Supporting Information

for

Chemical Synthesis of GPI Glycan-Peptide Conjugates by Traceless Staudinger Ligation

Sanyong Zhu and Zhongwu Guo*

Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611,

United States

 $^* Corresponding \ Author \ E-mail: \ zguo@chem.ufl.edu$

Table of Contents

I.	Experimental	Page S2 – S13
II.	MS spectra and HPLC diagrams of CD52 peptide, its phosphinothioesters,	
	and its GPI conjugate	Page S13 – S17
III.	NMR and MS spectra of synthetic intermediates and other GPI-peptide	
	conjugates	Page S18 – S83

I. Experimental

General methods. Commercial chemicals and materials were used as received without additional purification unless noted otherwise. Molecular sieves 4Å were flame-dried under vacuum and then cooled to rt under an N_2 atmosphere immediately before use. TLC was carried out on Silica Gel 60Å F254 plates with detection by a UV detector and/or by charring with 10% H₂SO₄ in EtOH (v/v). Mass spectrometry (MS) was recorded either on a high resolution ESI-TOF machine or on a normal resolution MALD-TOF machine. NMR spectra were recorded on a 400, 500 or 600 MHz machine with chemical shifts reported in ppm (δ) downfield from internal tetramethylsilane (TMS) or DHO references and with signals described as s (singlet), d (doublet), t (triplet) or m (multiplet) and coupling constants reported in Hz.

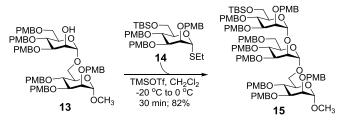
Methyl 6-O-[(2-azidoethoxy)-phosphono]-2,3,4-tri-O-(p-methoxybenzyl)- α -D-mannopyranoside (10).

To a solution of **8** (560 mg, 1.01 mmol) and freshly prepared **7** (870 mg, 3.03 mmol) in CH₂Cl₂/CH₃CN (v/v, 2/1, 10 mL) was added slowly an acetonitrile solution of tetrazole (~0.45 M, 11.22 mL, 5.05 mmol) at rt under an N₂ atmosphere. After the mixture was stirred at rt for 1 h, it was cooled to 0 °C and mixed with *tert*-butyl hydroperoxide (5.5 M solution in decane, 0.92 mL, 5.05 mmol). The mixture was stirred at rt for another 30 min and quench with aqueous Na₂S₂O₃. The aqueous layer was extracted with CH₂Cl₂ three times. The combined organic layer was washed with aqueous NaHCO₃ and brine, dried, and concentrated under vacuum. The residue was purified by column chromatography (EtOAc/hexane 2:1) to give **9** (595 mg, 78% yield) as a diastereomeric mixture (R/S 1:1). It was dissolved in CH₂Cl₂ (10 mL). After adding DBU (2 drops) and stirring at rt for 1 h, the solvent was evaporated, and the residue was purified by flash silica gel column chromatography (CH₃OH/CH₂Cl₂ 1:10) to give **10** (426.6 mg, 77%) as colorless syrup. R_f = 0.45 (CH₃OH/CH₂Cl₂ 1:4); ¹H NMR (500 MHz, CDCl₃) δ : 7.17 – 7.13 (m, 6H, Ph), 6.78 – 6.74 (m, 6H, Ph), 4.72 (d, J = 10.5 Hz, 1H, Ph-CH₂), 4.55 (d, J = 12 Hz, 1H, Ph-CH₂), 4.53 (d, J = 1.5 Hz, 1H, H-1), 4.50 (d, J = 10.5 Hz, 1H, Ph-CH₂), 4.48 (d, J = 10.0 Hz, 1H, Ph-CH₂), 4.44 (d, J = 12.0 Hz, 1H, Ph-CH₂), 4.41 (d, J = 11.5 Hz, 1H, Ph-CH₂), 4.08 (dd, J = 10.0 Hz, 1H, Ph-CH₂), 4.44 (d, J = 12.0 Hz, 1H, Ph-CH₂), 4.49 (d, J = 11.5 Hz, 1H, Ph-CH₂), 4.49 (dd, J = 12.0 Hz, 1H, Ph-CH₂), 4.41 (d, J = 11.5 Hz, 1H, Ph-CH₂), 4.08 (dd, J = 10.0 Hz, 1H, Ph-CH₂), 4.44 (d, J = 12.0 Hz, 1H, Ph-CH₂), 4.41 (d, J = 11.5 Hz, 1H, Ph-CH₂), 4.08 (dd, J = 10.0 Hz, 1H, Ph-CH₂), 4.44 (d, J = 12.0 Hz, 1H, Ph-CH₂), 4.41 (d, J = 11.5 Hz, 1H, Ph-CH₂), 4.08 (dd, J = 10.0 Hz, 1H, Ph-CH₂), 4.49 (dd, J = 12.0 Hz, 1H, Ph-CH₂), 4.49 (dd, J = 11.5 Hz, 1H, Ph-CH₂), 4.49 (dd, J = 12.0 Hz, 1H, Ph-CH₂

12.0, 5.0 Hz, 1H, H-6a), 4.02 (dd, J = 11.0, 5.0 Hz, 1H, H-6b), 3.92 – 3.88 (m, 2H, -OC H_2 CH₂), 3.72 (s, 3H, Ph-OC H_3), 3.71 (s, 3H, Ph-OC H_3), 3.70 (s, 3H, Ph-OC H_3), 3.66 – 3.64 (m, 3H, H-2, H-3, H-4), 3.58 – 3.56 (m, 1H, H-5), 3.26 – 3.24 (m, 2H, -CH₂C H_2 -N₃), 3.19 (s, 3H, -OCH₃). ¹³C NMR (125 MHz, CDCl₃) δ : 159.25, 159.13, 159.08, 130.53, 130.48, 130.06, 129.62, 129.50, 129.24, 113.71, 99.13(C-1), 79.67, 74.62, 74.27, 74.14, 72.49, 71.78, 71.28, 64.80, 64.17, 55.20, 54.62, 51.29. ³¹P NMR (160 MHz, CDCl₃) δ : -2.49. HR ESI-TOF MS (m/z): calcd for C₃₃H₄₁N₃O₁₂P [M - H]⁻, 702.2433; found, 702.2446.

Methyl 6-*O*-[(2-azidoethoxy)-phosphono]-α-D-mannopyranoside (11).

$$\begin{array}{c} N_{3}CH_{2}CH_{2}O \\ HO-\stackrel{1}{P}=O \\ O \\ O \\ PMBO \\ PMBO \\ 10 \\ O \\ OCH_{3} \\ \end{array} \begin{array}{c} 10\% \text{ TFA in} \\ CH_{2}CI_{2}, 30 \text{ min} \\ 86\% \\ \hline \\ 10 \\ OCH_{3} \\ \end{array} \begin{array}{c} N_{3}CH_{2}CH_{2}O \\ HO-\stackrel{1}{P}=O \\ OOH \\ HO \\ OOH \\ OO$$


To a solution of **10** (330 mg, 0.47 mmol) in CH₂Cl₂ (4.5 mL) was added TFA (0.5 mL). After stirring at rt for 30 min, the reaction mixture was co-evaporated with toluene three times. The residue was subjected to silica gel column chromatography (CH₃OH/EtOAc 1:1) to produce **11** (138 mg, 86% yield) as colorless syrup. $R_f = 0.42$ (CH₃OH/EtOAc 1:1); ¹H NMR (600 MHz, CD₃OD) δ : 4.61 (d, J = 1.8 Hz, 1H, H-1), 4.14 – 4.06 (m, 2H, H-6a, H-6b), 4.03 – 4.00 (m, 2H, -OCH₂CH₂-), 3.76 (dd, J = 3.6, 1.8 Hz, 1H, H-2), 3.70 (dd, J = 9.6, 5.4 Hz, 1H, H-4), 3.66 (dd, J = 9.6, 3.6 Hz, 1H, H-3), 3.57 – 3.55 (m, 1H, H-5), 3.46 (t, J = 5.4 Hz, 2H, -CH₂CH₂N₃), 3.35 (s, 3H, -OCH₃). ¹³C NMR (150 MHz, CD₃OD) δ : 102.79 (C-1), 73.44 (C-5), 72.47 (C-3), 72.05 (C-2), 68.17 (C-4), 66.08 (C-6), 65.42 (-OCH₂CH₂-), 55.26 (-OCH₃), 52.60 (-CH₂CH₂N₃). ³¹P NMR (160 MHz, CD₃OD₃) δ : 0.61. HR ESI-TOF MS (m/z): calcd for C₉H₁₇N₃O₉P [M - H]⁻, 342.0708; found, 342.0717.

Methyl 3,4,6-tri-O-(p-methoxybenzyl)- α -D-mannopyranosyl-(1 \rightarrow 6)-2,3,4-tri-O-(p-methoxybenzyl)- α -D-mannopyranoside (13).

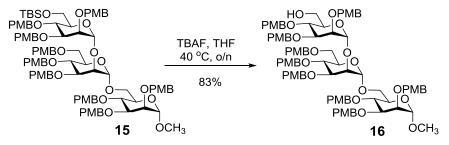
To a stirred mixture of **8** (118 mg, 0.213 mmol), **12** (196 mg, 0.319 mmol) and molecular sieves 4Å in anhydrous CH_2Cl_2 (5 mL) was added slowly TMSOTf (5.8 μL , 0.032 mmol) under an N_2 atmosphere at 0 °C. After the mixture was stirred at 0 °C for 1 h, it was neutralized with Et₃N,

filtered, and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc/hexane 1:2) to give the disaccharide as colorless syrup. This product was then dissolved in CH₃OH (5 mL) and mixed with CH₃ONa (11.5 mg, 0.213 mmol) at rt. After the mixture was stirred at rt for 2 h, it was concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc/hexane 3:1) to afford 13 (195 mg, 85% for two steps) as colorless syrup. $R_f = 0.30$ (EtOAc/hexane 3:1); ¹H NMR (600 MHz, CDCl₃) δ : 7.30 -7.24 (m, 8H, Ph), 7.16 (d, J = 8.4 Hz, 2H, Ph), 7.05 (d, J = 8.8 Hz, 2H, Ph), 6.87 - 6.78 (m, 12H, Ph), 5.05 (d, J = 1.2 Hz, 1H, H-1^{Man-II}), 4.82 (d, J = 10.8 Hz, 1H, Ph-C H_2), 4.72 (d, J = 10.2Hz, 1H, Ph-C H_2), 4.67 (d, J = 12.0 Hz, 1H, Ph-C H_2), 4.66 (d, J = 1.2 Hz, 1H, H-1^{Man-I}), 4.63 – 4.48 (m, 6H, Ph-C H_2), 4.42 (d, J = 10.2 Hz, 1H, Ph-C H_2), 4.41 (d, J = 12.0 Hz, 1H, Ph-C H_2), 4.37 (d, J = 10.2 Hz, 1H, Ph-C H_2), 4.08 (dd, J = 3.0, 4.8 Hz, 1H), 3.88 - 3.70 (m, 8H), 3.81 (s, 3H, Ph-OCH₃), 3.79 (s, 3H, Ph-OCH₃), 3.77 (s, 3H, Ph-OCH₃), 3.76 (s, 3H, Ph-OCH₃), 3.75 (s, 3H, Ph-OC H_3), 3.72 (s, 3H, Ph-OC H_3), 3.67 (dd, J = 10.8, 4.2 Hz, 1H), 3.62 (dd, J = 8.4, 4.8 Hz, 1H), 3.59 (dd, J = 10.8, 1.8 Hz, 1H), 3.25 (s, 3H, -OCH₃), 2.35 (d, J = 3.0 Hz, 1H, -OH). ¹³C NMR (150 MHz, CDCl₃) δ : 159.43 (Ph-OCH₃), 159.33 (Ph-OCH₃), 159.26 (Ph-OCH₃), 159.23 (3C, Ph-OCH₃), 130.86, 130.82, 130.53, 130.11, 129.78, 129.70, 129.65, 129.53, 129.40, 113.99, 113.88, 113.86, 113.81, 113.76, 99.78(C-1^{Man-II}), 98.88(C-1^{Man-I}), 80.07, 79.18, 74.84, 74.77, 74.49, 74.45, 74.03, 73.08, 72.44, 71.83, 71.50, 71.14, 68.56, 68.16, 66.48, 55.41 (Ph-OCH₃), 55.39 (Ph-OCH₃), 55.37 (2C, Ph-OCH₃), 55.34 (Ph-OCH₃), 55.31 (Ph-OCH₃), 54.75 (-OCH₃). HR ESI-TOF MS (m/z): calcd for $C_{61}H_{72}O_{17}Na [M + Na]^+$, 1099.4667; found, 1099.4663.

Methyl 6-*O-tert*-butyldimethylsilyl-2,3,4-tri-*O*-(*p*-methoxybenzyl)- α -D-mannopyranosyl-(1 \rightarrow 2)-3,4,6-tri-*O*-(*p*-methoxybenzyl)- α -D-mannopyranosyl-(1 \rightarrow 6)-2,3,4-tri-*O*-(*p*-methoxybenzyl)- α -D-mannopyranoside (15).

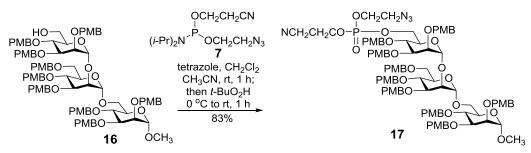
After the mixture of **13** (688 mg, 0.64 mmol), **14** (537 mg, 0.77 mmol), and molecular sieves 4Å in anhydrous diethyl ether (10 mL) was stirred at rt for 10 min, it was cooled to -20 °C, which was followed by the addition of NIS (346 mg, 1.54 mmol) and AgOTf (19.8 mg, 0.077 mmol). The mixture was stirred at 0 °C for 30 min and then quenched with Et₃N, filtered, and

concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc/hexane 1:2) to produce 15 (899mg, 82%) as colorless syrup. $R_f = 0.60$ (EtOAc/hexane 1:1): 1 H NMR (600 MHz, CDCl₃) δ : 7.30 (d, J = 8.4 Hz, 2H, Ph), 7.26 – 7.18 (m, 12H, Ph), 7.15 (d, J = 8.4 Hz, 2H, Ph), 7.11 (d, J = 8.4 Hz, 2H, Ph), 6.86 - 6.73 (m, 18H, Ph), 5.24 (s, 1H, Ph), 5.24 (s, 1H, Ph), 5.24 (s, 1H, Ph), 5.24 (s, 1H, Ph), 6.86 - 6.73 (m, 18H, Ph), 5.24 (s, 1H, Ph), 6.86 - 6.73 (m, 18H, Ph), 5.24 (s, 1H, Ph), 6.86 - 6.73 (m, 18H, Ph), 6 $H-1^{Man-II}$), 4.86 (s, 1H, $H-1^{Man-III}$), 4.83 (d, J=10.8 Hz, 2H, Ph-C H_2), 4.75 (d, J=10.8 Hz, 1H, Ph-C H_2), 4.68 (s, 1H, H-1^{Man-I}), 4.67 (d, J = 12.0 Hz, 1H, Ph-C H_2), 4.63 (d, J = 12.0 Hz, 1H, Ph-C H_2), 4.60 (d, J = 12.0 Hz, 1H, Ph-C H_2), 4.56 (d, J = 10.8 Hz, 1H, Ph-C H_2), 4.51 – 4.45 (m, 4H, Ph-C H_2), 4.44 – 4.35 (m, 7H, Ph-C H_2), 4.15 (d, J = 2.4 Hz, 1H), 3.96 – 3.85 (m, 5H), 3.83 – 3.59 (m, 11H), 3.81 (s, 3H, Ph-OCH₃), 3.80 (s, 3H, Ph-OCH₃), 3.78 (s, 3H, Ph-OCH₃), 3.76 (s, 3H, Ph-OCH₃), 3.74 (s, 6H, Ph-OCH₃ x 2), 3.73 (s, 3H, Ph-OCH₃), 3.68 (s, 3H, Ph-OCH₃), 3.66 (s, 3H, Ph-OC H_3), 3.57 (d, J = 10.8 Hz, 1H), 3.25 (s, 3H, -OC H_3), 0.90 (s, 9H, -tBu), 0.08 (s, 3H, -SiCH₃), 0.07 (s, 3H, -SiCH₃). ¹³C NMR (150 MHz, CDCl₃) δ: 159.30 (Ph-OCH₃), 159.23 (2C, Ph-OCH₃), 159.18 (Ph-OCH₃), 159.15 (Ph-OCH₃), 159.14 (Ph-OCH₃), 159.08 (Ph-OCH₃), 159.03 (2C, Ph-OCH₃), 131.42, 131.13, 131.04, 130.89, 130.78, 130.47, 129.76, 129.57, 129.43, 129.37, 129.22, 113.89, 113.85, 113.81, 113.79, 113.74, 113.73, 113.71, 113.59, 99.33(C-1^{Man-II}). 98.88(C-1^{Man-III}), 98.72(C-1^{Man-I}), 80.28, 79.59, 74.72, 74.60, 74.57, 74.50, 74.27, 73.67, 73.07, 72.96, 72.32, 72.05, 71.84, 71.79, 71.54, 71.42, 71.08, 69.07, 66.69, 62.87, 60.53, 55.39 (2C, Ph-OCH₃), 55.36 (Ph-OCH₃), 55.32 (3C, Ph-OCH₃), 55.29 (Ph-OCH₃), 55.25 (Ph-OCH₃), 55.18 (Ph-OCH₃), 54.64 (-OCH₃), 26.14, 18.51, -4.83, -5.06. HR ESI-TOF MS (m/z): calcd for $C_{97}H_{120}O_{25}SiNa [M + Na]^+$, 1735.7786; found, 1735.7780.


Ethyl 6-*O-tert*-butyldimethyl- silyl-2,3,4-tri-*O*-(*p*-methoxybenzyl)-1-thio-α-D-mannopyranoside (14)

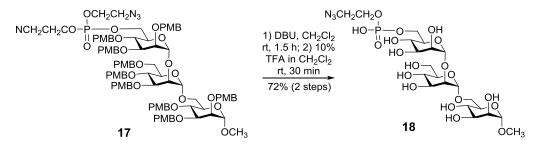
To a solution of **S1** (836 mg, 1.0 mmol) in CH₃OH/CH₂Cl₂ (1/1, v/v, 10 mL) was added *p*-TSA (19 mg, 0.1 mmol). After stirring at rt for 3 h, the reaction was quenched with Et₃N. The solvent was removed under vacuum, and the residue was purified by silica gel column chromatography (EtOAc/hexane 1:2) to give **S2** (513.9 mg, 88%) as colorless syrup. $R_f = 0.45$ (EtOAc/hexane 1:1); ¹H NMR (600 MHz, CDCl₃) δ : 7.28 – 7.22 (m, 6H, Ph), 6.86 – 6.84 (m, 6H, Ph), 5.24 (s, 1H, H-1), 4.85 (d, J = 10.8 Hz, 1H, Ph-C H_2), 4.64 (d, J = 12.6 Hz, 1H, Ph-C H_2), 4.61 (d, J = 12.0 Hz,

1H, Ph-C H_2), 4.55 – 4.48 (m, 3H, Ph-C H_2), 3.95 (dd, J = 9.6, 3.6 Hz, 1H, H-3), 3.92 (t, J = 9.6 Hz, 1H, H-4), 3.80 – 3.73 (m, 4H, H-2, H-5, H-6a, H-6b), 3.80 (s, 3H, Ph-OC H_3), 3.79 (s, 3H, Ph-OC H_3), 3.78 (s, 3H, Ph-OC H_3), 2.58 – 2.50 (m, 2H, -SC H_2 CH₃), 1.94 (dd, J = 7.2, 6.0 Hz, 1H, -OH), 1.22 (t, J = 7.2 Hz, 1H, -SCH₂CH₃). ¹³C NMR (150 MHz, CDCl₃) δ : 159.41 (Ph-OCH₃), 159.37 (Ph-OCH₃), 159.32 (Ph-OCH₃), 130.74, 130.50, 130.24, 129.80, 129.65, 129.50, 113.94, 82.26(C-1), 80.14, 76.16, 74.96, 74.89, 72.48, 72.07, 71.87, 62.57, 55.40 (3C, Ph-OCH₃), 25.41 (-SCH₂CH₃), 15.01 (-SCH₂CH₃). HR ESI-TOF MS (m/z): calcd for C₃₂H₄₀O₈SNa [M + Na]⁺, 607.2342; found, 607.2332.


To a solution of **S2** (368 mg, 0.63 mmol) in CH₂Cl₂ (5 mL) was added imidazole (85.6 mg, 1.26 mmol). After stirring at rt for 10 min, TBSCl (142.7 mg, 0.95 mmol) was added, and the mixture was stirred at rt for another 3 h. The mixture was concentrated under vacuum, and the residue was purified by silica gel column chromatography (EtOAc/hexane 1:10) to give **14** (422.7 mg, 96%) as colorless syrup. $R_f = 0.50$ (EtOAc/hexane 1:5); 1 H NMR (600 MHz, CDCl₃) δ : 7.31 – 7.24 (m, 6H, Ph), 6.87 (d, J = 8.4 Hz, 6H, Ph), 5.31 (s, 1H, H-1), 4.85 (d, J = 10.8 Hz, 1H, Ph-C H_2), 4.63 (d, J = 12.6 Hz, 1H, Ph-C H_2), 4.61 (d, J = 12.0 Hz, 1H, Ph-C H_2), 4.55 – 4.49 (m, 3H, Ph-C H_2), 3.94 (dd, J = 9.6, 3.6 Hz, 1H, H-3), 3.88 (t, J = 9.6 Hz, 1H, H-4), 3.83 – 3.80 (m, 3H, H-5, H-6a, H-6b), 3.80 (s, 6H, Ph-OC H_3 x 2), 3.79 (s, 3H, Ph-OC H_3), 3.76 (dd, J = 3.0, 1.8 Hz, 1H, H-2), 2.64 – 2.50 (m, 2H, -SC H_2 CH₃), 1.25 (t, J = 7.8 Hz, 1H, -SC H_2 CH₃), 0.90 (s, 9H, -IBu), 0.07 (s, 3H, -SiCH₃), 0.06 (s, 3H, -SiCH₃). 13 C NMR (150 MHz, CDCl₃) δ : 159.23 (Ph-OCH₃), 131.06, 130.62, 130.36, 129.65, 129.49, 113.77, 81.36(C-1), 80.07, 76.15, 74.86, 74.78, 73.50, 71.75, 71.50, 62.86, 55.33 (3C, Ph-OCH₃), 26.00 (-IBu), 25.02 (-SC H_2 CH₃), 18.37 (-SiC(CH₃)₃), 14.98 (-SC H_2 CH₃), -5.06 (-SiC H_3), -5.22 (-SiC H_3). HR ESI-TOF MS (m/z): calcd for C₃₈H₅₄O₈SSiNa [M + Na]⁺, 721.3206; found, 721.3231.

Methyl 2,3,4-tri-O-(p-methoxybenzyl)- α -D-mannopyranosyl-($1\rightarrow 2$)-3,4,6-tri-O-(p-methoxybenzyl)- α -D-mannopyranosyl-($1\rightarrow 6$)-2,3,4-tri-O-(p-methoxybenzyl)- α -D-mannopyranoside (16).

To a solution of **15** (678 mg, 0.395 mmol) in THF (4.0 mL) was added TBAF (0.60 mL, 1.0 M in THF, 0.60 mmol). The mixture was stirred at 40 °C overnight. After the solvent was removed under vacuum, the residue was purified by silca gel column chromatography (EtOAc/hexane 1:1) to afford **16** as colorless syrup (545 mg, 86%). $R_f = 0.50$ (EtOAc/hexane 2:1); ¹H NMR (600 MHz, CDCl₃) δ : 7.30 – 7.11 (m, 18H, Ph), 6.87 – 6.76 (m, 18H, Ph), 5.15 (d, J = 1.2 Hz, 1H, $H-1^{Man-II}$), 5.01 (d, J = 1.8 Hz, 1H, $H-1^{Man-III}$), 4.83 (d, J = 10.8 Hz, 1H, Ph-C H_2), 4.81 (d, J = 1.8 Hz, 1H, Ph-C10.8 Hz, 1H, Ph-C H_2), 4.77 (d, J = 10.2 Hz, 1H, Ph-C H_2), 4.69 (d, J = 1.2 Hz, 1H, H-1^{Man-I}), 4.66 $(d, J = 13.2 \text{ Hz}, 2H, Ph-CH_2), 4.62 (d, J = 12.0 \text{ Hz}, 1H, Ph-CH_2), 4.54 - 4.41 (m, 12H, Ph-CH_2),$ 4.12 (t, J = 1.8 Hz, 1H), 3.90 - 3.58 (m, 17H), 3.81 (s, 3H, Ph-OC H_3), 3.80 (s, 3H, Ph-OC H_3), 3.79 (s, 3H, Ph-OC H_3), 3.76 (s, 3H, Ph-OC H_3), 3.74 (s, 3H, Ph-OC H_3), 3.73 (s, 6H, Ph-OC H_3 x 2), 3.67 (s, 6H, Ph-OC H_3 x 2), 3.26 (s, 3H, -OC H_3). ¹³C NMR (150 MHz, CDC I_3) δ : 159.30 (Ph-OCH₃), 159.21 (Ph-OCH₃), 159.17 (Ph-OCH₃), 159.11 (Ph-OCH₃), 159.03 (Ph-OCH₃), 130.89, 130.85, 130.83, 130.80, 130.77, 130.54, 130.39, 130.31, 129.63, 129.52, 129.34, 129.19, $99.71(C-1^{Man-II})$, $99.61(C-1^{Man-III})$, 113.82. 113.74. 113.72. 113.68. 113.91. 113.85, 99.00(C-1^{Man-I}), 80.06, 79.65, 78.84, 74.96, 74.77, 74.65, 74.56, 74.23, 74.18, 74.10, 72.97, 72.85, 72.30, 72.06, 71.94, 71.83, 71.60, 71.33, 68.99, 66.46, 62.78, 55.35 (Ph-OCH₃), 55.34 (2C, Ph-OCH₃), 55.30 (Ph-OCH₃), 55.28 (2C, Ph-OCH₃), 55.26 (Ph-OCH₃), 55.20 (Ph-OCH₃), 55.16 $(Ph-OCH_3)$, 54.78 (-OCH₃). HR ESI-TOF MS (m/z): calcd for $C_{91}H_{106}O_{25}Na$ [M + Na]⁺, 1621.6921; found, 1621.6911.


Methyl 6-O-[(2-azidoethoxy)-phosphono]-2,3,4-tri-O-(p-methoxybenzyl)- α -D-mannopyranosyl-(1 \rightarrow 2)-3,4,6-tri-O-(p-methoxybenzyl)- α -D-mannopyranosyl-(1 \rightarrow 6)-2,3,4-tri-O-(p-methoxybenzyl)- α -D-mannopyranoside (17).

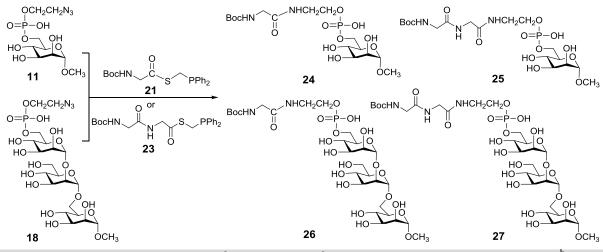
To a solution of **16** (500 mg, 0.313 mmol) and freshly prepared **7** (269mg, 0.938 mmol) in anhydrous CH_2Cl_2/CH_3CN (2:1, v/v, 8 mL) was added slowly an acetonitrile solution of tetrazole (~0.45 M, 6.96 mL, 3.13 mmol) under an N_2 atmosphere. After the mixture was stirred at rt for 1 h, it was cooled to 0 °C, and then *tert*-butyl hydroperoxide (5.5 M solution in decane, 0.57 mL,

3.13 mmol) was added. The mixture was stirred at rt for 1 h and quenched with aqueous Na₂S₂O₃. The aqueous layer was extracted with CH₂Cl₂ three times. The combined organic layer was washed with aqueous NaHCO₃ and brine, dried, and concentrated under vacuum. The residue was purified by column chromatography (EtOAc/hexane 2:1) to give the phosphorylated product as a diastereomeric mixture (R/S $\approx 1/1$). This product was then dissolved in CH₂Cl₂ (8 mL) and mixed with DBU (2 drops). After stirring at rt for 1.5 h, the solution was concentrated, and the residue was subjected to silica gel column chromatography (CH₃OH/CH₂Cl₂ 1:10) to produce 17 (393.5 mg, 72% for 2 steps) as colorless syrup. $R_f = 0.55$ (CH₃OH/CH₂Cl₂1:5); ¹H NMR (600 MHz, CD₃OD) δ : 7.35 (d, J = 8.4 Hz, 2H, Ph), 7.25 – 7.11 (m, 12H, Ph), 7.06 (d, J = 8.4 Hz, 2H, Ph), 7.02 (d, J = 8.4 Hz, 2H, Ph), 6.86 - 6.75 (m, 14H, Ph), 6.71 (d, J = 8.4 Hz, 2H, Ph), 6.68 (d, $J = 8.4 \text{ Hz}, 2H, Ph), 5.09 \text{ (s, 1H, H-1}^{Man-II}), 4.92 \text{ (s, 1H, H-1}^{Man-III}), 4.82 \text{ (s, 1H, H-1}^{Man-II}), 4.77 \text{ (d, 1H, H-1}^{Man-II}), 4.82 \text{ (s, 1H, H-1}^{Man-II}), 4.77 \text{ (d, 1H, H-1}^{Man-II}), 4.82 \text{ (s, 1H, H-1}^{Man-II}), 4.$ J = 10.8 Hz, 1H, Ph-C H_2), 4.71 – 4.64 (m, 4H, Ph-C H_2), 4.61 (d, J = 10.8 Hz, 1H, Ph-C H_2), 4.51 $(d, J = 10.8 \text{ Hz}, 1H, \text{Ph-C}H_2), 4.45 - 4.32 \text{ (m, 10H, Ph-C}H_2), 4.27 \text{ (d, } J = 10.8 \text{ Hz}, 1H, \text{Ph-C}H_2),$ 4.20 - 4.15 (m, 2H), 4.02 - 3.92 (m, 3H), 3.89 - 3.40 (m, 17H), 3.75 (s, 3H, Ph-OC H_3), 3.73 (s, 3H, Ph-OCH₃), 3.71 (s, 3H, Ph-OCH₃), 3.69 (s, 3H, Ph-OCH₃), 3.68 (s, 6H, Ph-OCH₃ x 2), 3.62 (s, 3H, Ph-OCH₃), 3.61 (s, 3H, Ph-OCH₃), 3.57 (s, 3H, Ph-OCH₃), 3.32 (s, 3H, -OCH₃). ¹³C NMR (150 MHz, CD₃OD) δ : 160.84 (Ph-OCH₃), 160.80 (Ph-OCH₃), 160.76 (Ph-OCH₃), 160.67 (Ph-OCH₃), 160.65 (Ph-OCH₃), 160.58 (Ph-OCH₃), 160.52 (Ph-OCH₃), 132.43, 132.08, 132.01, 131.97, 131.91, 131.75, 131.65, 131.38, 131.27, 130.97, 130.90, 130.81, 130.69, 130.66, 130.49, 130.43, 114.99, 114.81, 114.76, 114.71, 114.60, 114.57, 101.02(C-1^{Man-II}), 100.64(C-1^{Man-III}), 100.19(C-1^{Man-I}), 81.18, 80.32, 79.38, 76.05, 75.57, 75.34, 75.19, 75.12, 73.86, 73.37, 73.31, 73.16, 72.83, 72.72, 72.56, 72.46, 71.61, 69.86, 67.91, 65.47, 63.51, 55.70, 55.65, 55.58, 55.45, 53.58, 52.59. MALDI-TOF MS (m/z): calcd for $C_{93}H_{109}N_3O_{28}PNa [M + 2Na - H]^+$, 1792.673; found, 1792.610.

