
Reviewers' comments:  

 

Reviewer #1 Expert in computational biology:  

 

Many thanks for giving me the opportunity to review this intriguing paper. The authors deployed a 

complex netwok biolgy strategy to dissect the importance and co-ocurrence of mutations in colon 

cancer, and based on their results propose a so-called hypothesis of percolation transition cluster 

in colon cancer. The idea is intriguing, but I am afraid the study lacks still many elements to judge 

it suitable for publication.  

 

My major concerns are the following:  

 

1. Patient data selection. Having in mind the massive amount of data available for colon cancer, is 

it not clear to me why the authors selected the data set used in this study. Further the patient 

data is poorly characterized. It is not indicated, for example, whether/how many patient samples 

belong to which tumor stage, whether the samples are taken from patients before or after therapy, 

and which therapy they underwent. This has to be explained, if they selected the samples for a 

given subset of patients, it has to be stated. If they use a heterogeneous set of patient data, this 

has to be justified and the consequences in the analysis have to be discussed.  

 

2. The hypothesis derived is not discussed or compared in detail to state of the art 

hypothesis/methods based on gene mutations and expression profile to classify colon cancer 

tumors. See for example: https://www.ncbi.nlm.nih.gov/pubmed/26457759 or 

https://www.ncbi.nlm.nih.gov/pubmed/26982367  

 

3. Further, the hypothesis is not discussed/compared in detail with other network biology-based 

hypothesis on the role of somatic mutations in cancer like the work briefly mentioned from the 

Ideker Lab, or the more recent from the Califano lab 

(https://www.ncbi.nlm.nih.gov/pubmed/27322546)  

 

4. The potential effect of tumor heterogeneity, with the mutations distributed in different clones, is 

not considered in the context of the analysis, so it is not clear whether the formation of the 

percolation giant cluster will be affected by this key feature.  

 

5. The hypothesis of the formation of a percolation giant cluster should be validated. It should be 

validated against a different colon cancer data set, and as I said there is plenty of large datasets 

available. But one should also investigate whether such a gigantic network structure exists in other 

types of solid tumors with similar features.  

 

6. Sadly, it is not provided any fraction of the code used for performing the analysis. This 

essentially preclude any attempt to reproduce by other groups the results here shown, but also 

would make not straightforward at all for others to use the methodology here described with other 

data sets or tumor entities.  

 

7. Thinking on the results itself, what drives my attention is the large difference in the size of the 

percolation cluster from patient to patient (Fig 1c) but also that a large fraction of the patients 

(78) were not classified in stage I-III. More discussion about this is necessary to make a solid 

decision.  

 

8. The statements contained in paragraph 357-364 on the use of the hypothesis for therapy design 

are extremely vague. They should be either written in a clearer style or better removed.  

 

 

 

 



Reviewer #2 Expert in biological networks:  

 

Dear Editor,  

 

In ms NCOMMS-16-26509, the authors present a network-based study of tumorigenesis in 

colorectal cancer. Their approach captures a progression of many mutations, and shows a 

percolation effect where the cumulative effect of the mutations transitions suddenly from relatively 

benign to cancerous. Their work provides insight into the fundamental processes by which 

cancerous tumors form, and thereby provides insight into potential therapies. It appears that their 

approach could be mapped directly to other forms of cancer.  

 

This is an interesting and very relevant work. While I could not evaluate the authors' code, I found 

their method descriptions to be technically correct, and their results are summarized nicely in very 

informative figures. The text itself was quite readable. Overall, I judge this to be a very strong 

manuscript.  

 

However, I do have several comments that should be addressed prior to publication. My comments 

are mostly minor and address the clarity of the manuscript; some notation appears to be used 

inconsistently and one term (the coverage) would benefit from a more detailed definition. 

Somewhat more significantly, some aspects of the authors approach are not clear and require 

some additional explanation (comment 6).  

 

I hope the authors find these comments useful as they revise their work.  

 

 

Comment 1  

Lines 88-89: The authors write, "In this study, we found that the cooperative mutation effects 

represented by a large connected component in a PPI network form a giant cluster."  

 

This is not as clear as it could be. A cluster is colloquially thought of as a collection of nodes, but in 

a signaling network the nodes are specific molecules. In what way do the mutation effects form a 

cluster? 

 

This is clarified later in the ms, of course, but a reader coming to this cold is liable to be confused 

here.  

 

Comment 2  

On line 157 the authors refer to "mutation pairs". However, if my reading is correct, they are 

actually referring to pairs of "mutation-propagating modules", as defined on lines 147-148. I 

reason this because J and C are defined in terms of the modules, and these scores are used to 

categorize the quantities referenced again on line 157.  

 

If my reading is correct, a consistent notation should be used; otherwise, clarification is needed.  

 

Comment 3  

The definition for coverage should be spelled out more clearly. From the diagram in Fig. 2C, it 

appears as if S(A,B) indicates the set of all elements that exist in A, B, or both. However, this is by 

definition the union of the two sets. It is unclear that the "padded border" is meant to indicate 

additional nodes in the connected module that are not in A and B.  

 

The in-text definition on line 623 says that S(A,B) "indicates the size of a connected module 

between a pair of mutation-propagating modules". This might be clearer if written e.g. "...indicates 

the size of the connected module in which a pair of mutation-propagating modules A and B exist."  

 

It may be also useful to explicitly address the situation where a connected module has three 



mutation-propagating modules, A, B, and C. In this case I infer that S(A,B) would be (A union B 

union C) and that the coverage would be > 1. I infer also that the coverage would be 0 if A and B 

are not members of a connected module, but otherwise the coverage is always > 1.  

 

If this is correct, I suggest the authors include a sample module C in the Fig and re-label it 

accordingly. In any case, the definition and surrounding text (in the caption and/or main text) 

should be expanded to make the definition of coverage more clear.  

