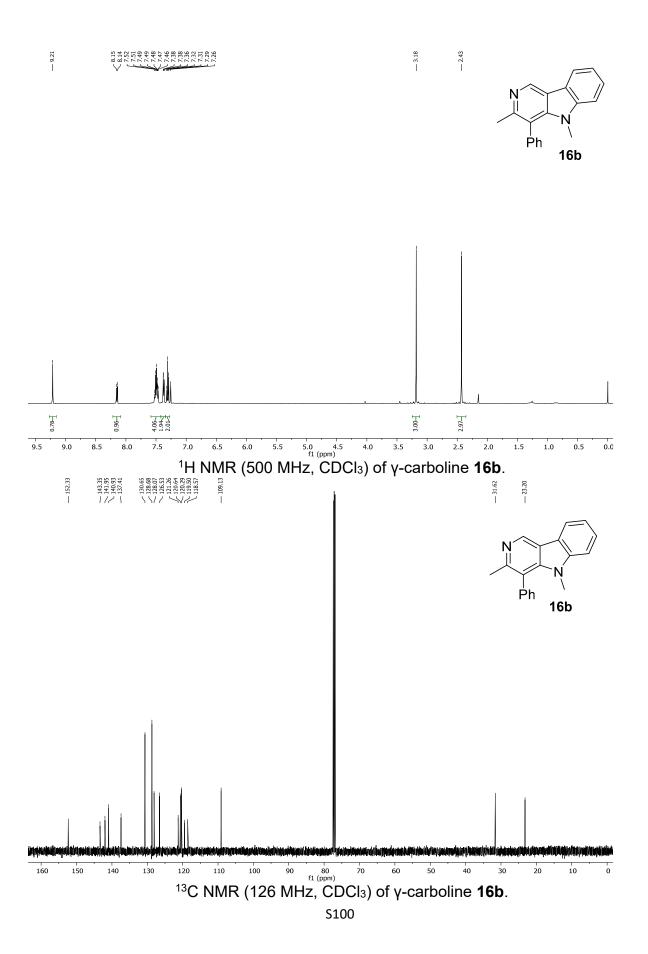


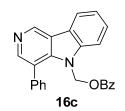


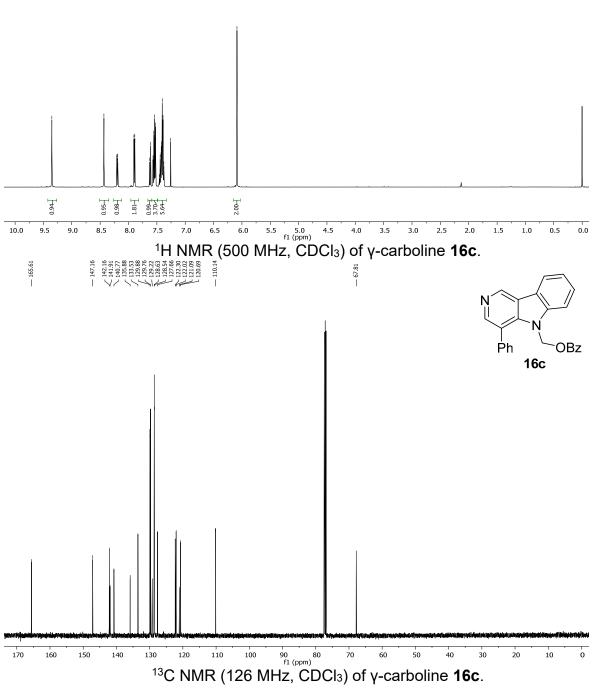


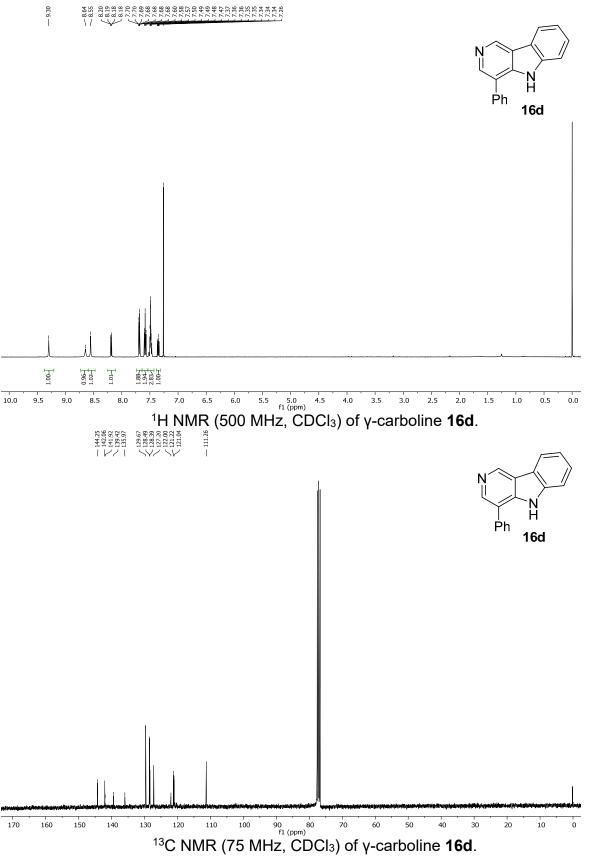


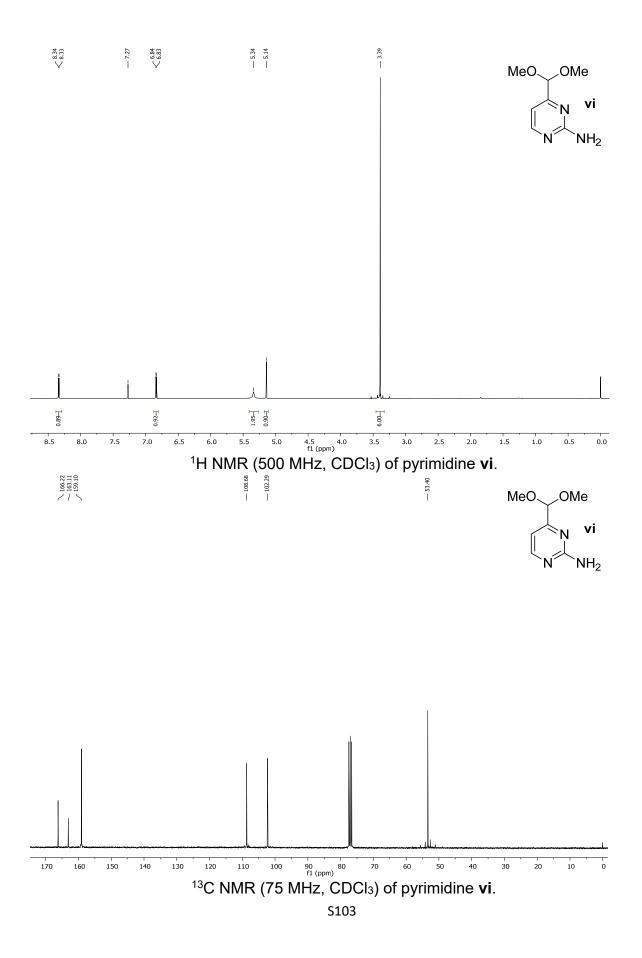
S96

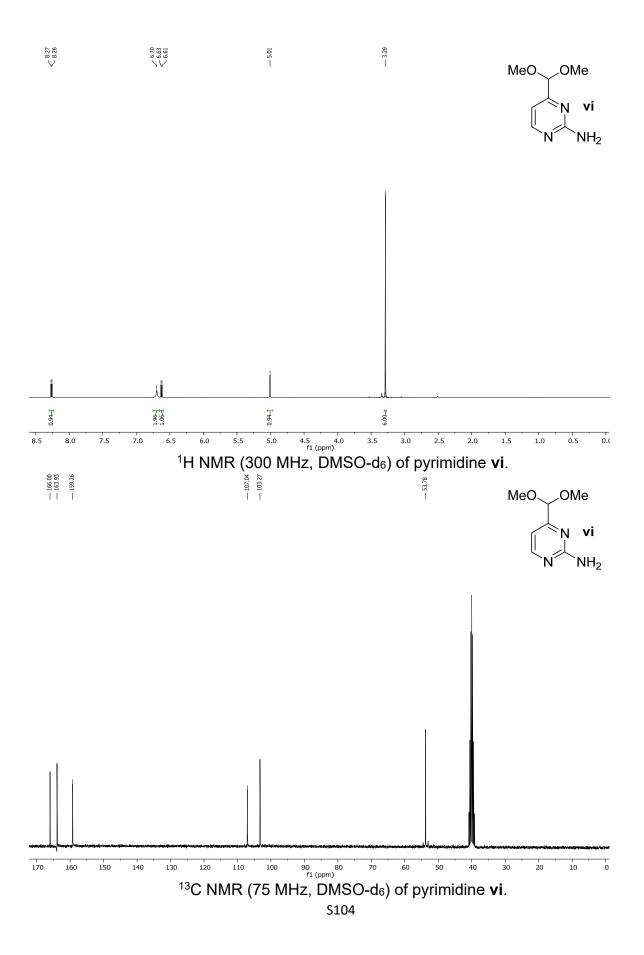