Methyl 6-O-[(2-azidoethoxy)-phosphono]- α -D-mannopyranosyl-(1 \rightarrow 2)- α -D-mannopyranosyl-(1 \rightarrow 6)- α -D-mannopyranoside (18).

To a solution of **17** (286 mg, 0.164 mmol) in CH₂Cl₂ (3.6mL) was added TFA (0.4 mL). After stirring at rt for 30 min, the reaction mixture was co-evaporated with toluene three times. The residue was subjected to flash silica gel column chromatography (CH₃OH/EtOAc 1:1) to afford **18** (96.3 mg, 88% yield) as a white foamy solid. $R_f = 0.45$ (CH₃OH/EtOAc 2:1); ¹H NMR (600 MHz, D₂O) δ : 5.13 (d, J = 1.2 Hz, 1H, H-1^{Man-II}), 5.02 (d, J = 1.2 Hz, 1H, H-1^{Man-III}), 4.74 (d, J = 1.2 Hz, 1H, H-1^{Man-I}), 4.15 (ddd, J = 11.4, 5.4, 1.8 Hz, 1H), 4.09 (t, J = 5.4 Hz, 1H), 4.07 – 4.03 (m, 3H, H-2^{Man-III}, -OCH₂CH₂-), 3.99 (dd, J = 3.6, 1.2 Hz, 1H, H-2^{Man-III}), 3.96 – 3.94 (m, 2H), 3.92 (dd, J = 3.6, 1.2 Hz, 1H, H-2^{Man-II}), 3.82 (dd, J = 9.6, 1.2 Hz, 1H), 3.76 – 3.68 (m, 7H), 3.52 (t, J = 4.8 Hz, 2H, -CH₂CH₂N₃), 3.39 (s, 3H, -OCH₃). ¹³C NMR (150 MHz, D₂O) δ : 102.33 (C-1^{Man-III}), 100.87 (C-1^{Man-IIII}), 97.81 (C-1^{Man-II}), 78.87, 72.64, 71.93, 70.62, 70.11, 69.81, 66.76, 66.54, 66.21, 65.75, 64.63, 60.79, 54.69 (-OCH₃), 50.89 (-CH₂CH₂N₃). ³¹P NMR (160 MHz, D₂O) δ : 0.30. HR ESI-TOF MS (m/z): calcd for C₂₁H₃₇N₃O₁₉P [M - H], 666.1764; found, 666.1764.

General procedure for the preparation of peptide phosphinothioesters.


To a stirred solution of freshly prepared **19** (232.3 mg, 1.0 mmol) and amino acid **20** (175.2 mg, 1.0 mmol) or peptide **21** (232.2 mg, 1.0 mmol) in anhydrous CH₂Cl₂ (10 mL) were added EDCI (465.7 mg, 3.0 mmol) and DMAP (24.4 mg, 0.2 mmol). After stirring at rt for 3 h, the mixture was diluted with CH₂Cl₂, washed with water and brine, dried, and concentrated under vacuum. The residue was purified by silica gel column chromatography to produce **21** (350.2 mg, 85%) and **23** (348.7 mg, 78%).

21: a white solid. $R_f = 0.65$ (EtOAc/hexane 1:3); ¹H NMR (400 MHz, CDCl₃) δ : 7.45 – 7.34 (m, 10H, Ph), 5.16 (s, 1H, -*NH*-), 3.99 (d, J = 6.4 Hz, 2H, -NH*CH*₂CO-), 3.52 (d, J = 3.6 Hz, 2H, -S*CH*₂PPh₂), 1.43 (s, 9H, -*t*Bu). ¹³C NMR (100 MHz, CDCl₃) δ : 197.55 (-*C*OS-), 155.52 (-O*C*ONH-), 136.76, 132.69, 129.24, 128.60, 80.42 (-O*t*Bu), 50.25 (-NH*CH*₂CO-), 28.36 (-*t*Bu), 25.23 (-S*CH*₂PPh₂). HR ESI-TOF MS (m/z): calcd for C₂₀H₂₄NO₃SPNa [M + Na]⁺, 412.1112; found, 412.1116.

23: a white solid. $R_f = 0.35$ (EtOAc/hexane 1:1); ¹H NMR (600 MHz, CDCl₃) δ : 7.42 – 7.35 (m, 10H, Ph), 6.86 (s, 1H, -NH-), 5.20 (s, 1H, -NH-), 4.17 (d, J = 6.0 Hz, 2H, -BocNH CH_2 CO-), 3.83

(d, J = 4.8 Hz, 2H, -NH CH_2 CO-), 3.52 (d, J = 3.6 Hz, 2H, -S CH_2 PPh₂), 1.44 (s, 9H, -tBu). ¹³C NMR (150 MHz, CDCl₃) δ : 195.71 (-tCOS-), 169.80 (-OtCONH-), 156.11 (-OtCONHBoc-), 136.50, 132.76, 129.24, 128.58, 80.47 (-OtBu), 48.78 (-BocNHtCO-), 44.28 (-NHtCO-), 28.28 (-tBu), 25.47 (-StCH₂PPh₂). HR ESI-TOF MS (m/z): calcd for C₂₂H₂₈N₂O₄PS [M + H]⁺, 447.1507; found, 447.1503.

General procedure for peptide-GPI ligation.

entry	azide	thioester	temp (°C)	solvent ^a	time (day)	product	yield ^b (%)
1	11	21	rt	DMF	2	24	55
2	11	21	40	DMF	1	24	96
3	11	21	40	DMF/H ₂ O	1	24	93
4	11	23	40	DMF	1	25	93
5	11	23	40	DMF/H ₂ O	1	25	92
6	18	21	40	DMF	1	26	93
7	18	21	40	DMF/H ₂ O	1	26	91
8	18	23	40	DMF	1	27	92
9	18	23	40	DMF/H ₂ O	1	27	89

An azide, **11** (5.15 mg, 0.015 mmol) or **18** (10.2 mg, 0.015 mmol) and a thioester, **21** (8.8 mg, 0.023 mmol) or **23** (10.1 mg, 0.023 mmol) were dissolved in DMF (0.5 mL) or DMF/H₂O (1/1, v/v, 0.5 mL). After stirring at 40 °C for 1 day, the solution was concentrated under vacuum. The residue was purified by silica gel column chromatography to give **24**, **25**, **26**, and **27**, respectively (their yields are shown in Table 1)

24: a white foamy solid (6.83 mg, 96%, entry 2). $R_f = 0.50$ (EtOAc/CH₃OH 1:1); ¹H NMR (600 MHz, D₂O) δ : 4.74 (s, 1H, H-1), 4.12 (dd, J = 11.4, 5.4 Hz, 1H, H-6a), 4.05 (dd, J = 10.8, 5.4 Hz, 1H, H-6b), 3.94 – 3.91 (m, 3H, -OCH₂CH₂, H-2), 3.77 – 3.69 (m, 5H, -CH₂NHBoc, H-3, H-4, H-5), 3.46 (s, 2H, -OCH₂CH₂), 3.39 (s, 3H, -OCH₃), 1.42 (s, 9H, -*t*Bu). ¹³C NMR (150 MHz, D₂O) δ :

172.56 (-CONH), 158.00 (-tBuOCONH-), 100.83 (C-1), 81.56 (-OtBu), 71.31, 70.35, 69.74, 66.15, 64.39, 63.96, 54.68 (-OCH₃), 43.31 (-COCH₂NHBoc), 39.79 (-OCH₂CH₂NH), 27.49 (-tBu). ³¹P NMR (160 MHz, D₂O) δ : 0.29. HR ESI-TOF MS (m/z): calcd for C₁₆H₃₀N₂O₁₂P [M - H], 473.1542; found, 473.1521.

25: a white foamy solid (7.33 mg, 92%, entry 5). $R_f = 0.40$ (EtOAc/CH₃OH 1:1); ¹H NMR (600 MHz, D₂O) δ : 4.74 (s, 1H, H-1), 4.12 (dd, J = 11.4, 5.4 Hz, 1H, H-6a), 4.05 (dd, J = 10.8, 5.4 Hz, 1H, H-6b), 3.93 – 3.91 (m, 5H, -OCH₂CH₂, -COCH₂NH-, H-2), 3.81 (s, 2H, -CH₂NHBoc), 3.76 (dd, J = 9.0, 3.6 Hz, 1H, H-3), 3.70 – 3.69 (m, 2H, H-4, H-5), 3.46 (t, J = 5.4 Hz, 2H, -OCH₂CH₂), 3.39 (s, 3H, -OCH₃), 1.42 (s, 9H, -*t*Bu). ¹³C NMR (150 MHz, D₂O) δ : 173.18 (-CONH), 173.18 (-CONH), 156.94 (-*t*BuOCONH-), 100.81 (C-1), 81.65 (-O*t*Bu), 71.29, 70.35, 69.74, 66.14, 64.37, 63.91, 54.66 (-OCH₃), 43.32 (-COCH₂NHBoc), 42.23 (-COCH₂NH), 39.88 (-OCH₂CH₂NH), 27.47 (-*t*Bu). HR ESI-TOF MS (m/z): calcd for C₁₈H₃₃N₃O₁₃P [M - H]⁻, 530.1756; found, 530.1728.

26: a white foamy solid (11.80 mg, 92%, entry 8). $R_f = 0.50$ (EtOAc/CH₃OH 1:2); ¹H NMR (600 MHz, D₂O) δ : 5.12 (s, 1H, H-1^{Man-III}), 5.02 (s, 1H, H-1^{Man-II}), 4.74 (s, 1H, H-1^{Man-I}), 4.11 – 4.02 (m, 3H), 3.98 – 3.92 (m, 6H), 3.86 – 3.84 (m, 3H), 3.82 (d, J = 11.4 Hz, 1H), 3.77 – 3.64 (m, 9H), 3.48 (t, J = 3.6 Hz, 2H, -OCH₂CH₂), 3.39 (s, 3H, -OCH₃), 1.43 (s, 9H, -tBu). ¹³C NMR (150 MHz, D₂O) δ : 172.56 (-tCONH), 157.99 (-tBuOtCONH-), 102.32 (C-1^{Man-III}), 100.88 (C-1^{Man-II}), 97.80 (C-1^{Man-II}), 81.58 (-OtBu), 78.81, 72.65, 71.98, 70.65, 70.12, 69.81, 66.76, 66.54, 66.24, 65.75, 64.65, 64.01, 60.80, 60.03, 54.69 (-OCH₃), 43.34 (-COtCH₂NHBoc), 39.88 (-OCH₂CH₂NH), 27.53 (-tBu). ³¹P NMR (160 MHz, D₂O) δ : 0.50. HR ESI-TOF MS (m/z): calcd for C₂₈H₅₀N₂O₂₂P [M - H]⁻, 797.2598; found, 797.2605.

27: a white foamy solid (6.83 mg, 96%, entry 2). $R_f = 0.45$ (EtOAc/CH₃OH 1:2); ¹H NMR (600 MHz, D₂O) δ: 5.12 (s, 1H, H-1^{Man-III}), 5.02 (s, 1H, H-1^{Man-II}), 4.74 (s, 1H, H-1^{Man-I}), 4.11 – 4.03 (m, 3H), 3.99 – 3.92 (m, 7H), 3.87 – 3.79 (m, 6H), 3.77 – 3.63 (m, 8H), 3.48 (t, J = 5.4 Hz, 2H, -OCH₂CH₂), 3.39 (s, 3H, -OCH₃), 1.43 (s, 9H, -tBu). ¹³C NMR (150 MHz, D₂O) δ: 173.16 (-tCONH), 171.34 (-tCONH), 159.88 (-tBuOCONH-), 102.31 (C-1^{Man-III}), 100.88 (C-1^{Man-I}), 97.79 (C-1^{Man-II}), 81.69 (-OtBu), 78.80, 72.64, 72.02, 70.64, 70.12, 69.81, 66.76, 66.54, 66.24, 65.73, 64.57, 63.91, 60.79, 60.03, 54.69 (-OCH₃), 43.36 (-COCH₂NHBoc), 42.28 (-COCH₂NH), 39.93 (-OCH₂CH₂NH), 27.52 (-tBu). ³¹P NMR (160 MHz, D₂O) δ: 0.56. HR ESI-TOF MS (m/z): calcd for C₃₀H₅₃N₃O₂₃P [M - H]⁻, 854.2813; found, 854.2810.

Synthesis of CD52 peptide phosphinothioesters 32 and 33.

CD52 peptide **30** was prepared by solid-phase synthesis on a peptide synthesizer using standard Fmoc chemistry. The synthesis started from commercial serine-modified 2-chlorotrityl resin **28**, and the completed peptide **30** was released from the resin with 10% AcOH in TFE and DCM (1/1/8 v/v/v). The product was purified by silica gel column chromatography (CH₃OH/CH₂Cl₂ 1:5) and characterized with MALDI-TOF MS (calcd for C₁₃₅H₁₇₉N₁₅O₂₆Na [M + Na]⁺, 2449.3; found, 2449.8). Peptide **30** (86 mg, 0.035 mmol) was then dissolved in CH₂Cl₂ (2 mL), and to the solution were added mercaptan **31** (13.08 mg, 0.053 mmol), EDCI (20.16 mg, 0.106 mmol), and HOBt (9.45 mg, 0.07 mmol) at rt. After stirring at rt for 2 h, the mixture was concentrated, and the residue was purified by silica gel column chromatography (CH₃OH/CH₂Cl₂ 1:10) to produce **32** (87.5 mg, 93%) as a white solid. MALDI-TOF MS: calcd for C₁₃₅H₁₇₉N₁₅O₂₆Na [M – BH₃ + Na]⁺, 2663.3; found, 2663.5.

To a solution of **32** (87.5 mg, 0.033 mmol) in CH_2Cl_2 (1.6 mL) were added TFA (0.4 mL) and Et_3SiH (0.2 mL). After stirring at rt for 3 h, the mixture was poured into cold ethyl ether (20 mL). The precipitated product **33** was filtered, dried under vacuum, and applied directly to the next step. MALDI-TOF MS: calcd for $C_{58}H_{83}N_{15}O_{23}PS$ [M – H], 1420.5; found, 1420.7.