 

Comment 4  

Lines 396 - 397: The authors write, "Patients with more than 300 mutations were discarded, which 

left 198 patients." I recommend the authors add a sentence explaining this choice. (perhaps, as 

indicated in a similar statement in the SI, this is to reduce the computational complexity? If so, do 

the authors expect any qualitative changes to their results if more are considered?  

 

Comment 5  

In panel 2c the authors indicate that the Fisher's combined test p-value is on the order of e-159. I 

am not an expert statistician, but to my eye this seems egregiously small and well below the 

floating point precision of typical computers (which draws into question the validity of the value). 

While it isn't uncommon for a p-value that is essentially 0 to spit out a very large negative 

exponent like this, in my view it is normally safer to simply say it is "much much less than" some 

more reasonable threshold, such as e-10.  

 

That being said, I won't object if the authors are confident that this value is a true representation 

of the output of the test.  

 

(Note that this comment applies also to a number of figures in the SI.)  

 

Comment 6  

What is the value of alpha (line 431)? How was the value chosen? How do the authors' results 

depend on this choice?  

 

Minor comments  

Line 145: "closer" - "closeness"?  

 

Line 214: "Fig. 3e and F" - "Fig. 3e and f"  

 

Line 604: There is a rendering/symbolic error; I see a white square before E_i.  

 

The caption of Fig 4 references "S_conn(i,j)", which I infer is the same as S(A,B) referenced in Fig 

2. The same notation should be used in each case (S vs S_conn).  
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Response to the specific comments of Reviewer 1: 

[COMMENT #1] Patient data selection. Having in mind the massive amount of data 

available for colon cancer, is it not clear to me why the authors selected the data set used 

in this study. Further the patient data is poorly characterized. It is not indicated, for 

example, whether/how many patient samples belong to which tumor stage, whether the 

samples are taken from patients before or after therapy, and which therapy they underwent. 

This has to be explained, if they selected the samples for a given subset of patients, it has 

to be stated. If they use a heterogeneous set of patient data, this has to be justified and the 

consequences in the analysis have to be discussed. 

[RESPONSE] In our study, we first mapped the gene expression profiles of individual 

patients to a large-scale protein-protein interaction (PPI) network to obtain patient-

specific PPI networks and then, projected the somatic mutation profile of an individual 

patient to each network to explore phenotypic features embedded in the giant percolated 

cluster (GPC). For this approach, there are three requirements for the data set. First, the 

data set should include both gene expression and somatic mutation profiles of colorectal 

cancer patients. Second, massive somatic mutations identified by whole-exome 

sequencing are required for the GPC analysis. One of the important implications of our 

findings is that although driver mutations are essential for triggering the onset of the GPC, 

passenger mutations also contribute to the formation of the GPC and eventually to the 

development of cancer. Therefore, a mutation data set profiled by whole-exome 

sequencing is more suitable for this study than a data set obtained by targeted-exome 

sequencing which is often used for identifying specific mutations related to cancer. Third, 

the data set should include clinical outcomes such as tumor stages. Thus, based on these 

requirements, we chose from among the many genomic data sets The Cancer Genome 

Atlas (TCGA) data not only because it is the largest publicly available database for 
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cancer-genomic studies, but also because it provides both mRNA and whole-exome 

sequencing data in addition to clinical information on the cancer patients. As a result, we 

selected those patients having less than 300 mutations from the 223 TCGA colorectal 

cancer patients to discard outliers having a very high number of mutations which result 

in a GPC covering the entire network (see also our response to COMMENT #4 of 

Reviewer 2 for details), and we did not extract any subset of patients having specific 

clinical characteristics. Indeed, we did not indicate in the manuscript whether patient 

samples were taken before or after therapy and which therapy patients underwent because 

such clinical information is not directly related to our study. In fact, such information is 

somehow eventually represented in the expression profiles of the cancer patients. 

Following the reviewer’s comment, we now include a supplementary table which 

describes the tumor stages, consensus molecular subtype (CMS), and MSI/MSS 

information (see also our response to COMMENT #2) of the data set we used in the 

revised manuscript.  

[COMMENT #2] The hypothesis derived is not discussed or compared in detail to state 

of the art hypothesis/methods based on gene mutations and expression profile to classify 

colon cancer tumors. See for

example: https://www.ncbi.nlm.nih.gov/pubmed/26457759 or https://www.ncbi.nlm.nih

.gov/pubmed/26982367  

[RESPONSE] An important implication in the formation of a GPC in our study is that 

the cooperation of multiple somatic mutations can activate multiple cancer-related 

hallmarks that can cooperatively enhance tumorigenesis. For instance, the co-occurrence 

of a mutation that persistently activates a proliferative signaling and another mutation that 

induces invasion and metastasis will promote cancer malignancy. Therefore, it is 

important to find what kind of multiple hallmarks of cancer are enriched in a GPC and 

more importantly, to find whether such phenotypic features have a real biological 

significance. In this respect, as the reviewer suggested, we believe that it is very important 

and valuable to interpret the phenotypic features contained in the GPC with respect to the 

classification of tumors such as the consensus molecular subtypes (CMSs)1 of colorectal 
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cancer or subgroups of microsatellite-instable (MSI)/microsatellite-stable (MSS) tumors 
2. 