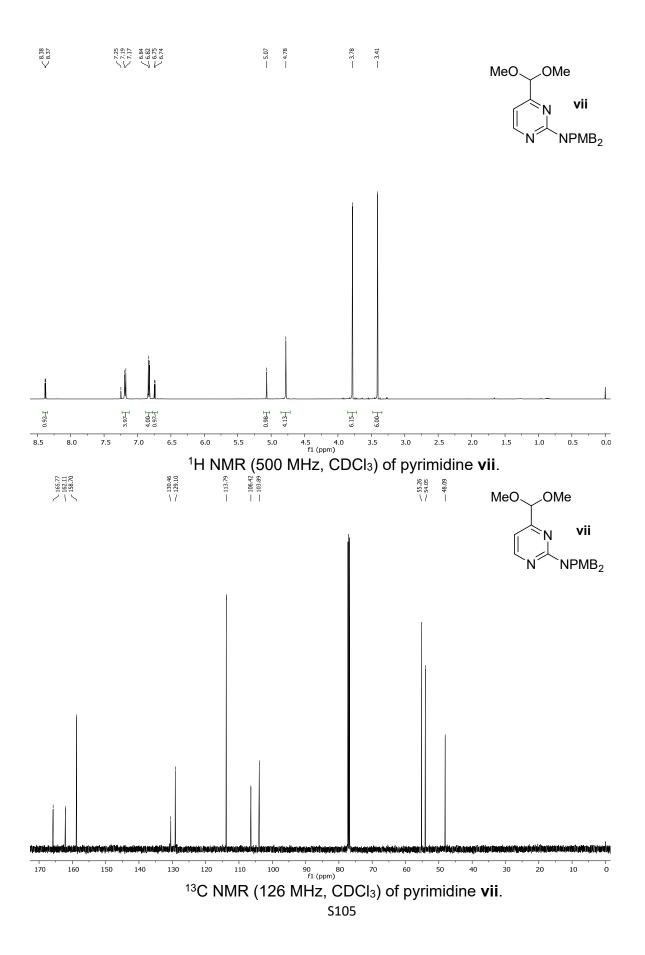


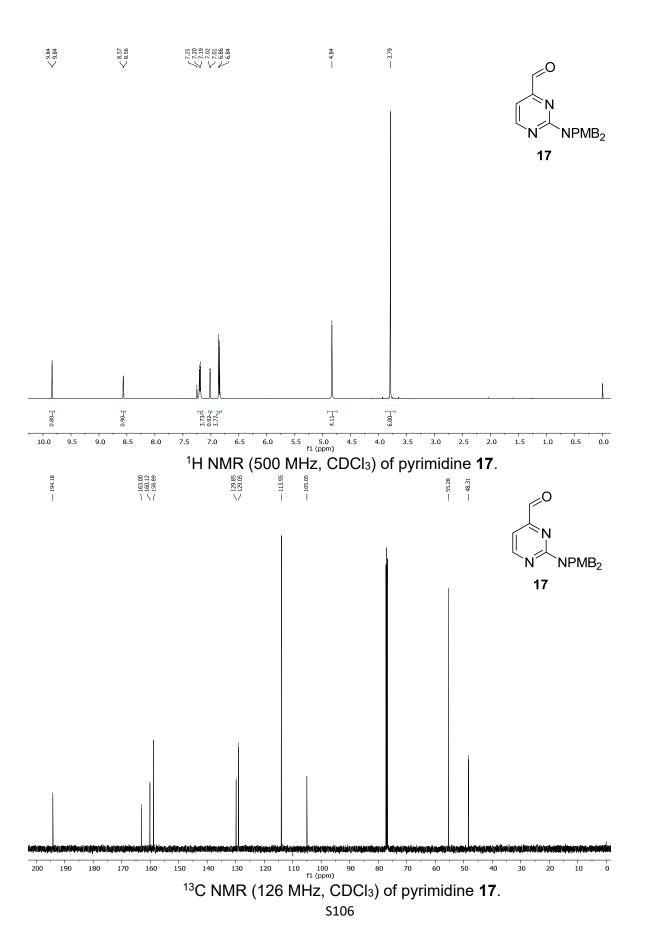


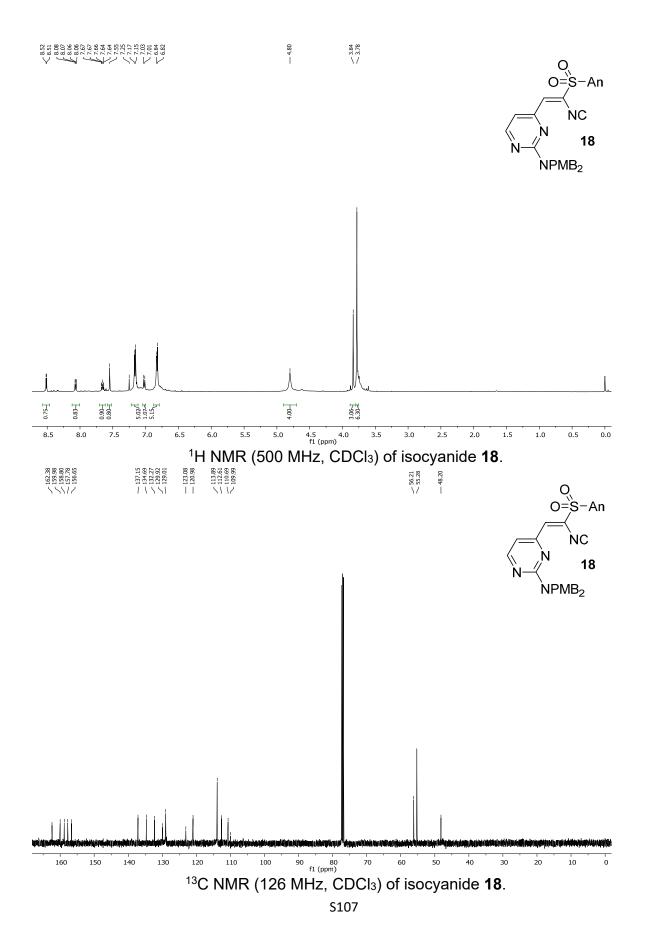


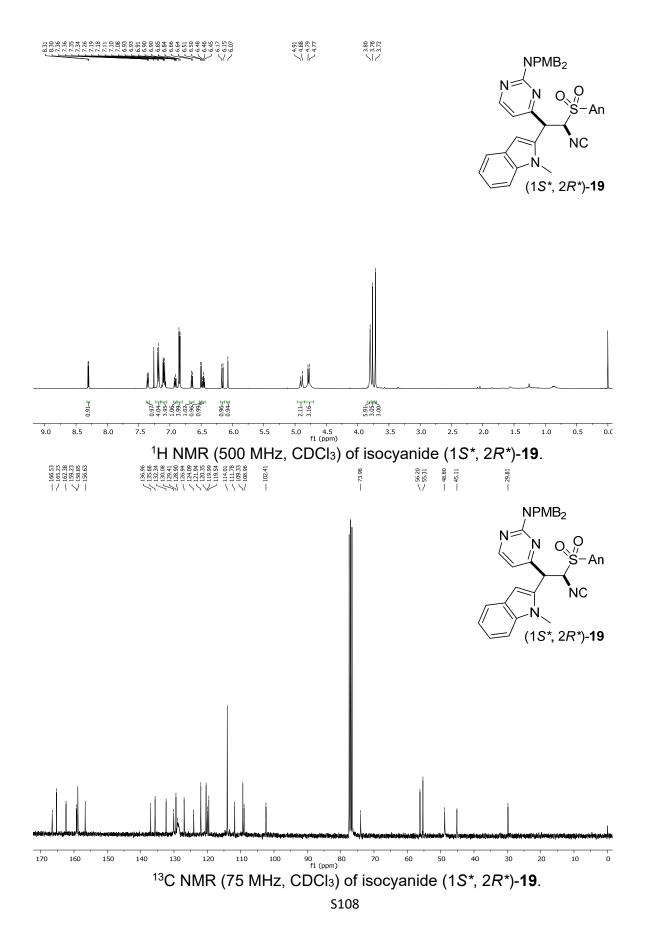


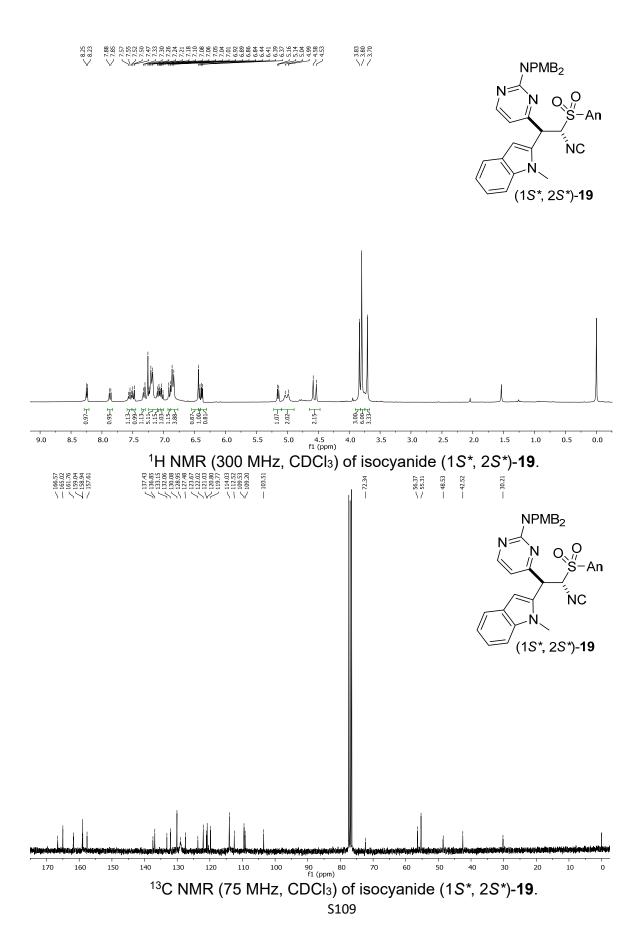


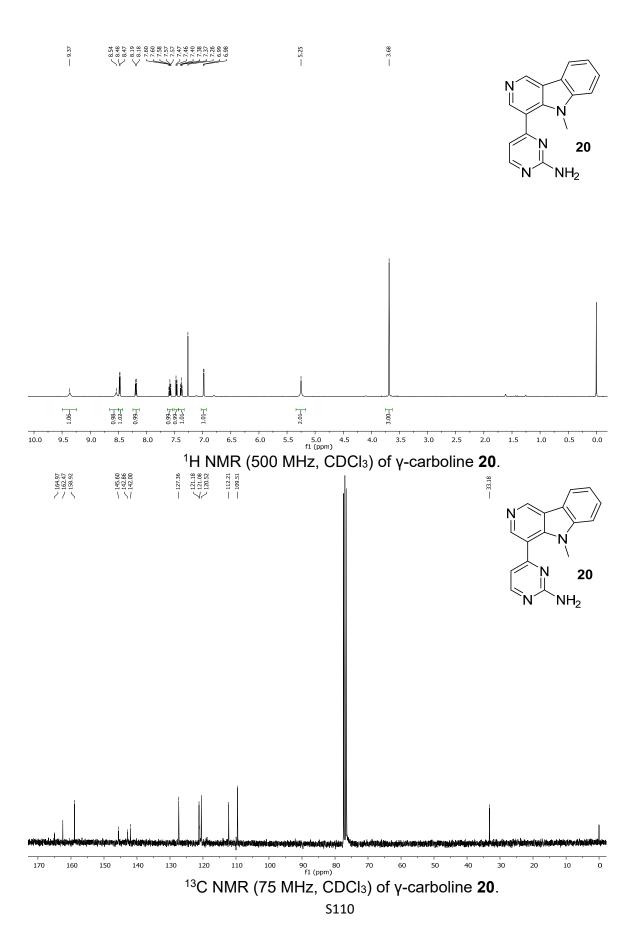