Staudinger ligation between 32 and 18. To a solution of 32 (2.3 mg, 0.87 nmol) and 18 (0.85 mg, 1.30 nmol) in DMF and H_2O (1:1, v/v, 300 μL) was added DABCO (0.3 mg, 2.60 nmol. After stirring at 40 °C for 1 day and MS indication of completed reaction, the mixture was concentrated under vacuum. The residue was dissolved in 20% TEA in Et₃SiH and DCM (2/1/8, v/v/v, 0.5 mL). After stirring at rt for 3 h, 5 mL of cold ether was added to the mixture to precipitate the

reaction product, which was finally purified by reversed-phase HPLC to afford **34** (1.24 mg, 78%) as a white solid. HPLC conditions: C18 column (5 μ m, 250 x 4.6 mm), gradient elution with 10~60% CH₃CN in H₂O, 1.5 mL/min flow rate, UV detection at 220 nm, retention time 9.5 min. MALDI-TOF MS: calcd for C₆₆H₁₁₀N₁₆O₄₂P [M – H]⁻, 1829.7; found, 1829.9.

Staudinger ligation between 33 and 18. To a solution of 33 (1.5 mg, 1.05 nmol) and 18 (1.1 mg, 1.60 nmol) in DMF and H_2O (1:1, v/v, 0.5 mL) was added DIPEA (1.84 μ L, 10.5 nmol). After stirring at 40 °C for 1 day, the mixture was concentrated and the product was purified by HPLC as described above to give 34 (1.24 mg, 66%) as a white solid (identical to the product obtained from the above procedure).

II. MS spectra and HPLC diagrams of CD52 peptide, its phosphinothioesters, and its GPI conjugate

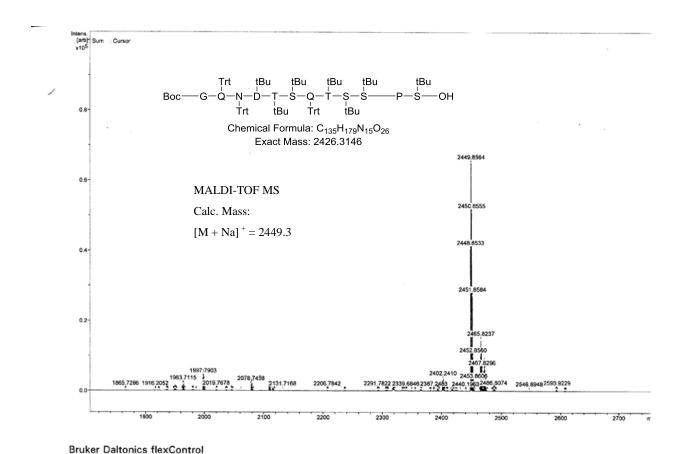
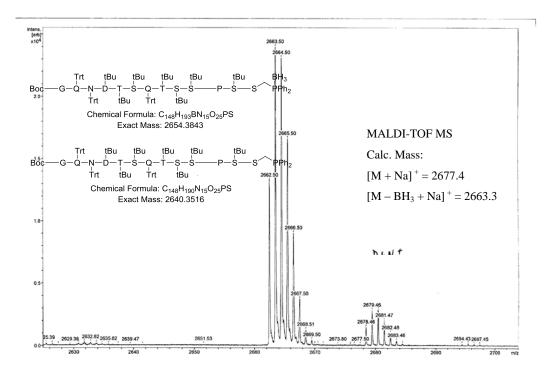
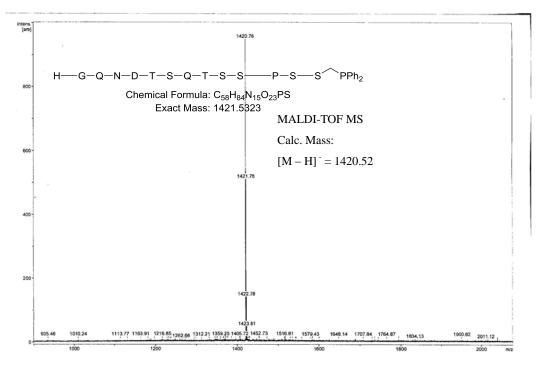




Figure S1. MALDI-TOF MS spectrum of the peptide 30 obtained from solid-phase synthesis

Bruker Daltonics flexControl

Figure S2. MALDI-TOF MS spectrum of peptide phosphinothioester 32

Bruker Daltonics flexControl

Figure S3. MALDI-TOF MS spectrum of peptide phosphinothioester 33

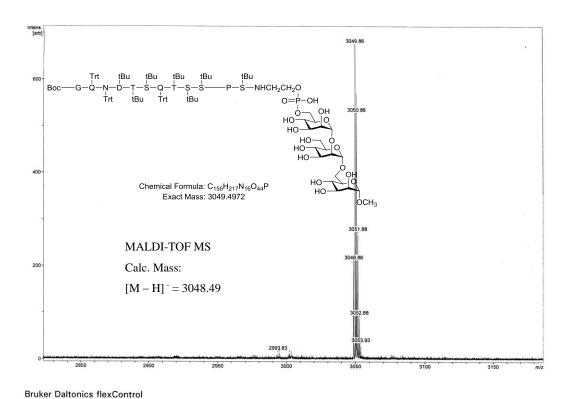
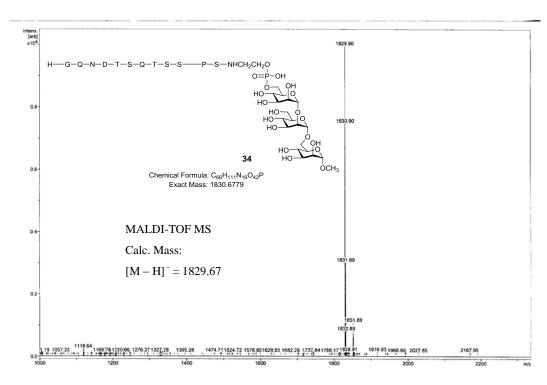
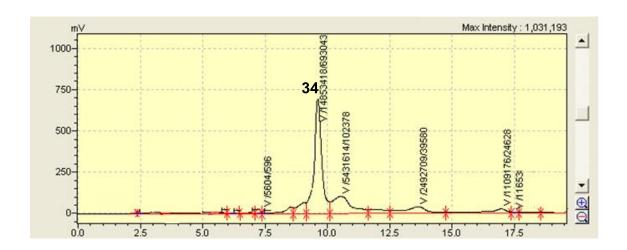
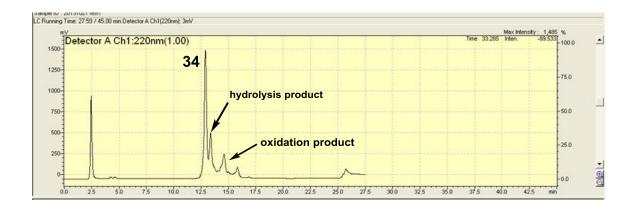




Figure S4. MALDI-TOF MS spectrum of the reaction product of 18 and 32 (i.e., protected 34)



Bruker Daltonics flexControl

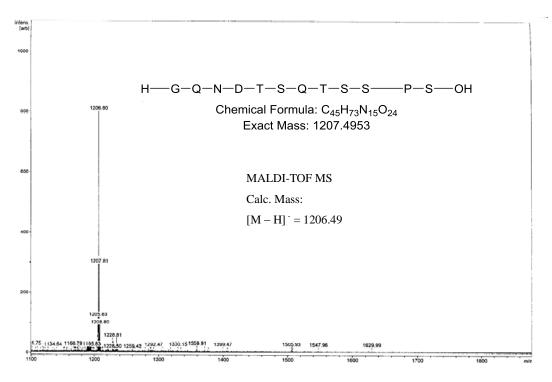

Figure S5. MALDI-TOF MS spectrum of CD52 analog 34

Figure S6. HPLC diagram of **34** derived from **18** and **32** (after the deprotection step). C18 column (5 μ m, 250 x 4.6 mm); gradient eluent: 10-60% CH₃CN in H₂O; flow rate: 1.5 mL/min, UV detection at 220 nm.

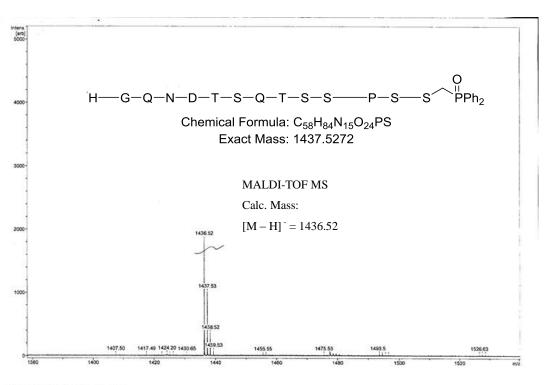
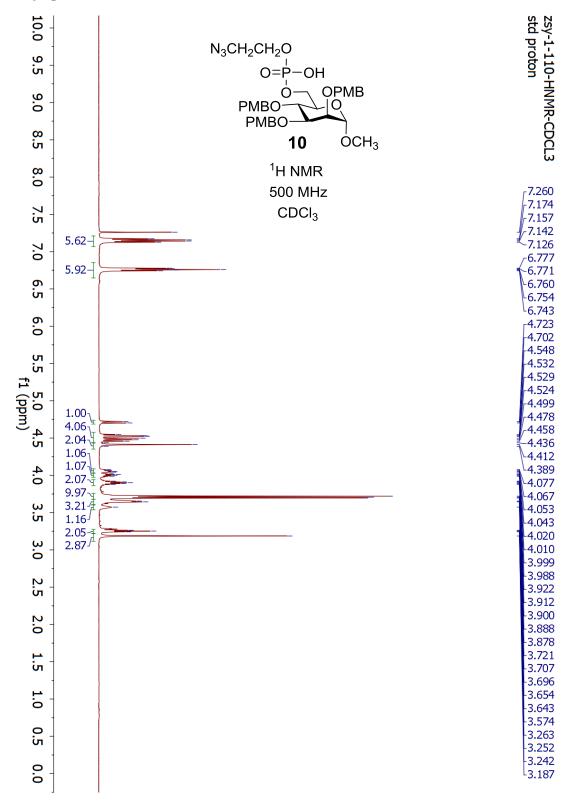
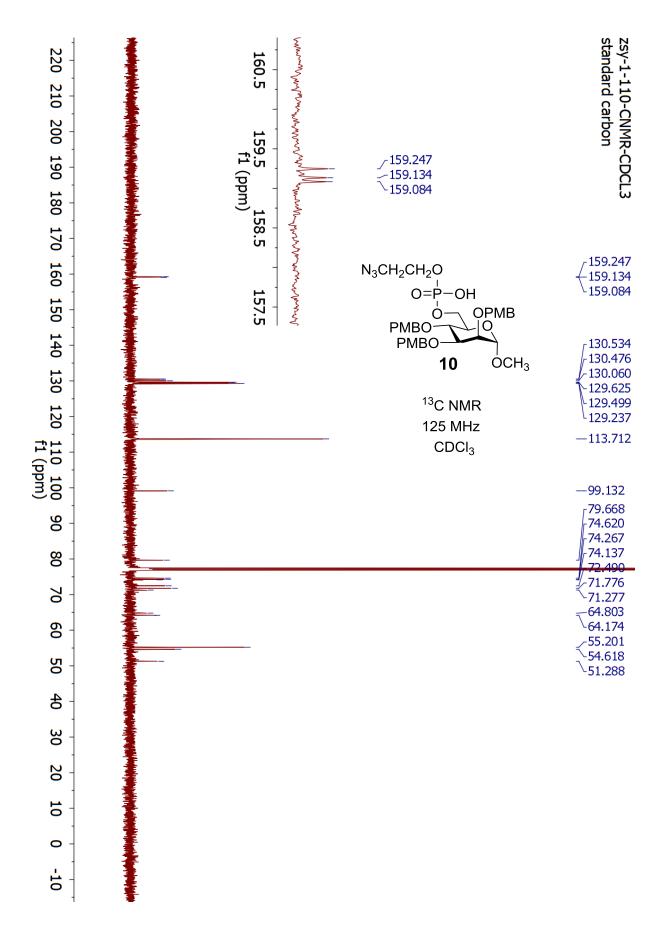
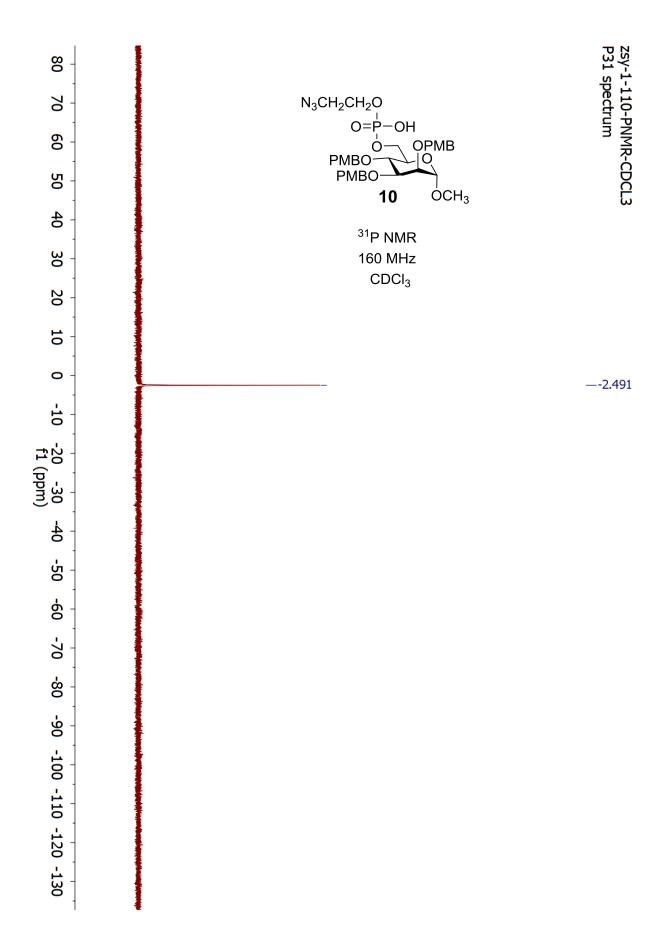


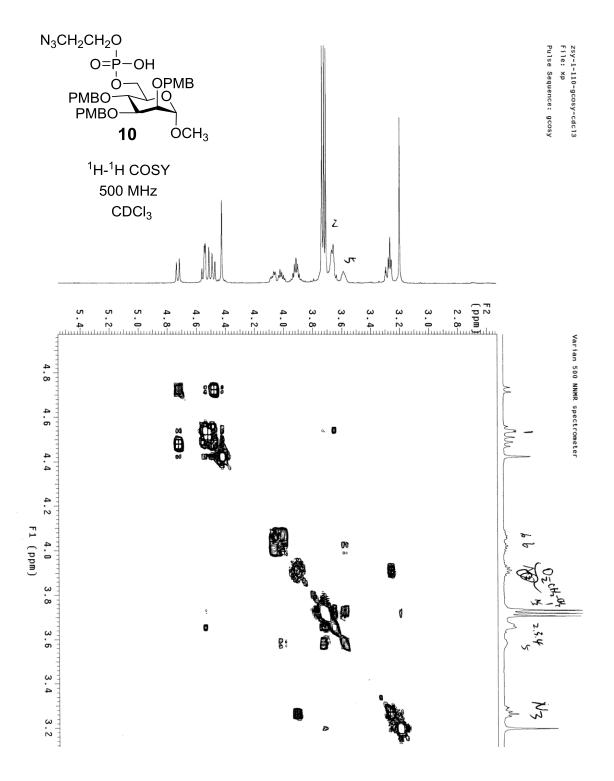
Figure S7. HPLC diagram of **34** derived from **18** and **33**. C18 column (5 μm, 250 x 4.6 mm); gradient eluent: 5-60% CH₃CN in H₂O; flow rate: 1.5 mL/min, UV detection at 220 nm.