First, we examined how well the GPC-based patient classification matches the previous 

CMS classification which is known to be the most robust molecular classification 

currently available for colorectal cancer 1 and further investigated which key biological 

features the subtypes have (Fig. R1(a)). By propagating all of the mutations of each 

Figure R1. Hallmark gene set analysis. (a) Flowchart of the hallmark gene set analysis 
for identifying hallmark gene sets enriched in the GPC and for classifying cancer
patients based on the selected features using factor analysis. (b) The correlation matrix
of hallmark gene sets identifies several sets of correlated hallmark gene sets. 
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colorectal cancer patient, we obtained a gene list included in the corresponding giant 

cluster and estimated the enrichment of the hallmark gene sets in each patient through the 

hypergeometric test. To reduce the dimensionality of the resulting matrix of the hallmark 

gene set enrichment test (191 patients × 50 hallmark gene sets), we did factor analysis, 

which is often used in gene expression data for patient clustering as a robust feature 

selection method 3, 4, using standardized z scores of -log(p-value) for each hallmark gene 

set because the hallmark gene set variables have different scales. For an optimal 

predefined factor number (k = 5) (Fig. S5a and see Methods for details), the correlation 

matrix of the hallmark gene sets were clustered into four global factors (Fig. R1(b) and 

see Table S2 for various factor numbers, k = 3, 4, and 5) each of which can be 

characterized with several hallmark gene sets for a conventional weight threshold of 0.5: 

Factor 1 for angiogenesis and the metastasis pathway, Factor 3 for the immune response, 

Factor 4 for the Myc pathway and uncontrolled proliferation, and Factor 5 for the 

metabolic pathway (Fig. R2(a)). Interestingly, these factors not only contain important 

features related to cancer cells but also are very similar to the biological characteristics 

that distinguish each CMS group1. Factors 1, 3, 4, and 5 correspond to the characteristics 

of CMS4 (mesenchymal), CMS1 (MSI immune), CMS2 (canonical), and CMS3 

(metabolic), respectively. To investigate whether cancer patients can be classified into 

the CMS group by these factors, we performed statistical clustering (k-means) analysis 

on the factor scores of the patients. The result shows that the patient population can be 

clustered into four clusters, and interestingly, each cluster is strongly correlated with a 

distinct CMS group (Cluster 1 – CMS2, Cluster 2 – CMS4, Cluster 3 – CMS1, and Cluster 

4 – CMS3) (Fig. R2(b)). For a biological understanding of the cluster groups, we then 

examined which Factors are dominant in each cluster (Fig. R2(c)) and compared the 

results with the biological signatures of the CMS groups1. Cluster 1 was mainly 

characterized as Factor 4 (Myc pathway and uncontrolled proliferation) and Factor 5 

(metabolic pathway), while Factor 1 (angiogenesis and metastasis pathway) and Factor 3 

(immune response) had a relatively low significance, which is in good accordance with 
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the biological characteristics of the CMS2 group except for Factor 5. Cluster 2 was mainly 

Figure R2. Patient classification by the factor analysis and biological interpretation of the 
patient clusters. (a) The correlation matrix of the hallmark gene sets was clustered into four 
global factors with biological characteristics. Each bar indicates the loading strength of a
hallmark gene set in each factor. Blue (red) bars represent positive (negative) values, and
absolute values were used for the negative values. (b) The four clusters were classified with
statistical clustering (k-means) analysis of the factor scores of the patients. The hypergeometric 
test was performed to examine the statistical significance of the enrichment of individual CMS 
groups in each cluster. (c) Biological interpretation of the clusters with the identified Factors, 
each of which corresponds to a biological signature of a CMS group. The distribution of the
Factor scores of the patients in one cluster was compared to that of the other remaining clusters. 
P-values were obtained by performing the Wilcoxon rank-sum test. 
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characterized as Factor 1 (angiogenesis and metabolic pathway) but not as Factor 4 (Myc 

pathway and uncontrolled proliferation) and Factor 5 (metabolic pathway). These features 

are very similar with the biological signatures found in CMS4, which showed EMT-

related signatures, but have less statistical significance with the signatures associated with 

Wnt and Myc targets, cell cycle, or metabolism. Cluster 3 was mainly characterized as 

Factor 3 (immune response) which is a key biological feature of the CMS1 group. Cluster 

4 is mainly characterized as Factor 5 (metabolic pathway), which is in agreement with 

the enrichment of the metabolism signatures in CMS3. Taken together, our GPC-based 

hallmark gene set analysis enables colorectal cancer patients to be clustered into 

informative subtypes for which biological features well match those of the previous CMS 

groups. An interesting observation of our work is that the hallmark gene set analysis based 

on the GPC can extract all the features of the CMS groups, such as immune responses, 

proliferation, metabolism, and metastasis even though factor analysis was used, which is 

a type of unsupervised learning for feature selection or for data reduction. Moreover, the 

patient classification with these selected features shows very strong correlations with the 

CMS groups. There might be a few major reasons why our analysis based on somatic 

mutation profiles shows a consistent result with the CMS grouping derived from the gene 

expression profiles. First, we considered somatic mutations which are tumor-specific 

genetic changes, unlike germline mutations. Therefore, we were able to exclude some 

external factors that may be unrelated to cancer. Second, by considering the mutation 

influence on the PPI network, we were able to extract genes that might have influences 

on their expression levels by somatic mutations. A recent study suggested that mutation 

patterns correlate with global gene expression levels, and co-occurring driver mutation 

pairs tend to induce greater degrees of overlap in downstream transcriptional changes5. 

Our result shows that considering cancer-related or driver mutations alone could not 

capture all the features of the CMS groups (Fig. S8-S13), suggesting that the so-called 

passenger mutations will also have important roles in determining the functional activity 

of genes that are related to tumor progression. Third, the biased propagation of mutation 

influences based on a patient’s gene expression profile better reflects the current state of 

the patient. Fourth, the introduction of an appropriate threshold to mutation influences 

enables us to determine an optimal gene set that can capture the inherent characteristics 

of cancer. Taken together, our results imply that a set of essential genes contained in the 
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GPC obtained from the network propagation of somatic mutations can capture the 

important cancer-related features in the gene expression.  