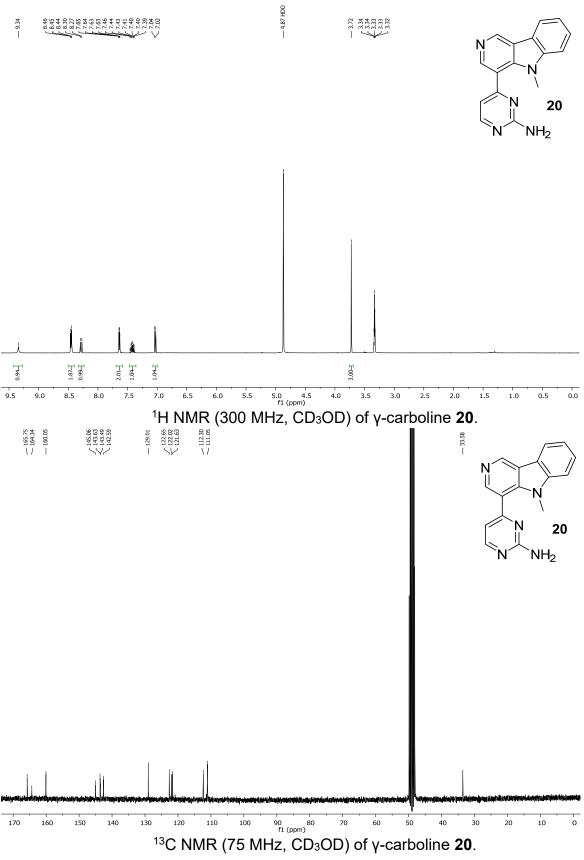












S111

References

¹ J. A. Lujan-Montelongo, A. O. Estevez, F. F. Fleming *Chem. Eur. J.* **2015**, *7*, 1602.

² F. J. A. Hundscheid, V. K. Tandon, P. H. F. M. Rouwette, A. M. van Leusen *Tetrahedron* **1987**, *43*, 5073.

³ A. M. van Leusen, J. Wildeman Rec. Trav. Chim. Pays-Bas 1982, 101, 202.

⁴ Prepared following the previously published synthesis except that CH_2CI_2 and Et_3N were employed at -25 °C to -10 °C (1 h) in the dehydration rather than a THF:CH₃CN solution with *i*-Pr₂NH.

⁵ The configuration was assigned by comparing the coupling constants with those of structurally analogous diastereomers: P. R. Krishna, Y. L. Prapurna, *Synlett* **2009**, *16*, 2613.

⁶ J. G. Sośnicki *Tetrahedron Lett.* **2006**, *47*, 6809.

⁷ Prepared by addition of a hexanes solution (0.46 mmol, 0.28 mL) of BuLi to a -30 °C, THF solution (4 mL) of 1,3-dithiane (0.55 mmol, 66 mg): S. R. Wilson, J. Mathew *Synthesis* **1980**, 625.

