Supplementary Information

Structural Insight into Inhibition of CsrA-RNA Interaction Revealed by Docking, Molecular Dynamics and Free Energy Calculations

Xiaodong Ren¹, Rui Zeng², Micky Tortorella³, Jinming Wang³ & Changwei Wang^{3,*}

¹Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China.

²College of Pharmacy, Southwest University for Nationalities, Chengdu 610041, P.R. China.

³Guangzhou Institute of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, Guangdong 510530, P.R. China

Correspondence and requests for materials should be addressed to C.W. (email: wang changwei@gibh.ac.cn)

Figure S1. Correlation of the predicted binding energies by MM-GBSA ($\Delta G_{\text{MM-GBSA}}$) using igb = 1 with binding energy (ΔG_{calc}) calculated from experimental IC₅₀.

.....

Figure S2. Correlation of the predicted binding energies by MM-GBSA ($\Delta G_{\text{MM-GBSA}}$) using igb = 7 with binding energy (ΔG_{calc}) calculated from experimental IC₅₀.

.....

Figure S3. Correlation of the predicted binding energies by MM-GBSA ($\Delta G_{\text{MM-GBSA}}$) using igb = 8 with binding energy (ΔG_{calc}) calculated from experimental IC₅₀.

 10
 20
 30
 40
 50
 60

 CsrA(Y. pseudotuberculosis)
 MLILTRRVGE TLMIGDEVTV TVLGVKGNQV RIGVNAPKEV SVHREEIYQR IQAEKSQPTT Y

 2BTI_A
 MLILTRRVGE TLMIGDEVTV TVLGVKGNQV RIGVNAPKEV SVHREEIYQR IQAEKSQPTS Y

 2BTI_B
 MLILTRRVGE TLMIGDEVTV TVLGVKGNQV RIGVNAPKEV SVHREEIYQR IQAEKSQPTS Y

Figure S4. Sequence alignment between CsrA from Y. pseudotuberculosis YPIII and the two chains of 2BTI^a.

^aNote: The amino acid sequence of CsrA (*Y. pseudotuberculosis*) was retrived from UniProt database (Accession No. B1JJ99) at <u>http://www.uniprot.org</u>. The sequence of 2BTI protein are retrived from Protein Data Bank (PDB). Sequence alignment was carried out using Pymod 2.0¹. The aligned sequences are plotted using BioEdit 7.2.5².

Table S1. MM/GBSA binding free energies and different components of CsrA-inhibitor complexes calculated from the MD simulations using igb = 1. ^aAll values are given in kcal/mol and as average \pm SEM (standard error of the mean).

Compounds	$\Delta E_{ m vdW}{}^{ m a}$	$\Delta E_{ m ele}{}^{ m a}$	$\Delta G_{ m polar}{}^{ m a}$	$\Delta G_{ m nonpolar}{}^{ m a}$	$\Delta G_{ m MM-GBSA}{}^{ m a}$
1	$\textbf{-23.88} \pm 0.23$	$\textbf{-9.53} \pm 0.23$	16.52 ± 0.22	$\textbf{-2.92}\pm0.03$	$\textbf{-19.81} \pm 0.24$
2	$\textbf{-15.95}\pm0.28$	$\textbf{-21.14} \pm 0.38$	25.66 ± 0.40	$\textbf{-1.96} \pm 0.03$	$\textbf{-13.39}\pm0.26$
3	$\textbf{-22.60} \pm 0.10$	$\textbf{-25.84} \pm 0.36$	29.99 ± 0.34	$\textbf{-2.67} \pm 0.01$	$\textbf{-21.12}\pm0.12$
4	$\textbf{-27.92} \pm 0.15$	$\textbf{-78.78} \pm 0.54$	80.31 ± 0.53	$\textbf{-4.00} \pm 0.02$	$\textbf{-30.39}\pm0.18$
5	-21.64 ± 0.12	$\textbf{-65.26} \pm 0.70$	74.14 ± 0.71	$\textbf{-3.44}\pm0.02$	-16.20 ± 0.12