Second, we investigated whether the immune score based on the hallmark gene set 

analysis is well distinguishable between MSI and MSS patients. For this, we introduced 

three immune scores that are defined with the statistical significance of specific hallmark 

gene sets associated with immune response, such as the immune process category from 

MSigDB, the immune response factor from our factor analysis, and carefully selected 

hallmark gene sets that are considered essential for the immune response. The immune 

scores that we defined show a statistically significant difference between the MSI and 

MSS patients (Fig. R3(a)). We compared our MSI/MSS classification with the groupings 

based on several estimates related to immune response or tumor purity including (i) 

ESTIMATE6, which represents the fraction of stromal and immune cells in tumor samples, 

(ii) Immune score6, which is a basis for the ESTIMATE score and predicts the level of 

infiltrating immune cells, (iii) Leukocyte score7, which is strongly associated with 

microsatellite instability, (iv) ABSOLUTE8, which estimates tumor purity in cancer 

samples, (v) the consensus measurement of purity estimations (CPE)9 incorporating 

Figure R3. Comparison of immune scores between the MSI and MSS groups. Three 
types of immune scores were used based on the Hallmark gene set (a), immune signature 
(b), and tumor purity (c). P-values were obtained with the t-test. 
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previous tumor purity estimates, and (vi) image analysis of hematoxylin and eosin stain 

slides (IHC)9. While the immune response scores, such as the Immune score, Leukocyte 

score, and ESTIMATE, were significantly higher in the MSI than in the MSS patients 

(Fig. R3(b)), the tumor purity estimates, such as ABSOLUTE and CPE, were 

significantly lower in the MSI than in the MSS patients; however, no significant 

difference in IHC was observed between the two patient groups (Fig. R3(c)). Therefore, 

our results indicate that the immune scoring system based on the hallmark gene set, which 

takes into account both the mutation and expression profiles, can discriminate MSI and 

MSS colon cancer patients.  

We appreciate the valuable comments that have improved our results and added the 

relevant analysis to the Results and Discussion sections in the revised manuscript. 

 

[COMMENT #3] Further, the hypothesis is not discussed/compared in detail with other 

network biology-based hypothesis on the role of somatic mutations in cancer like the 

work briefly mentioned from the Ideker Lab, or the more recent from the Califano lab 

(https://www.ncbi.nlm.nih.gov/pubmed/27322546) 

 

[RESPONSE] Considering the functional consequences of somatic mutations in cancer 

under the molecular network framework can be a promising strategy for not only 

understanding the cooperative effects of multiple somatic mutations during tumorigenesis 

but also for identifying optimal targets for anti-cancer therapies. In a recent study by the 

Ideker lab10, Hofree et al. have successfully stratified cancer patients based on a network 

propagation method. However, this network-based analysis differs from ours in many 

respects, especially in examining the dynamical change of cooperative mutation effects 

in tumorigenesis. First, we focused on an effective boundary of mutation influences 

around the mutated nodes and thus, could extract a sub-network for a mutation or a giant 

component for multiple mutations. Although the influence scores for a mutation can be 

assigned to all the nodes in the PPI network as in the study by Hofree et al., the mutation 

could not successfully affect the entire network but could at most cover a few layers of 

the nearest neighbors. Therefore, by considering such an effective boundary, we were 

able to obtain a GPC for the mutation profile of each patient and further confirmed the 

critical transition of the GPC during the development of cancer. Second, in addition to 
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the mutation profile, the gene expression data of patients were also reflected in the PPI 

network, thereby obtaining the patient-specific network. Third, by spreading the influence 

of somatic mutations over the patient-specific network, we were able to extract key 

phenotypic characteristics that can explain the cancerous state of each patient and to 

observe phenotypic changes during the cancer development. The VIPER (virtual 

inference of protein activity by enriched regulon analysis) algorithm from the Califano 

lab11 is a new regulatory-network based approach for an accurate assessment of protein 

activity from gene expression data based on ARACNe, an algorithm for reconstructing 

cellular networks. Although VIPER enables us to evaluate the functional relevance of 

somatic mutations by inferring aberrant activities induced by mutations, it has limitations 

in estimating the influence of somatic mutations in the molecular interaction network. 

Moreover, VIPER does not examine the cooperative process of multiple somatic 

mutations in tumorigenesis. Therefore, VIPER is totally different from our method in 

terms of investigating the role of somatic mutations in cancer. Following the reviewer’s 

comment, we included this point in the Discussion section of the revised manuscript. 

[COMMENT #4] The potential effect of tumor heterogeneity, with the mutations 

distributed in different clones, is not considered in the context of the analysis, so it is not 

clear whether the formation of the percolation giant cluster will be affected by this key 

feature. 

[RESPONSE] The accumulation of mutations in tumorigenesis causes a cancer to 

diverge into different clones, resulting in subclonal diversification of the tumor cells 12,

13. Recent studies in breast cancer12 and 12 different types of cancers from the pan-cancer

analysis14 showed that the mutation profiles can be very different among the subclones.

Multiregion sequencing studies have also shown that differential mutation profiles exist

across the subregions in some tumor samples, although some driver mutations are shared

in different subclones13, 15. Therefore, we can predict that the formation of a GPC will be

affected by the tumor heterogeneity because the formation of a GPC is determined by the

mutation profile of a cancer. To explore this, we further investigated whether the GPC

size depends on the tumor heterogeneity by using the mutation profiles obtained from the
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multiregion biopsies of the primary regions from colorectal cancers with whole-exome 

sequencing16. Among five colorectal cancer patients, we selected two patients, CRC2 and 

CRC3, both of which have five subclones in each primary tumor. Although they have the 

same number of subclones, they are different in terms of the tumor heterogeneity because 

they have different mutation patterns. The proportion of private mutations, a set of 

mutations that are found in some subclones, of CRC2 is 63% of all the mutations, which 

is slightly higher than that of CRC3 (60%) (Fig. R4(a)). Moreover, more than half of the 

cancer genes of CRC2 are contained in the private mutation pool (6 of 11, 55%), whereas 

in CRC3, only one cancer gene is included in the private mutation pool (1 of 4, 25%). 