⁸ Prepared by addition of a hexanes solution (0.95 mmol, 0.60 mL) of BuLi to a -78 °C, THF solution (5 mL) of 3,5-dimethylisoxazole (99 mg, 1.02 mmol): J-C. Cherton, M. Lanson, D. Ladjama, N. Lefebvre, Z. Vossough, J-J. Basselier *Can. J. Chem.* **1991**, *69*, 625.

⁹ The authors have deposited the crystallographic data for (1*S**, 2*R**)-**8d** with the Cambridge Crystallographic Data Center (CCDC# 1052082). The data can be obtained, on request, from the Director, Cambridge Crystallographic Data Center, 12 Union Road, Cambridge, CB2 1EZ, UK.

¹⁰ Prepared by addition of a heptane solution of *t*-BuLi (1.58 mmol, 0.80 mL) to a -78 °C, THF solution (6 mL) of 1-iodo-4-methoxybenzene (0.83 mmol, 194 mg): M. H. Nguyen, A. B. Smith, III *Org. Lett.* **2014**, *16*, 2070.

¹¹ Prepared by addition of a hexanes solution (1.01 mmol, 0.63 mL) of BuLi to a THF solution (8 mL) of benzofuran (126 mg, 1.07 mmol) at -78 °C. After 1 h, the reaction was allowed to warm to 0 °C and then maintained at -5 °C for 1 h: J. Wu, X. Yang, Z. He, X. Mao, T. A. Hatton, T. F. Jamison *Angew. Chem. Int. Ed.*, **2014**, *53*, 8416; *Angew. Chem.* **2014**, *126*, 8556.

¹² Prepared by addition of a hexanes solution (1.01 mmol, 0.63 mL) of BuLi to a THF solution (8 mL) of 1-methyl-1H-indole (150 mg, 1.14 mmol) at -78 °C. After 1 h, the reaction was allowed to warm to 0 °C and then maintained at -5 °C for 1 h: J. Wu, X. Yang, Z. He, X. Mao, T. A. Hatton, T. F. Jamison *Angew. Chem. Int. Ed.*, **2014**, *53*, 8416; *Angew.*

Chem. 2014, 126, 8556.

¹³ Prepared by addition of BuLi (1.55 mmol, 0.97 mL) to a -78 °C, THF solution (5 mL) of tributyl(vinyl)stannane (0.45 mL, 1.55 mmol) and used after 15 min.

¹⁴ Prepared by addition of BuLi (0.85 mmol, 0.53 mL) to a -78 °C, THF solution (5 mL) of phenylacetylene (102 mg, 1 mmol, 0.11 mL) and used after 15 min.

¹⁵ Although a known compound, no spectral data was previously reported: A. M. van Leusen, R. J. Bouma, O. Possel *Tetrahedron Lett.* **1975**, *16*, 3487.

¹⁶ The authors have deposited the crystallographic data for $(1R^*, 2S^*)$ -**9d** with the Cambridge Crystallographic Data Center (CCDC# 1516436). The data can be obtained, on request, from the Director, Cambridge Crystallographic Data Center, 12 Union Road, Cambridge, CB2 1EZ, UK.

¹⁷ The material exhibited a ¹H NMR spectrum identical to that previously reported: H. Zhang, R. C. Larock *J. Org. Chem.* **2002**, *67*, 9318.

¹⁸ S. Nakatsuka, O. Asano, T. Goto *Heterocycles* **1986**, *24*, 2791.

¹⁹ J.-P. K. Meigh, PhD thesis, University of Manchester (UK), **2000**.

²⁰ H. McNab J. Chem. Soc. Perkin Trans. 1 **1987**, 3, 653.

²¹ Complete spectral data is provided because previous NMR characterization was performed in DMSO-d₆: N. H. Naik, A. K. Sikder, R. S. Kusurkar, *Tetrahedron Lett.* **2013**, *54*, 3715; M. Hoefener, F. Pachl, T. Take, G. Fischer von Mollard, B. Kuster, N. Sewald *J. Proteome Research* **2014**, *13*, 3628.