Compounds	$\Delta E_{ m vdW}{}^{ m a}$	$\Delta E_{ m ele}{}^{ m a}$	$\Delta G_{ m polar}{}^{ m a}$	$\Delta G_{ m nonpolar}{}^{ m a}$	$\Delta G_{ m MM-GBSA}{}^{ m a}$
1	-23.88 ± 0.23	$\textbf{-9.53}\pm0.23$	20.59 ± 0.27	$\textbf{-2.92}\pm0.03$	$\textbf{-15.74} \pm 0.20$
2	$\textbf{-15.95}\pm0.28$	$\textbf{-21.14} \pm 0.38$	29.18 ± 0.44	$\textbf{-1.96} \pm 0.03$	$\textbf{-9.87} \pm 0.23$
3	$\textbf{-22.60} \pm 0.10$	$\textbf{-25.84} \pm 0.36$	33.60 ± 0.35	$\textbf{-2.67} \pm 0.01$	$\textbf{-17.51} \pm 0.12$
4	$\textbf{-27.92} \pm 0.15$	$\textbf{-78.78} \pm 0.54$	85.50 ± 0.54	$\textbf{-4.00} \pm 0.02$	$\textbf{-25.20} \pm 0.17$
5	-21.64 ± 0.12	$\textbf{-65.26} \pm 0.70$	72.27 ± 0.67	$\textbf{-3.44}\pm0.02$	$\textbf{-18.07}\pm0.16$

Table S2. MM/GBSA binding free energies and different components of CsrA-inhibitor complexes calculated from the MD simulations using igb = 2. ^aAll values are given in kcal/mol and as average \pm SEM (standard error of the mean).

Table S3. MM/GBSA binding free energies and different components of CsrA-inhibitor complexes calculated from

the MD simulations using igb = 7. ^aAll values are given in kcal/mol and as average \pm SEM (standard error of the mean).

Compounds	$\Delta E_{ m vdw}{}^{ m a}$	$\Delta E_{ m ele}{}^{ m a}$	$\Delta G_{ m polar}{}^{ m a}$	$\Delta G_{ m nonpolar}{}^{ m a}$	$\Delta G_{ m MM-GBSA}{}^{ m a}$
1	$\textbf{-23.88} \pm 0.23$	$\textbf{-9.53}\pm0.23$	21.60 ± 0.30	$\textbf{-2.92}\pm0.03$	$\textbf{-14.73}\pm0.18$
2	$\textbf{-15.95}\pm0.28$	$\textbf{-21.14} \pm 0.38$	32.02 ± 0.49	$\textbf{-1.96} \pm 0.03$	$\textbf{-7.03}\pm0.20$
3	$\textbf{-22.60} \pm 0.10$	$\textbf{-25.84} \pm 0.36$	38.63 ± 0.39	$\textbf{-2.67} \pm 0.01$	$\textbf{-12.48}\pm0.12$
4	$\textbf{-27.92} \pm 0.15$	$\textbf{-78.78} \pm 0.54$	89.43 ± 0.54	$\textbf{-4.00} \pm 0.02$	$\textbf{-21.27}\pm0.17$
5	-21.64 ± 0.12	-65.26 ± 0.70	69.07 ± 0.65	-3.44 ± 0.02	-21.27 ± 0.19

 $Table \ S4. \ MM/GBSA \ binding \ free \ energies \ and \ different \ components \ of \ CsrA-inhibitor \ complexes \ calculated \ from \ and \$

he MD simulations using igb = 8. ^a A	ll values are given in kcal/mol a	and as average \pm SEM (standard	error of the mean).
---	-----------------------------------	------------------------------------	---------------------

Compounds	$\Delta E_{ m vdW}{}^{ m a}$	$\Delta E_{ m ele}{}^{ m a}$	$\Delta G_{ m polar}{}^{ m a}$	$\Delta G_{ m nonpolar}{}^{ m a}$	$\Delta G_{ m MM-GBSA}{}^{ m a}$
1	$\textbf{-23.88} \pm 0.23$	$\textbf{-9.53} \pm 0.23$	22.67 ± 0.30	$\textbf{-2.92}\pm0.03$	$\textbf{-13.66} \pm 0.17$
2	$\textbf{-15.95} \pm 0.28$	$\textbf{-21.14} \pm 0.38$	29.53 ± 0.48	$\textbf{-1.96} \pm 0.03$	$\textbf{-9.52}\pm0.20$
3	$\textbf{-22.60} \pm 0.10$	$\textbf{-25.84} \pm 0.36$	37.31 ± 0.37	$\textbf{-2.67} \pm 0.01$	$\textbf{-13.80}\pm0.11$
4	$\textbf{-27.92} \pm 0.15$	$\textbf{-78.78} \pm 0.54$	89.47 ± 0.54	$\textbf{-4.00} \pm 0.02$	$\textbf{-21.23}\pm0.16$
5	-21.64 ± 0.12	$\textbf{-65.26} \pm 0.70$	69.40 ± 0.65	$\textbf{-3.44}\pm0.02$	$\textbf{-20.94} \pm 0.18$

References

- 1 Janson, G., Zhang, C., Prado, M. G. & Paiardini, A. PyMod 2.0: improvements in protein sequence-structure analysis and homology modeling within PyMOL. *Bioinformatics* **33**, 444-446,(2017).
- 2 Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucl. Acids. Symp. Ser.* **41**, 95-98,(1999).