These differential mutation patterns between CRC2 and CRC3 indicate that the CRC2 

sample seems to be more heterogeneous than the CRC3 sample. Next, we examined the 

size of the GPC for individual subclones and that for the bulk which includes all the 

mutations of the subclones. Figure R4(b) shows that the GPC size of the CRC2 bulk 

increased by 23% compared to the union of the GPCs of the subclones, whereas that of 

CRC3 increased by 15%. This difference can be understood by considering two extreme 

examples, two subclones having the exact same mutation profiles and two subclones 

having mutually exclusive mutation profiles. In the former case (perfect homogeneity), 

there will be no increase in the GPC size of the bulk because the bulk also has the same 

mutation profile as the subclones. However, in the latter case (perfect heterogeneity), the 

GPC size of the bulk can increase significantly if the two GPCs of the subclones are close 

enough but do not overlap. But both extreme cases are unrealistic. Indeed, subclones share 

some mutations, but many mutations are often distributed in distinct signaling pathways 

between different subclones. Then, the GPC of the bulk will be larger than the union of 

the GPCs of the subclones because although there is no actual interaction between the 

signaling pathways in different subclones, the signaling pathways appear to cooperate 

with each other in the bulk case leading to a larger GPC. Therefore, we can conclude that 

as the tumor heterogeneity of a bulk tumor increases, the effect on the formation of the 

GPC becomes larger. If whole-exome sequencing of individual subclones is publicly 

available, we can analyze both the GPC for each subclone and the cancer hallmarks 

contained within it, which will provide further insight into understanding tumor 

heterogeneity and cancer evolution. Following the reviewer’s comment, we have 

included this point in the Discussion section of the revised manuscript.    
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Figure R4. Influence of tumor heterogeneity on the formation of a GPC. (a) The Venn 
diagram shows the distribution of the mutation profiles of five subclones in the CRC2 (left) 
and CRC3 (right) samples. Each number represents the number of mutations that some 
clones share. (b) The Venn diagram shows the distribution of the gene list contained in the
GPC of five subclones in the CRC2 (left) and CRC3 (right) samples. Each number
represents the number of genes that some clones share in their GPC. The square box
indicates the GPC of the bulk which includes all the mutations of the subclones. The average 
expression profile of TCGA colorectal cancer patients was used to extract the colon cancer
specific average PPI network. 



12

[COMMENT #5] The hypothesis of the formation of a percolation giant cluster should 

be validated. It should be validated against a different colon cancer data set, and as I said 

there is plenty of large datasets available. But one should also investigate whether such a 

gigantic network structure exists in other types of solid tumors with similar features. 

[RESPONSE] Following the reviewer’s comment, we have further investigated the 

formation of a GPC for other type of colon cancer (DFCI data set obtained from 

cBioPortal, n = 526)17, 18 as well as eight other types of solid tumors (BLCA, BRCA, 

HNSC, KIRC, LUAD, LUSC, PAAD, and STAD obtained from TCGA). In the case of 

colorectal cancer, because there exists no publicly available large-scale database, except 

for the TCGA database which provides both the gene expression and somatic mutation 

profiles at a genome-wide level, the DFCI data set was used which includes the somatic 

mutation profiles for a large population of patients but lacks the gene expression 

information (see also our response to COMMENT #1). To compensate for the lack of 

gene expression information, the average expression profile of the TCGA colorectal 

cancer patients was used to extract the colon cancer specific average PPI network. We 

compared the size of the giant cluster between the colorectal cancer patient and the 

random expectation for which the same number of virtually mutated nodes as in each 

patient were randomly generated in a repeated way (n = 1000), and the averaged giant 

cluster size was measured for each patient. Performing this comparison clearly shows that 

colorectal cancer can be characterized as having a significantly larger size of giant cluster 

(Fig. R5). We also confirmed that the statistical significance of this tendency was 

observed in the other types of cancer as well. As a result, we validated our hypothesis of 

the formation of a GPC in various types of cancers, and we included this further validation 

result in the Results section of the revised manuscript. 
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[COMMENT #6] Sadly, it is not provided any fraction of the code used for performing 

the analysis. This essentially preclude any attempt to reproduce by other groups the results 

here shown, but also would make not straightforward at all for others to use the 

methodology here described with other data sets or tumor entities.  

[RESPONSE] Following the reviewer’s comment, we provided all the codes used in our 

analysis in the Supplementary data of the revised manuscript. 

Figure R5. The formation of a GPC in various solid tumors. The data that we considered
include colorectal cancer (CRC from the DFCI data set), urothelial bladder carcinoma (BLCA
from the TCGA data set), breast invasive carcinoma (BRCA from the TCGA data set), head
and neck squamous cell carcinoma (HNSC from the TCGA data set), kidney renal clear cell
carcinoma (KIRC from the TCGA data set), lung adenocarcinoma (LUAD from the TCGA
data set), lung squamous cell carcinoma (LUSC from the TCGA data set), pancreatic
adenocarcinoma (PAAD from the TCGA data set), and stomach adenocarcinoma (STAD from
the TCGA data set). The size of the GPC normalized by the number of mutations of each
cancer patient was compared to the random expectation for which the same number of
mutations for each patient was randomly selected, and the averaged size of the normalized
giant clusters (n = 100) was used. P-values were obtained with the t-test. The threshold of the
mutation influence, V=0.005, was used. 
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[COMMENT #7] Thinking on the results itself, what drives my attention is the large 

difference in the size of the percolation cluster from patient to patient (Fig 1c) but also 

that a large fraction of the patients (78) were not classified in stage I-III. More discussion 

about this is necessary to make a solid decision.  