Bruker Daltonics flexControl


Figure S8. MALDI-TOF MS spectrum of the hydrolysis product of 33




Bruker Daltonics flexControl


Figure S9. MALDI-TOF MS spectrum of the oxidation product of 33

III. NMR and MS spectra of synthetic intermediates and other GPI-peptide conjugates

$$\begin{array}{c} \text{N}_3\text{CH}_2\text{CH}_2\text{O} \\ \text{O=P-O}^- \\ \text{O} \\ \text{PMBO} \\ \text{PMBO} \\ \text{O} \\ \text{O}$$

Exact Mass: 702.2433

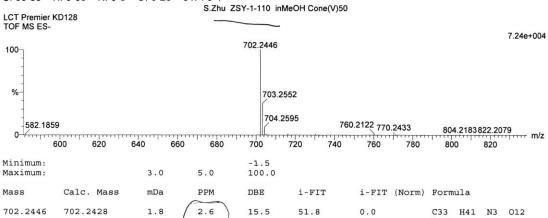
HR ESI-TOF MS

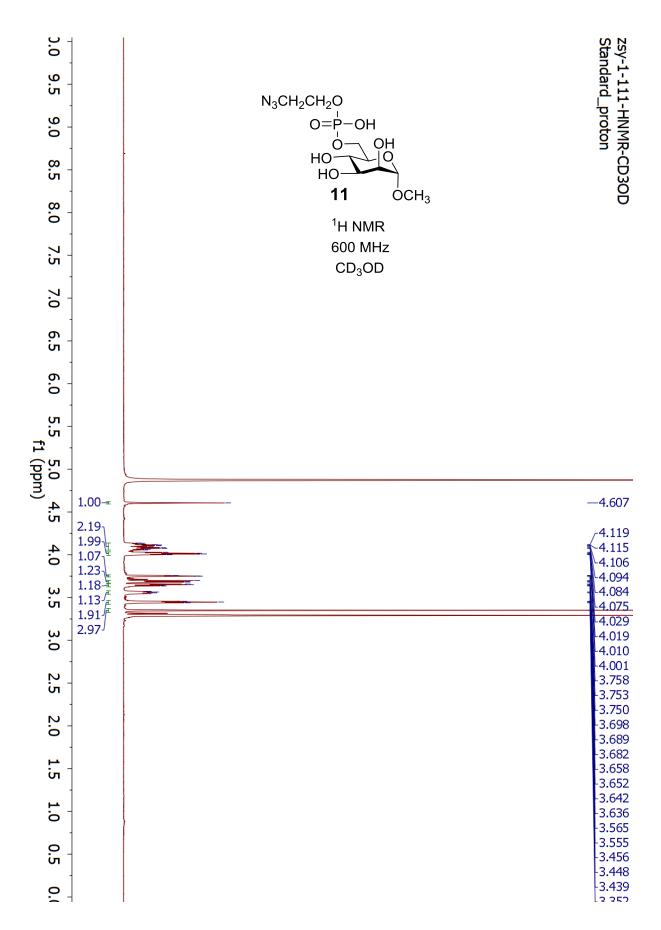
Calc. Mass:

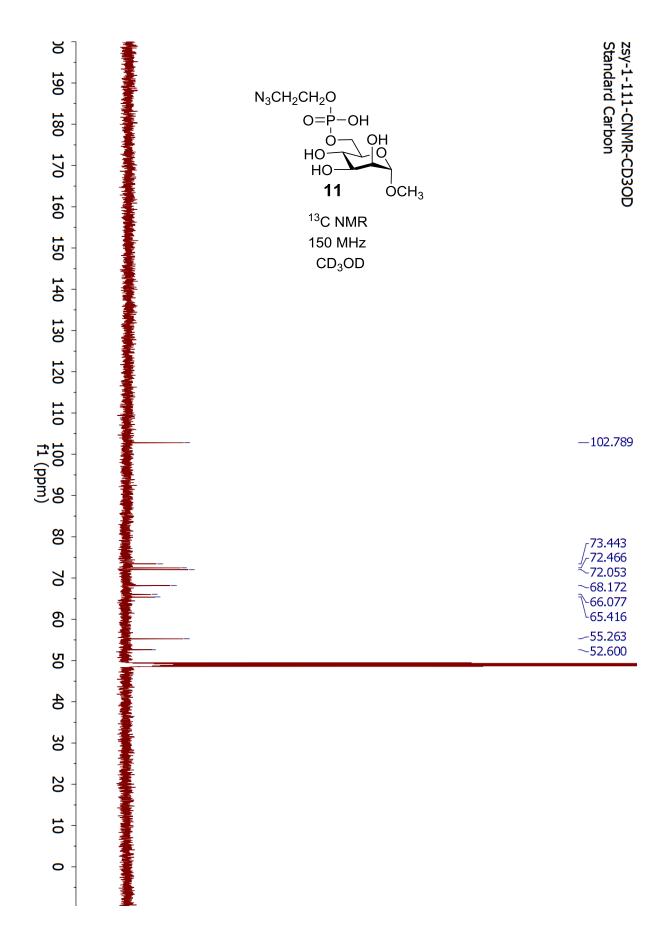
 $[M - H]^{-} = 702.2433$

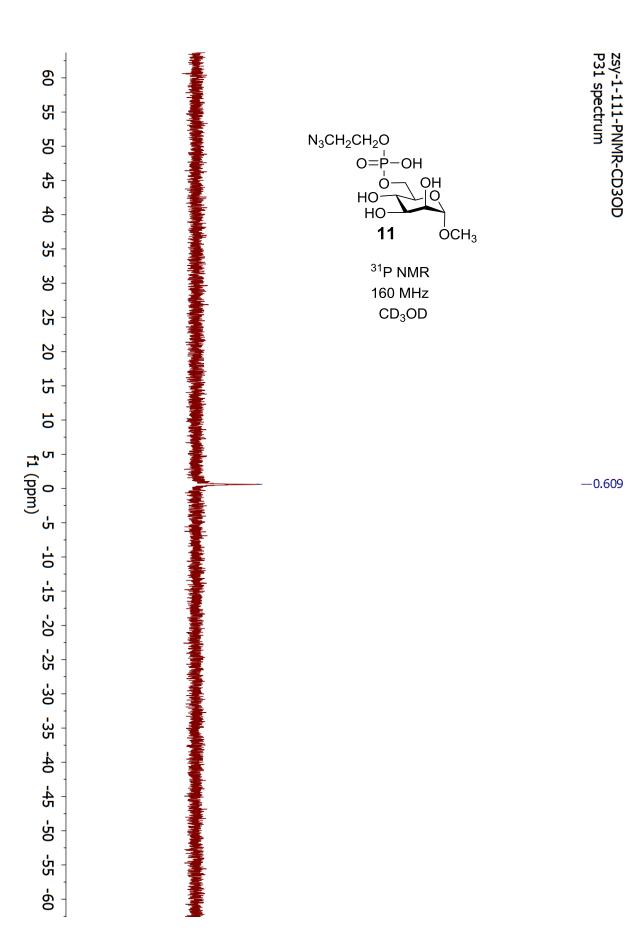
Elemental Composition Report

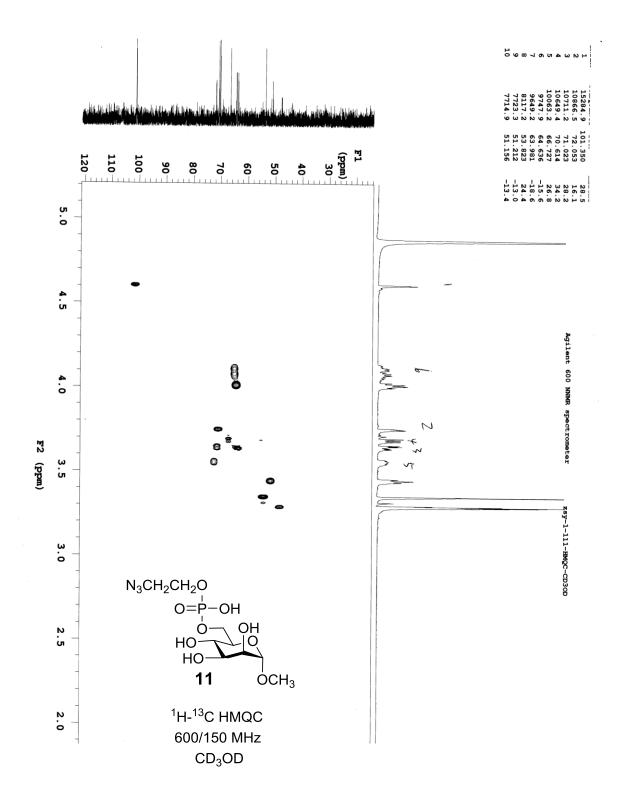
Single Mass Analysis

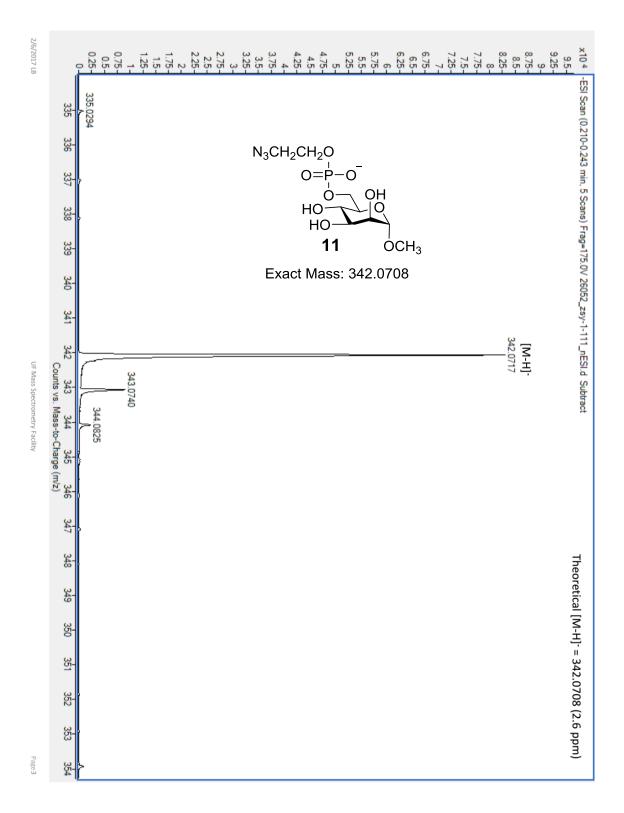

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off

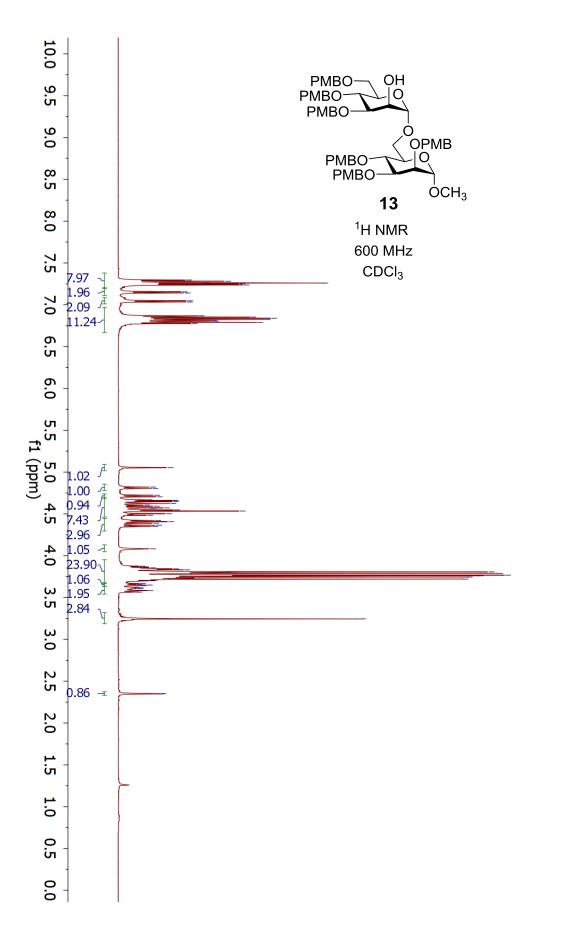

Number of isotope peaks used for i-FIT = 6

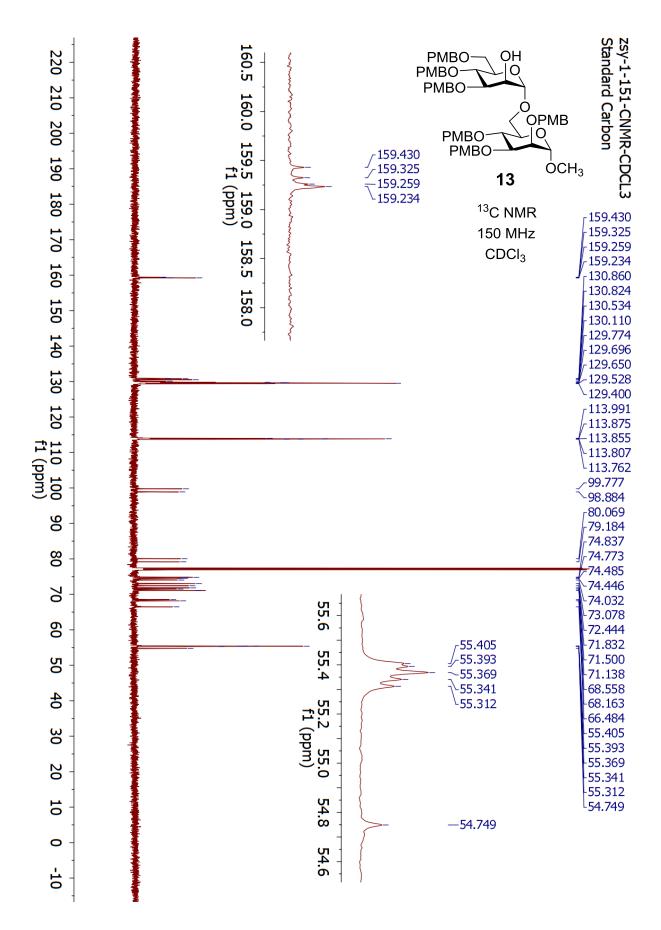

Monoisotopic Mass, Even Electron Ions 225 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