 

[RESPONSE] Our results show that as a number of somatic mutations accumulate at 

various places in the PPI network during the development of cancer, the resulting 

mutation-propagating modules can form a connected module and finally develop a GPC 

at a certain critical point. Therefore, to investigate such a critical transition in a single 

patient during the development of cancer, it might be important to trace the changes in 

the size of the giant cluster along with the accumulation of somatic mutations. However, 

when we classify cancer patients or compare their clinical characteristics such as tumor 

stages, it would be more appropriate to perform the hallmark gene set analysis for the 

genes that are included in the GPC. In other words, the difference in the size of the GPC 

between cancer patients is not necessarily related to the patient classification. Figure R6 

confirm that there is no significant change in the GPC size depending on the tumor stage. 

On the other hand, to investigate whether the hallmark gene sets enriched in cancer 

patients are correlated with clinical tumor stages, we performed statistical clustering 

analysis of the enrichment score of the hallmark gene sets for cancer patients according 

to the significant hallmark gene sets. Twelve significant hallmark gene sets were selected 

Figure R6. Comparison of the GPC size between groups of different
tumor stages. Patients with a GPC size larger than 1500 were excluded from
the figure. 
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to distinguish the tumor stages of cancer patients using the Minimum Redundancy 

Maximum Relevance (mRMR) feature selection19, 20, an algorithm often used to identify 

relevant features that are mutually far apart while having a high correlation with the 

classification variable, for example, the tumor stage in this study. The result revealed that 

the patient population can be divided into five clusters, and three clusters are strongly 

correlated with different tumor stages (Cluster 1 - stage 3, Cluster 4 - stage 2, and Cluster 

5 - stage 1), although 48 patients in Clusters 2 and 3 do not show any correlation with the 

tumor stage (Fig. R7(a)). Interestingly, the enrichment of a few hallmark gene sets is 

significant in each cluster associated with tumor stage, and there are biologically and 

clinically meaningful relationships between the tumor stages and hallmark gene sets: 

DNA_REPAIR in stage 1, WNT_BETA_CATENIN_SIGNALING, 

NOTCH_SIGNALING, and APICAL_JUNCTION in stage 2, and 

UNFOLDED_PROTEIN_RESPONSE and P53_PATHWAY in stage 3 (Fig. R7(b) and 

(c)) indicate that there exist tumor stage-specific hallmark gene sets that are enriched in 

the GPCs of cancer patients. In the early stage of cancer, cancer cells are often initiated 

by genomic instability due to the dysfunction of DNA repair proteins, and become larger 

through hyperproliferation. Thus, they start to spread into nearby tissues or lymph nodes 

when entering the late stages. Our results also show such phenotypic changes according 

to tumor progression (Fig. R7(d)). A patient cluster characterized as stage 1 tends to show 

enrichment of the gene set related to DNA repair which is known to cause genomic 

instability in the early stage of colon cancer21, 22. A patient cluster characterized as stage 

2 shows enrichment of the gene set related to the Wnt/-catenin and Notch signaling 

pathways, both of which cooperatively control cell proliferation and tumorigenesis in the 

intestine23. A patient cluster characterized as stage 3 shows enrichment of the gene set 

related to the unfolded protein response, which induces metastasis through hypoxic 

activation24, 25, and p53 signaling which influences metastasis by the dysfunction of p5326. 

These results also confirm our hypothesis that the formation of a GPC implies the co-

activation of multiple hallmark gene sets that are crucial for tumorigenesis. Taken 

together, we conclude that cancer patients might be classified into several subtypes 

according to a few important hallmark gene sets involved in the tumor stages, 
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consequently suggesting that the GPC conveys biologically and clinically relevant 

phenotypes. Following the reviewer’s comment, we included this analysis in the Results 

section of the revised manuscript. 

Figure R7. Patient classification according to tumor stages and the changes in significant 
hallmark gene sets depending on the tumor stages. (a) Distribution of the tumor stages in 
each cluster. Red asterisks indicate statistical significance (hypergeometric test, p<0.05). (b)
Comparison of average values of -log(p-value) of each cluster in individual significant 
hallmark gene sets. (c) Comparison of the statistical significance (-log(p-value)) of three 
clusters in each significant hallmark gene set. Red asterisks indicate that there are significant
differences in the statistical test results between a group with the highest value and the other
two groups (Wilcoxon rank-sum test, p<0.05). Error bars indicate the standard error. (d)
Summary of the relationships between the hallmark gene sets and the tumor stages in the 
individual cluster. 



17

[COMMENT #8] The statements contained in paragraph 357-364 on the use of the 

hypothesis for therapy design are extremely vague. They should be either written in a 

clearer style or better removed.  

[RESPONSE] By illuminating the GPC, which represents the cooperative effects of the 

somatic mutations in cancer, our results suggest that identifying optimal targets to 

fragment the GPC into small pieces can provide a novel therapeutic strategy for the 

treatment of cancer. The fragmentation of GPC for the cancer treatment not only means 

breaking the network of the GPC itself, but it also means interfering with cancer-related 

phenotypes, such as cancer hallmarks, inherent in the GPC. For instance, if a cancer 

patient has a metastasis-related hallmark enriched in the GPC, we can select minimal 

targets that can break the GPC among the gene list related to that hallmark. Most cancers 

have multiple cancer hallmarks that can cooperatively promote tumorigenesis. Thus, we 

can consider some drug combinations, for example, one that interferes with the 

uncontrolled proliferation-related hallmark and the other that inhibits the metastasis-

related hallmark. Following the comment, we have rephrased the statements on the use 

of the hypothesis for therapy design in a clearer way in the revised manuscript. 
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Response to the specific comments of Reviewer 2: 

 

[COMMENT #1] 

Lines 88-89: The authors write, "In this study, we found that the cooperative mutation 

effects represented by a large connected component in a PPI network form a giant 

cluster." 

 

This is not as clear as it could be. A cluster is colloquially thought of as a collection of 

nodes, but in a signaling network the nodes are specific molecules. In what way do the 

mutation effects form a cluster? 

 

This is clarified later in the ms, of course, but a reader coming to this cold is liable to be 

confused here. 

 

[RESPONSE] Following the reviewer’s comment, we revised the sentence to clarify its 

meaning in the revised manuscript as follows: “To explore such a cooperative 

phenomenon of somatic mutations in tumorigenesis, we employed a network propagation 

method to measure the spreading of the influence of the somatic mutations on the 

molecular interaction network and then examined the cooperative effect of the somatic 

mutations by mapping all of the mutations observed in colorectal cancer from TCGA to 

a large-scale molecular interaction network. Throughout this network-level systems 

biological study, we found that a subnetwork area representing the cooperative effect of 

multiple somatic mutations forms a giant cluster (GC), which is the largest connected 

subnetwork in which all genes have mutation influence scores beyond a certain threshold.” 

 

[COMMENT #2] 

On line 157 the authors refer to "mutation pairs". However, if my reading is correct, they 

are actually referring to pairs of "mutation-propagating modules", as defined on lines 147-

148. I reason this because J and C are defined in terms of the modules, and these scores 

are used to categorize the quantities referenced again on line 157. 

 

If my reading is correct, a consistent notation should be used; otherwise, clarification is 
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needed. 

 

[RESPONSE] Following the reviewer’s comment, we revised this sentence for 

consistency as follows: “more than half of the mutation-propagation module pairs (55-

70%) were synergistic.” 

 

[COMMENT #3] 

The definition for coverage should be spelled out more clearly. From the diagram in Fig. 

2C, it appears as if S(A,B) indicates the set of all elements that exist in A, B, or both. 

However, this is by definition the union of the two sets. It is unclear that the "padded 

border" is meant to indicate additional nodes in the connected module that are not in A 

and B. 

 

The in-text definition on line 623 says that S(A,B) "indicates the size of a connected 

module between a pair of mutation-propagating modules". This might be clearer if written 

e.g. "...indicates the size of the connected module in which a pair of mutation-propagating 

modules A and B exist." 

 

It may be also useful to explicitly address the situation where a connected module has 

three mutation-propagating modules, A, B, and C. In this case I infer that S(A,B) would 

be (A union B union C) and that the coverage would be > 1. I infer also that the coverage 

would be 0 if A and B are not members of a connected module, but otherwise the coverage 

is always > 1. 

 

If this is correct, I suggest the authors include a sample module C in the Fig and re-label 

it accordingly. In any case, the definition and surrounding text (in the caption and/or main 

text) should be expanded to make the definition of coverage more clear. 

 

[RESPONSE] In Fig. 2c, S(A, B) indicates the set of all elements that exist in the 

connected module when both mutations A and B occur. If A and B are close enough, S(A, 

B) would be larger than the union of modules A and B. Therefore, as the reviewer pointed 

out, there can be the “padded border” which indicates additional nodes that do not belong 
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to any of the modules A and B. But, if A and B are far enough apart such that their 

modules do not overlap, S(A, B) would be 0. To avoid any confusion, we now more 

explicitly state the definition of S(A) and S(A, B) as follows: “S(A) denotes the size of 

the mutation-propagating module when a mutation A occurs, and S(A, B) indicates the 

size of the connected module when both mutations A and B occur. If A and B are close 

enough, S(A, B) would be larger than the union of S(A) and S(B). Therefore, there can 

be some extended area (gray) which indicates additional nodes that are in neither S(A) 

nor S(B). However, if A and B are far enough apart such that their modules do not overlap, 

S(A, B) would be 0”. Moreover, we also replaced “Coverage” with “Synergy” because 

“C” in Fig. 2c represents the number of additional nodes in connected modules compared 

to the union of S(A) and S(B). Note that the overlap and synergy are defined only for 

pairs of two nodes; there is no need to consider a third module in Fig. 2. 

[COMMENT #4] 

Lines 396 - 397: The authors write, "Patients with more than 300 mutations were 

discarded, which left 198 patients." I recommend the authors add a sentence explaining 

this choice. (perhaps, as indicated in a similar statement in the SI, this is to reduce the 

computational complexity? If so, do the authors expect any qualitative changes to their 

results if more are considered? 

[RESPONSE] From the TCGA colorectal cancer data set, we obtained gene expression 

data for 263 patients and somatic mutation data for 223 patients. By examining the 

distribution of the number of mutations, we found that there are a few patients with a very 

large number of mutations (Fig. R8). Considering that the GPC size of those patients 

having about 200 mutations already reaches about 80% of the entire network (Fig. S2), it 

is evident that the GPC of patients having more than 300 mutations will cover the entire 

network. Hence, such cases will make it difficult to extract any statistically significant 

hallmark gene set. For this reason, patients with more than 300 mutations were excluded, 

resulting in 198 patients. Among those, 191 cancer patients for which both mutation and 

expression profile information are available were finally selected. Following the 

reviewer’s comment, we fully explained this procedure in the revised manuscript. 
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[COMMENT #5] 

In panel 2c the authors indicate that the Fisher's combined test p-value is on the order of 

e-159. I am not an expert statistician, but to my eye this seems egregiously small and well 

below the floating point precision of typical computers (which draws into question the 

validity of the value). While it isn't uncommon for a p-value that is essentially 0 to spit 

out a very large negative exponent like this, in my view it is normally safer to simply say 

it is "much much less than" some more reasonable threshold, such as e-10. 

 

That being said, I won't object if the authors are confident that this value is a true 

representation of the output of the test.  

(Note that this comment applies also to a number of figures in the SI.) 

 

[RESPONSE] Following the reviewer’s comment, we changed the representation of p-

values less than e-10 as follows: “p < e-10” in both the main and supplementary figures. 