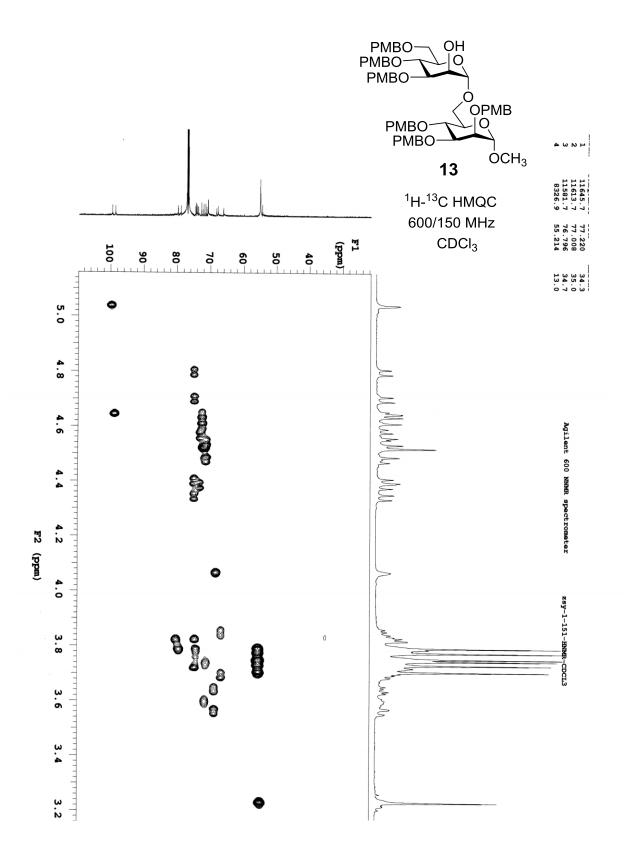

Elements Used:

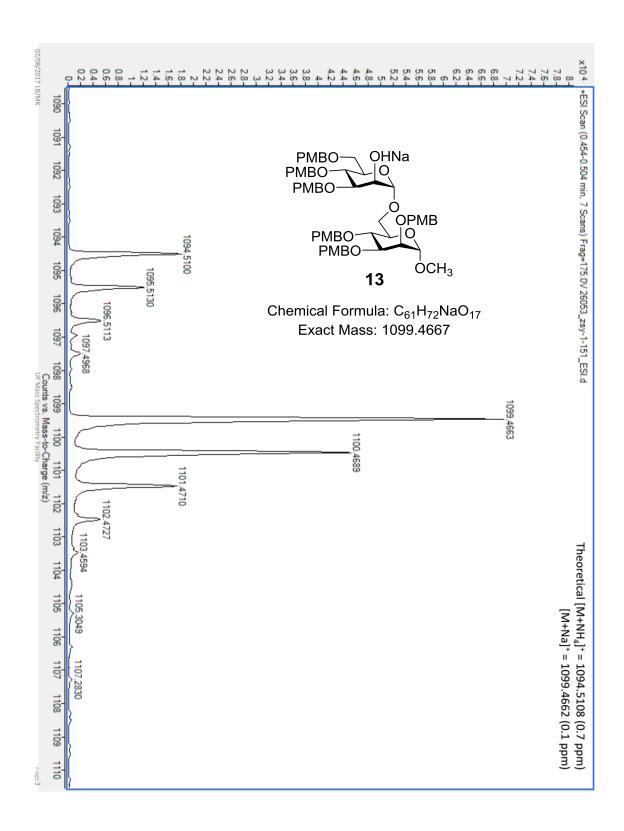

C: 33-33 H: 0-50 N: 0-5 O: 0-20 31P: 0-1

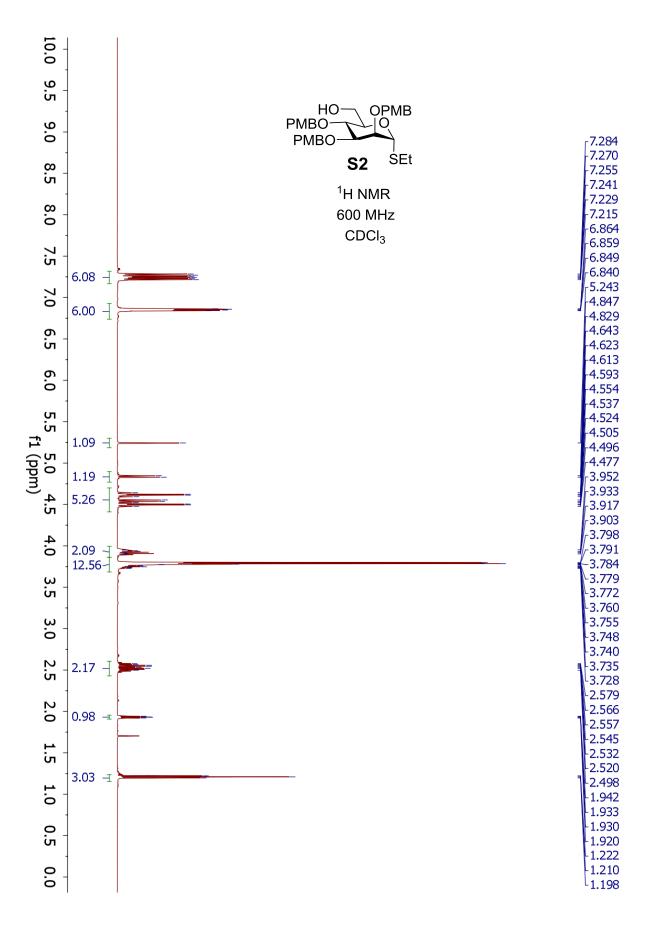


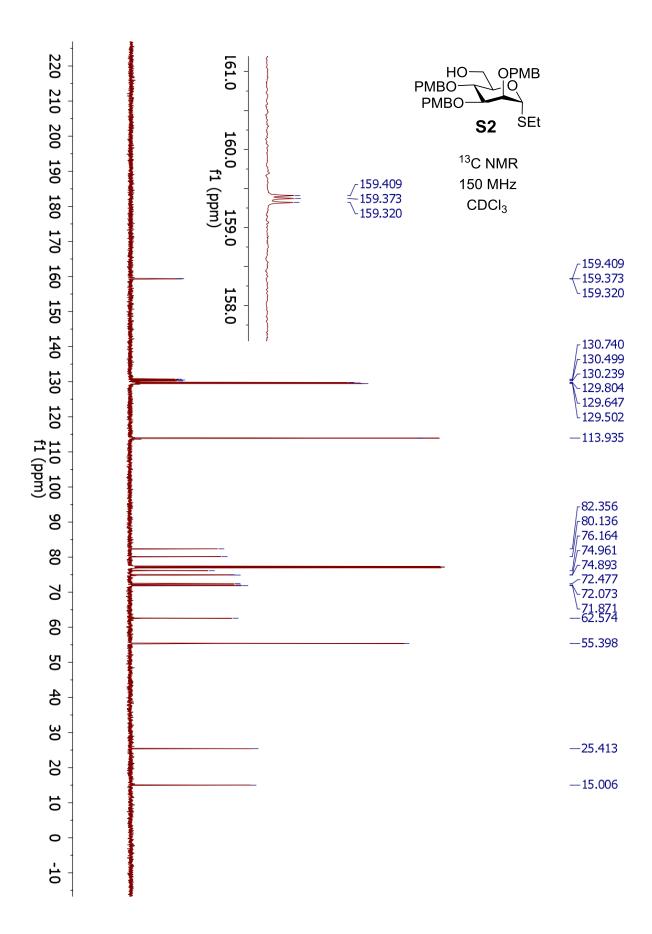


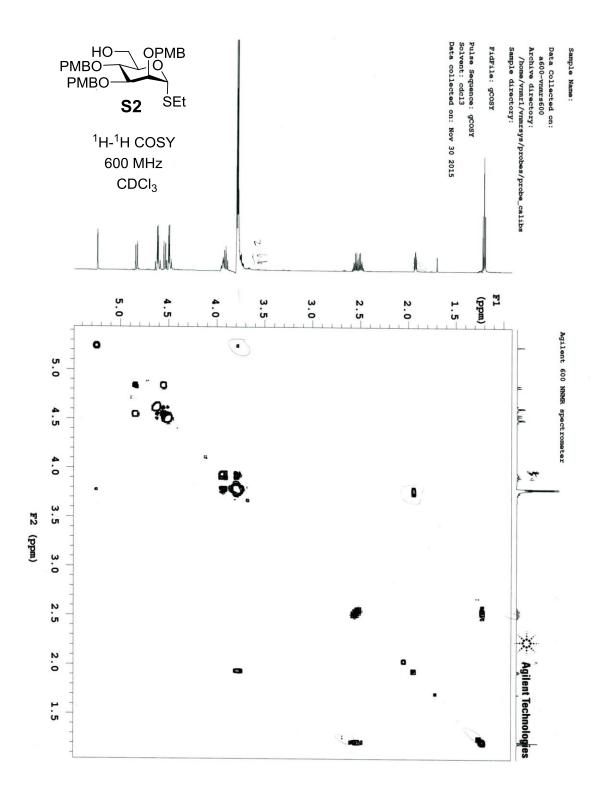


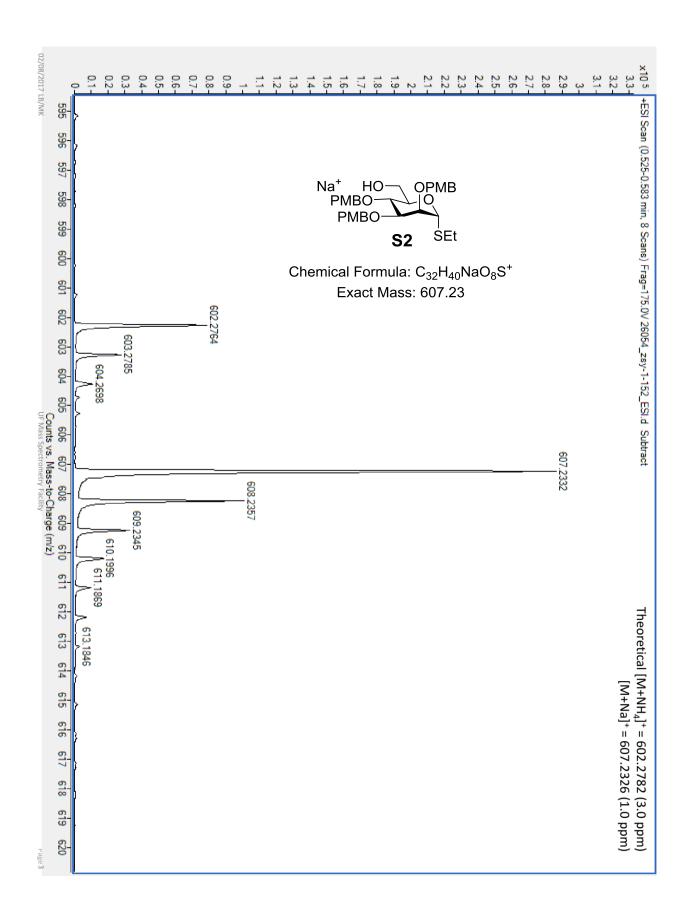


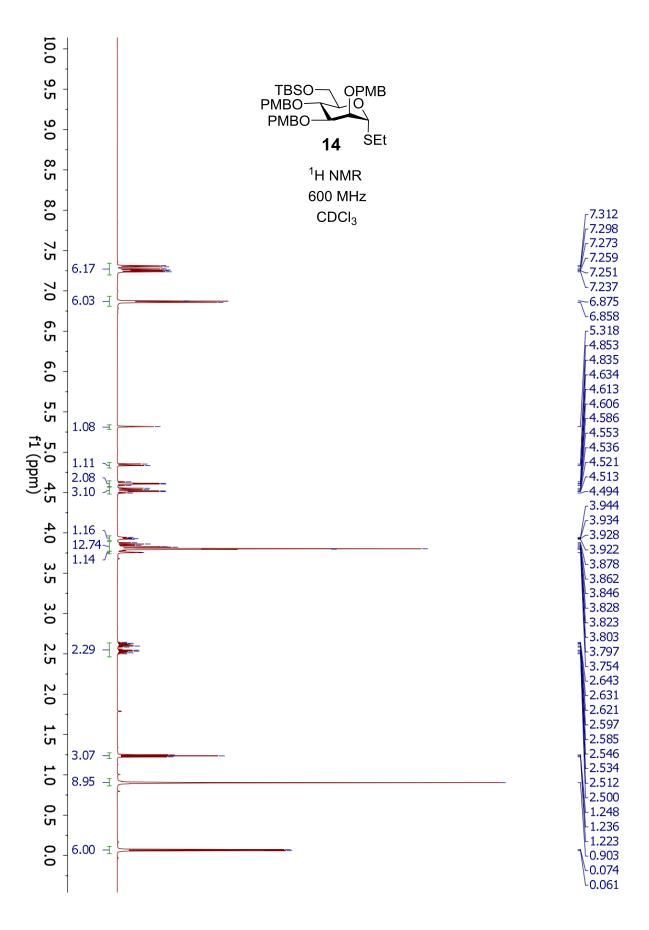


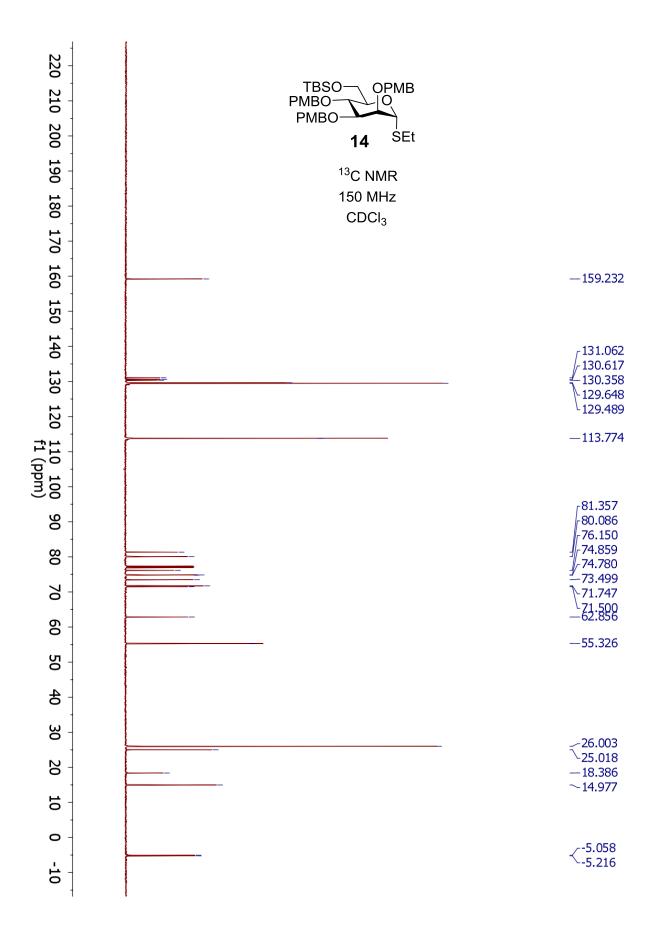


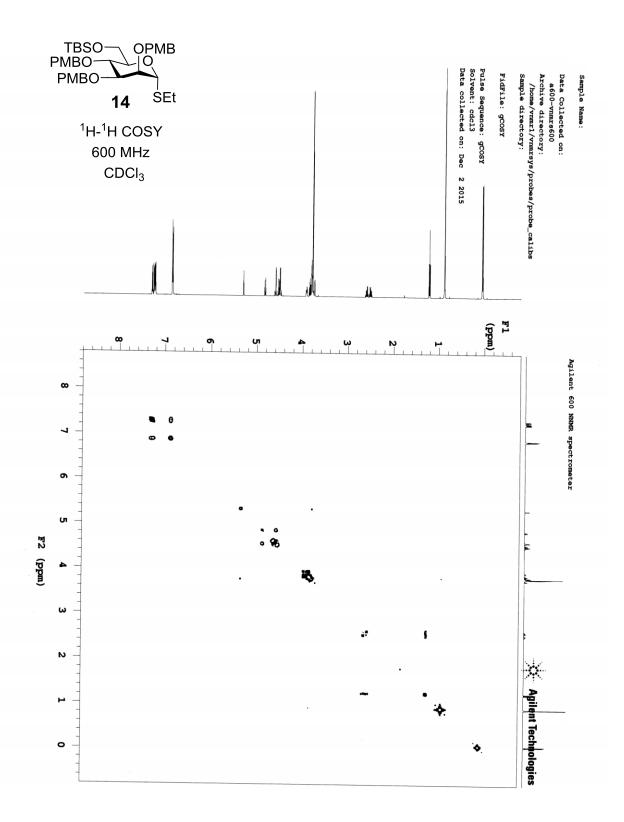


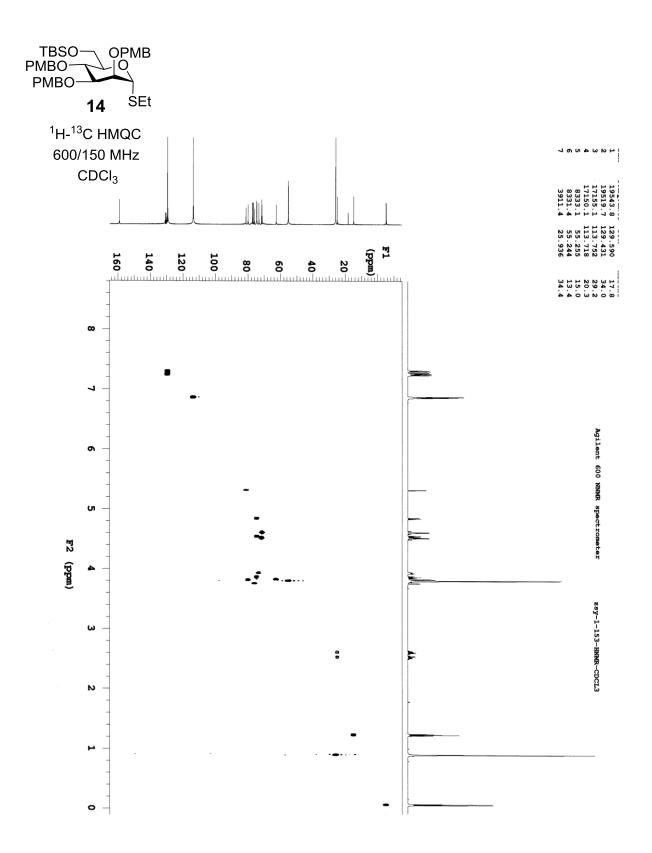


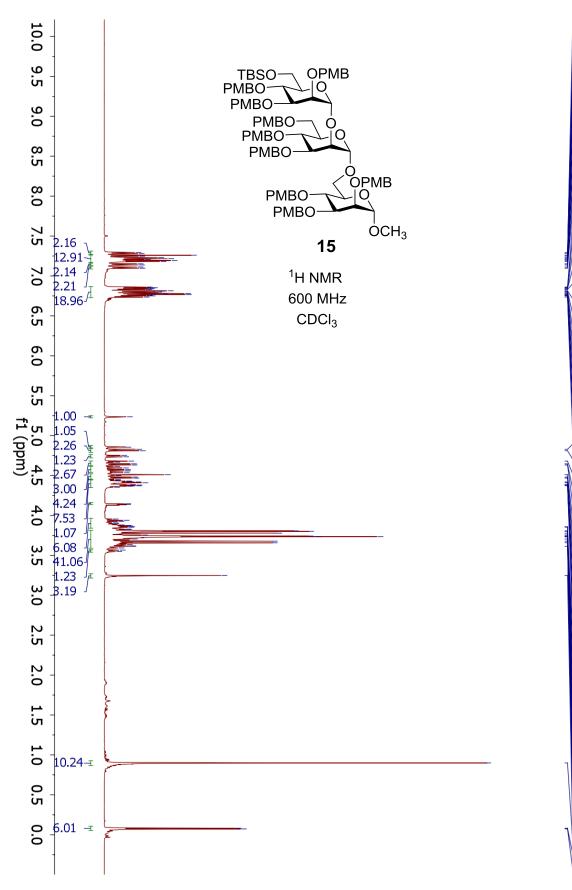


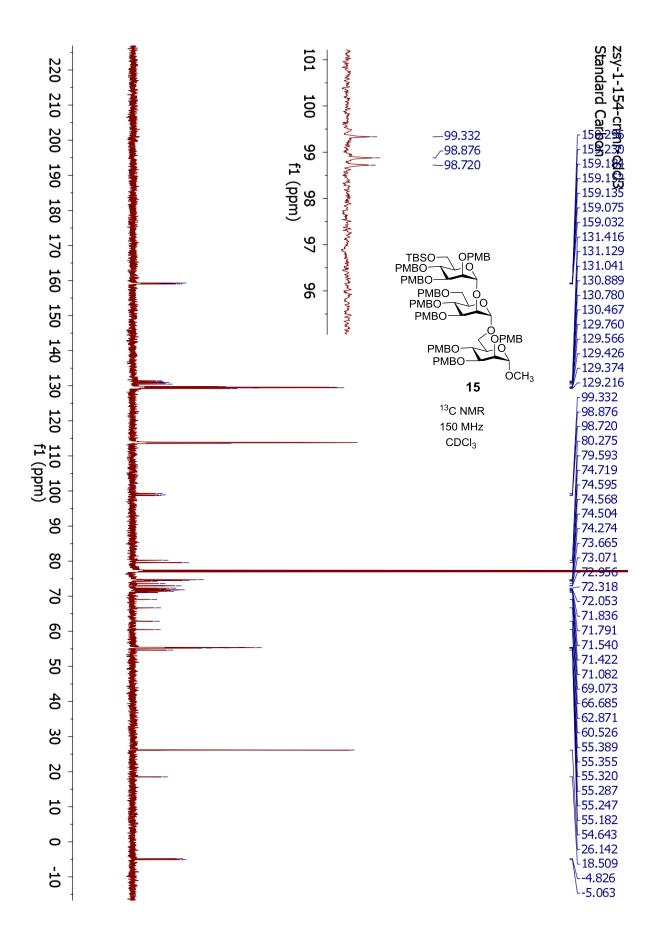


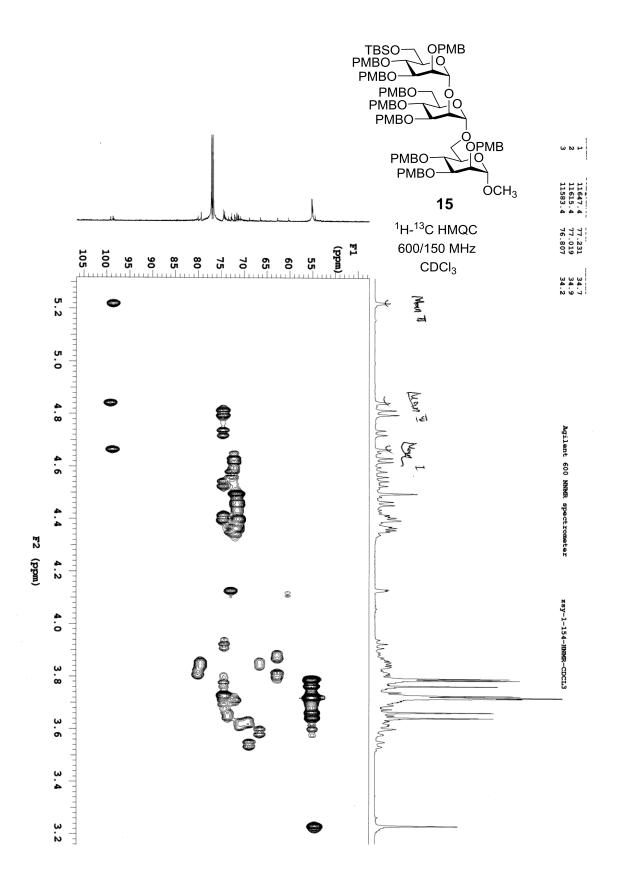