 

[COMMENT #6] 

Figure R8. Distribution of the number of mutations for 223 cancer patients. The inlet shows 
the expanded range where the number of mutations is small (red dashed box). 
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What is the value of alpha (line 431)? How was the value chosen? How do the authors' 

results depend on this choice? 

 

[RESPONSE] We thank the reviewer for indicating this.  determines the degree of 

diffusion of a mutation influence throughout the network, and we used an optimal value 

( = 0.7) for the network constructed from STRING v9.0 which was also used in a 

previous study by Hofree et al.10. In our study, changing  has a similar effect to changing 

the threshold V of the mutation influences with respect to the formation of a giant cluster. 

As  increases for a fixed value of V (or V decreases for a fixed value of , the size of 

the resulting giant cluster increases. We considered the cases of various thresholds with 

a fixed value of  in the analysis of both the giant percolated cluster and the hallmark 

gene set (Fig. S2, S6, and S7), and confirmed that the main results do not change 

significantly. Following the reviewer’s comment, we have clearly described the value of 

 in the revised manuscript.  

 

[Minor comments] 

Line 145: "closer" - "closeness"? 

 

[RESPONSE] It means “closer”. We have clearly rewritten the indicated sentence to 

avoid any confusion.  

 

Line 214: "Fig. 3e and F" - "Fig. 3e and f" 

 

[RESPONSE] We corrected the typo in the revised manuscript. Thank you for indicating 

this. 

 

Line 604: There is a rendering/symbolic error; I see a white square before E_i. 

 

[RESPONSE] The indicated error is corrected in the revised manuscript. 
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The caption of Fig 4 references "S_conn(i,j)", which I infer is the same as S(A,B) 

referenced in Fig 2. The same notation should be used in each case (S vs S_conn). 

[RESPONSE] Following the reviewer’s comment, we corrected S_conn(i,j) in the 

caption of Fig. 4 to S(i,j) for consistency. 
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REVIEWERS' COMMENTS: 

Reviewer #1 (Remarks to the Author): 

Many thanks for giving me the opportunity to review again the paper. All in all, the authors have 

replied with remarkable level of detail to all my comments. I only have two small suggestions to 

do at this step. 

1. Concerning my comment number one, I can conclude that the method proposed requires from

the same patients both gene expression and somatic mutation profiles. This seems to be a

sufficient motivation to justify the selection of the patients in TCGA made. This could be stated

clearly somewhere in the text to avoid any misinterpretation on the procedure to select the data

set. Is the choice of the threshold 300 mutations based on any feature of the data set chosen or is

it taken from any other previous analyses?

2. The selection of the hallmark gene sets seems to be crucial for this iteration of the manuscript.

Could the authors be more precise in terms of the procedure follow to select the genes integrating

each hallmark?

The reply given by the authors to the reviewers’ comments is the most detailed I have seen to 

date. I encourage the authors to authorize Nature Communications to provide it as supplementary 

material. 
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Response to the specific comments of Reviewer 1: 

[COMMENT #1] Concerning my comment number one, I can conclude that the method 

proposed requires from the same patients both gene expression and somatic mutation 

profiles. This seems to be a sufficient motivation to justify the selection of the patients in 

TCGA made. This could be stated clearly somewhere in the text to avoid any 

misinterpretation on the procedure to select the data set. Is the choice of the threshold 300 

mutations based on any feature of the data set chosen or is it taken from any other previous 

analyses? 

[RESPONSE] In response to COMMENT #1 of Reviewer 1 in the previous revision, we 

have already described the requirements for the dataset as well as the selection procedure 

of TCGA patients in Supplementary Text. Following the reviewer’s comment, we provide 

further details in the Methods section (“Requirements for datasets”) of this revision to 

avoid any misinterpretation on the procedure. Regarding the choice of the threshold on 

the number of mutations, we have already described it in the Methods section of the 

previous version. Following the reviewer’s comment, we provide an additional figure in 

this revision to complement the related content as follows: “By examining the distribution 

of the number of mutations, we found that there are a few patients with a very large 

number of mutations (Supplementary Figure 21). Considering that the GPC size of those 

patients having about 200 mutations already reaches about 80% of the entire network 

(Supplementary Figure 2), it is evident that the GPC of patients having more than 300 

mutations will cover the entire network. Hence, such cases will make it difficult to extract 

any statistically significant hallmark gene set. For this reason, patients with more than 

300 mutations were excluded, resulting in 198 patients. Among those, 191 cancer patients 

for which both mutation and expression profile information are available were finally 

selected.”      
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[COMMENT #2] The selection of the hallmark gene sets seems to be crucial for this 

iteration of the manuscript. Could the authors be more precise in terms of the procedure 

follow to select the genes integrating each hallmark? 

[RESPONSE] Following the reviewer’s comment, we fully explain the procedure of 

determining the significance of the hallmark gene sets in the Method section of this 

revision as follows: “To explore the biological functions that are enriched in the giant 

cluster of each patient, we examined the enrichment of hallmark gene sets by 

hypergeometric test. For a gene list included in the giant cluster, let h be the number of 

genes annotated to a certain hallmark gene set, and let N and g be the network size and 

the number of genes in the giant cluster, respectively. Suppose that the giant cluster has 

x genes annotated to this hallmark gene set, we can model x by a hypergeometric 

distribution under the null hypothesis that a gene annotated to the hallmark gene set and 

Supplementary Figure 21. Distribution of the number of mutations for 223 cancer
patients. The inlet shows the expanded range where the number of mutations is relatively small
(red dashed box). 
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a gene in the giant cluster are independent events. Then, the p-value that measures the 

significance of enrichment is the probability of observing x or more genes annotated to 

the hallmark gene set in the giant cluster,  

min( , )

p-value
h g

k x

N h h

g k k

N

g


  
    

 
 
 

 .  

By estimating all the enrichment of the hallmark gene sets for each patient, we obtain a 

resulting matrix (191 patients × 50 hallmark gene sets).” 