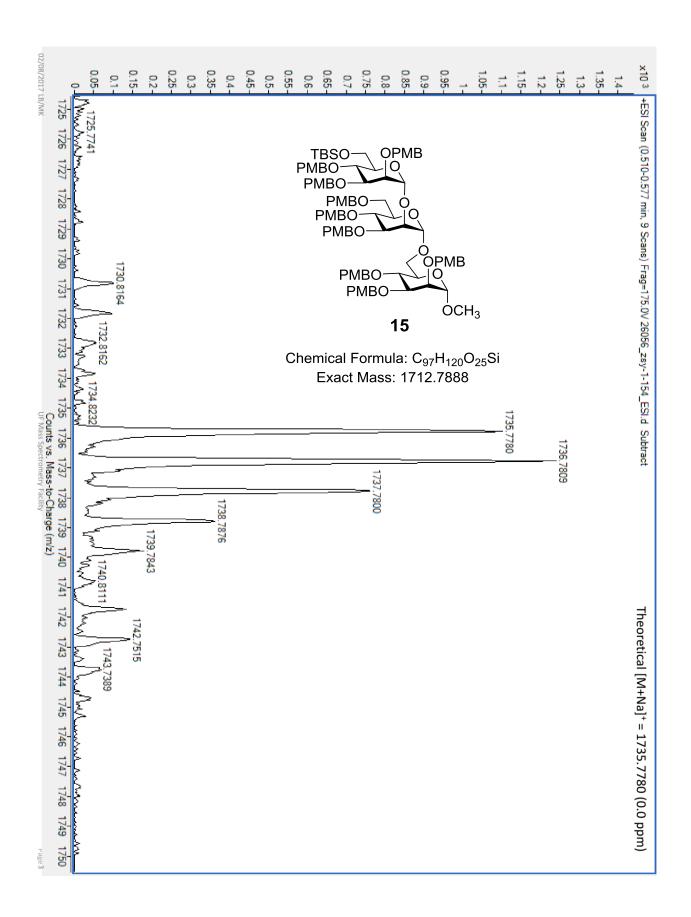


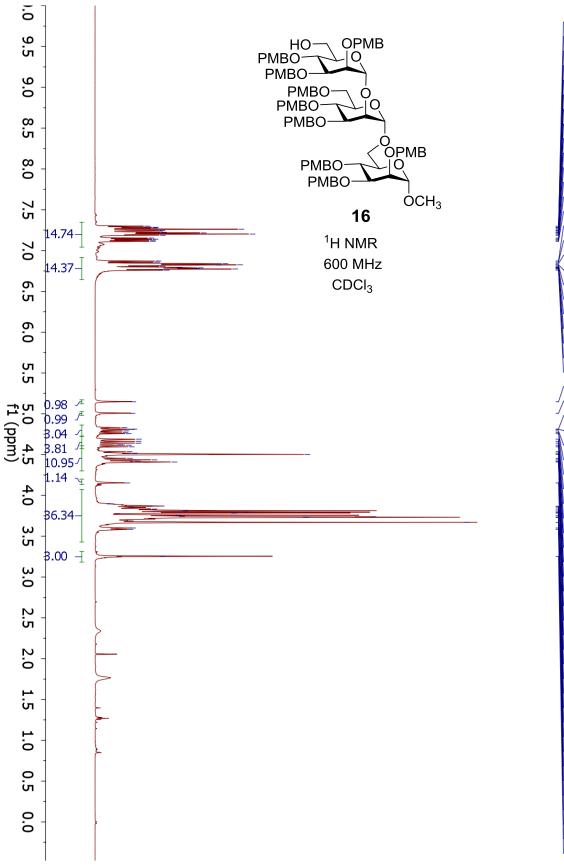


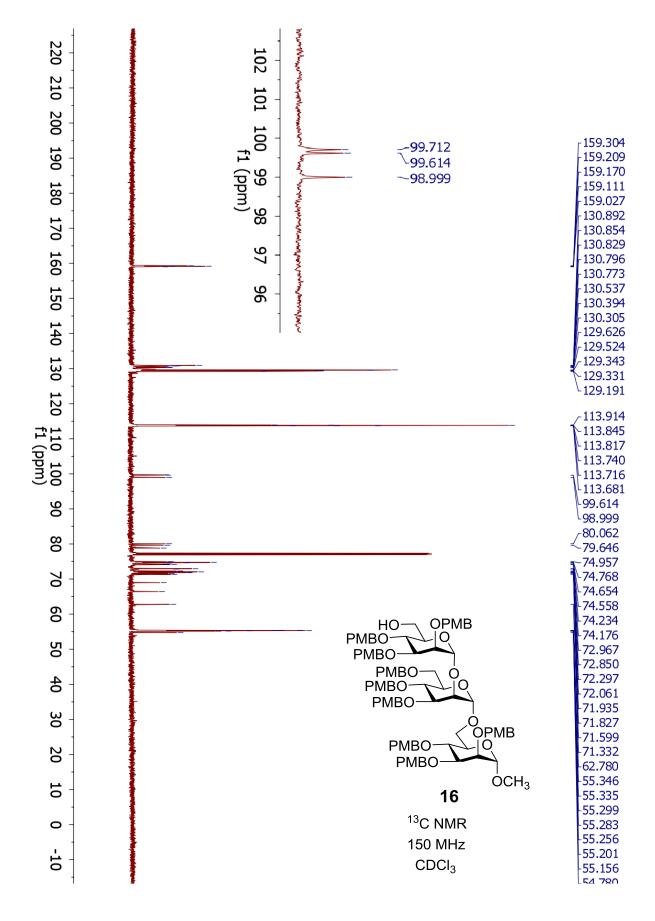


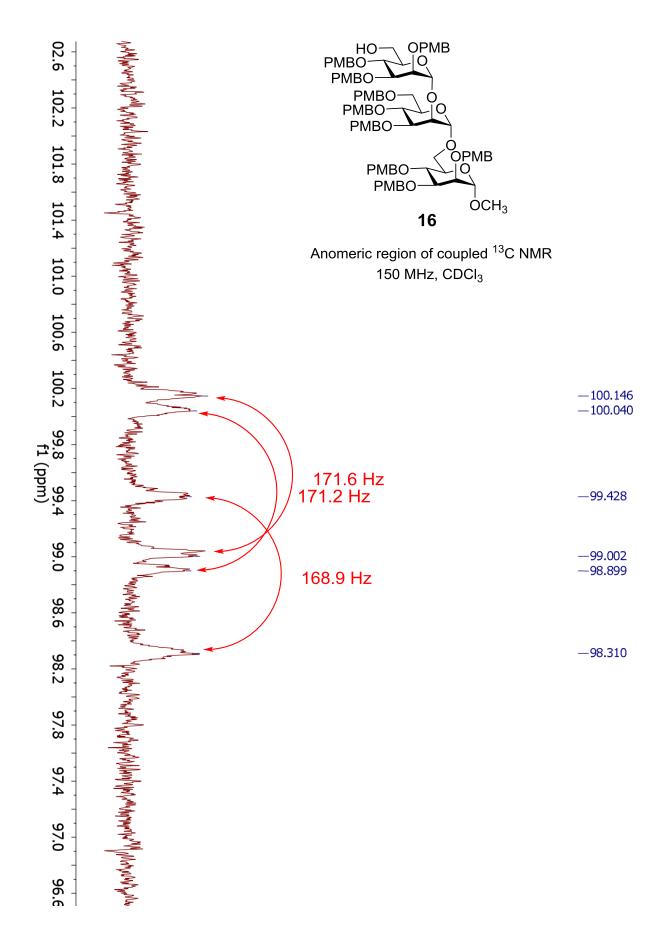


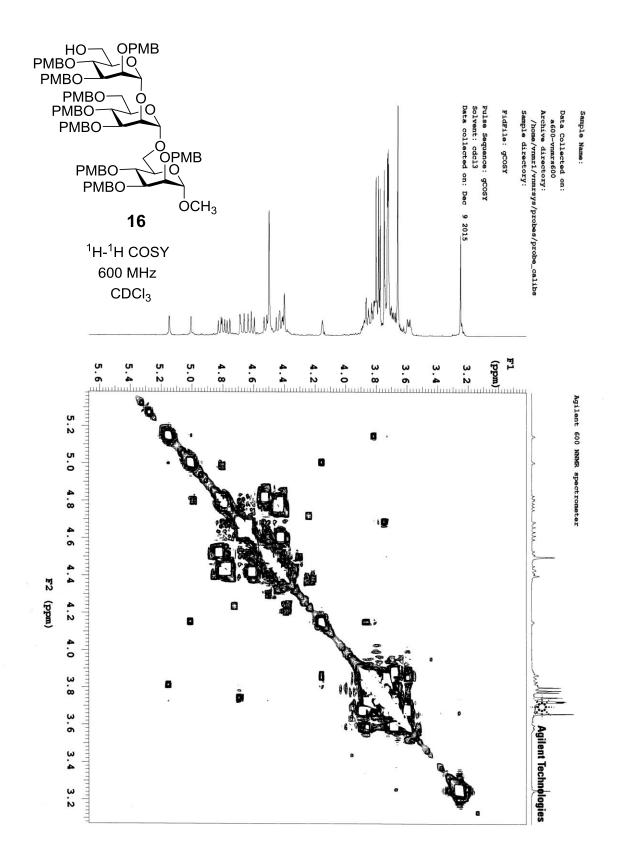


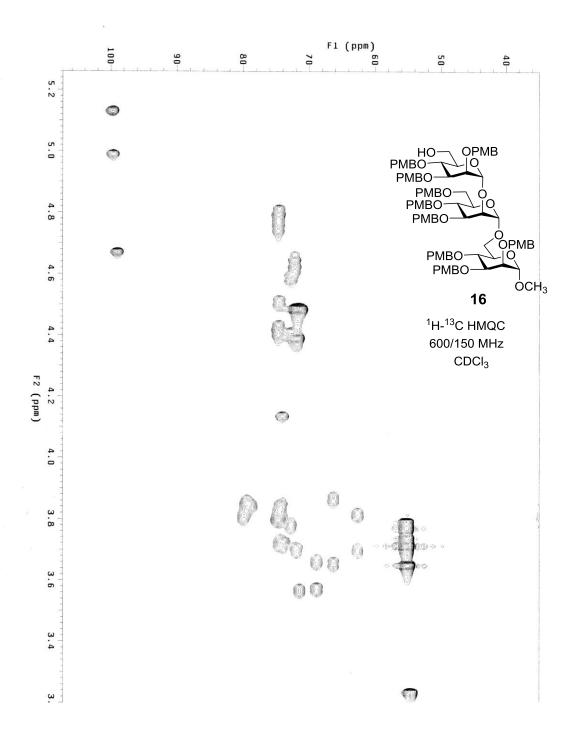


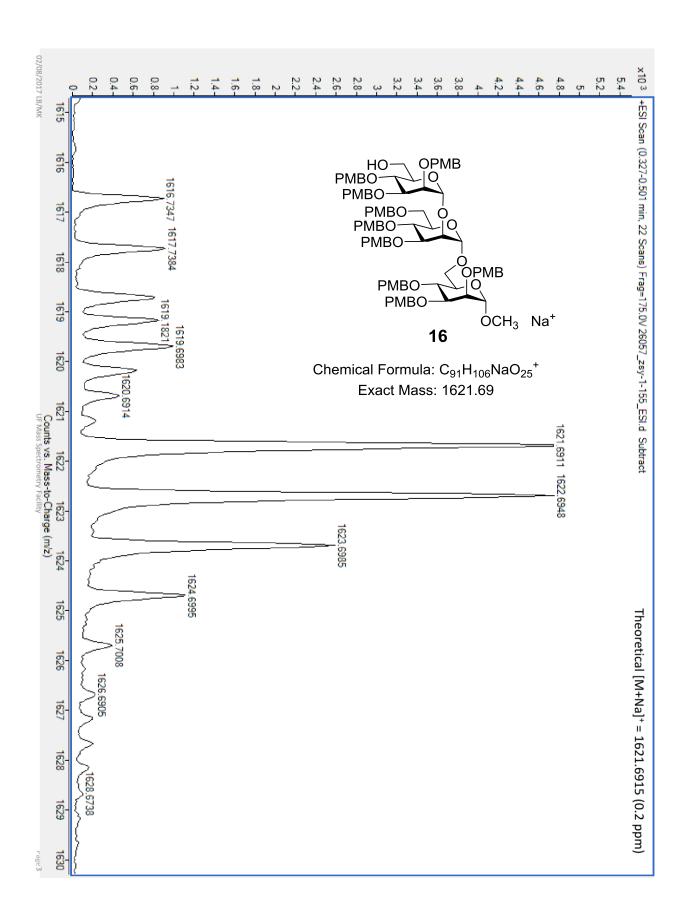


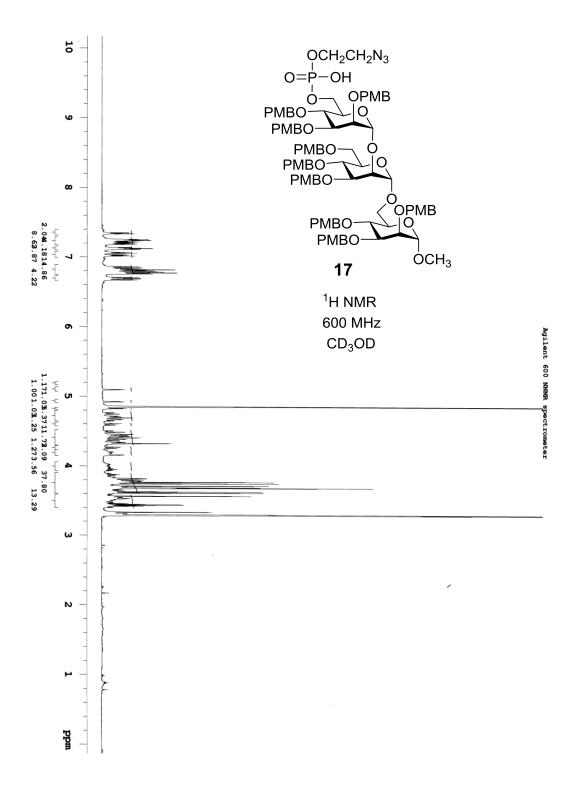


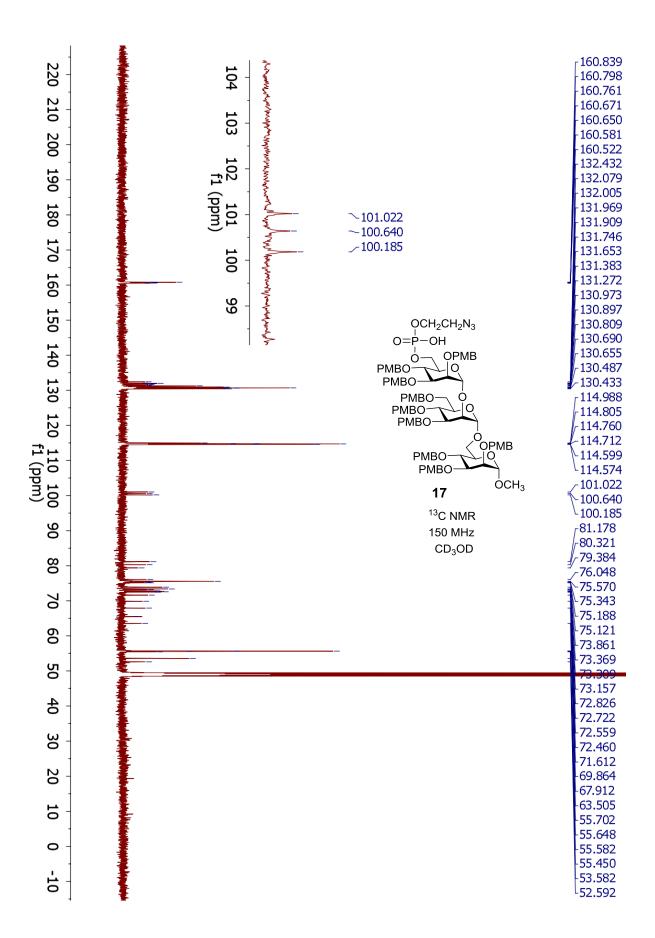


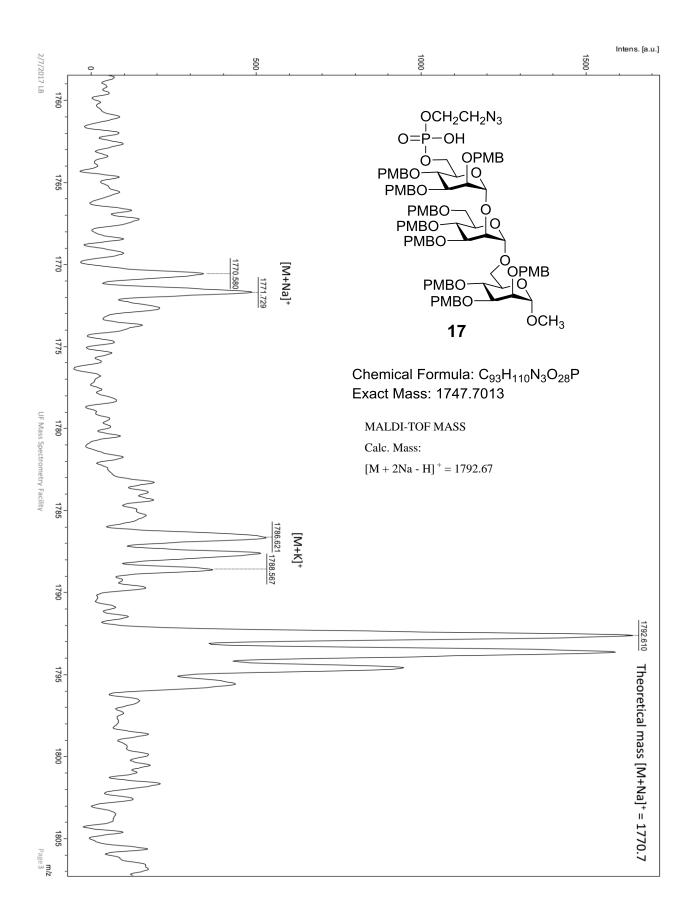


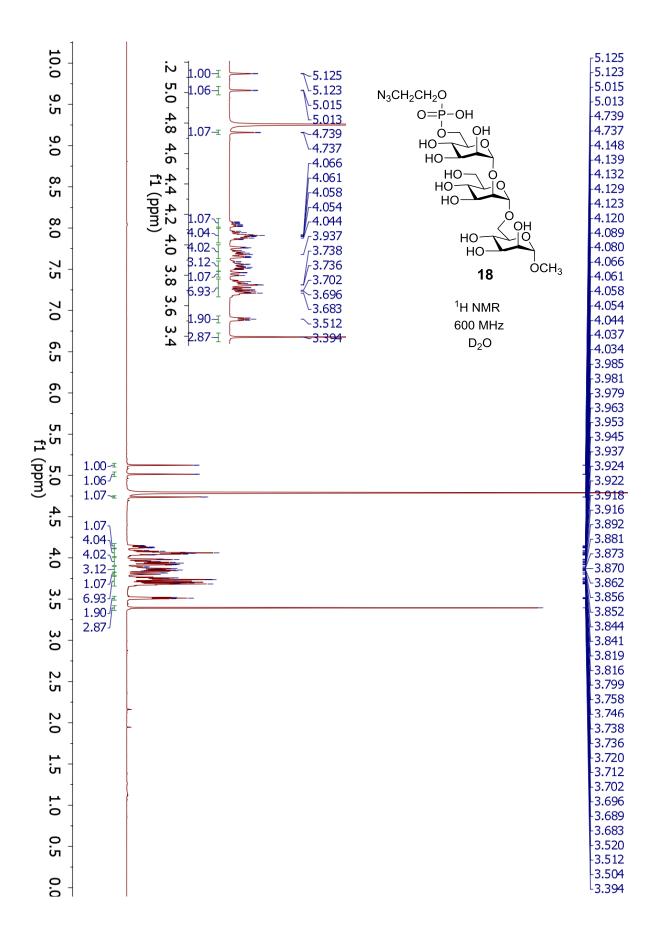


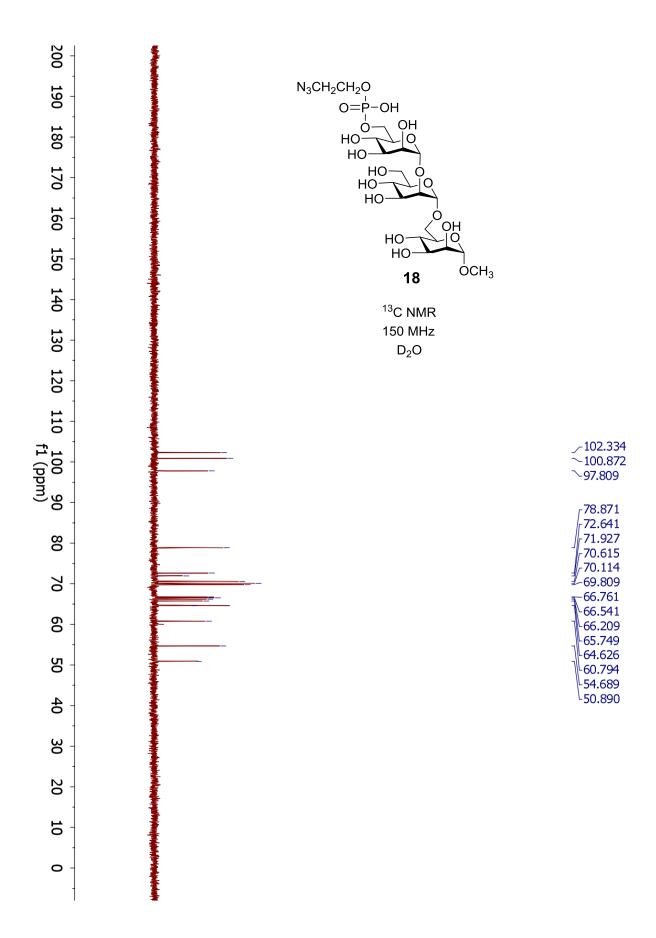


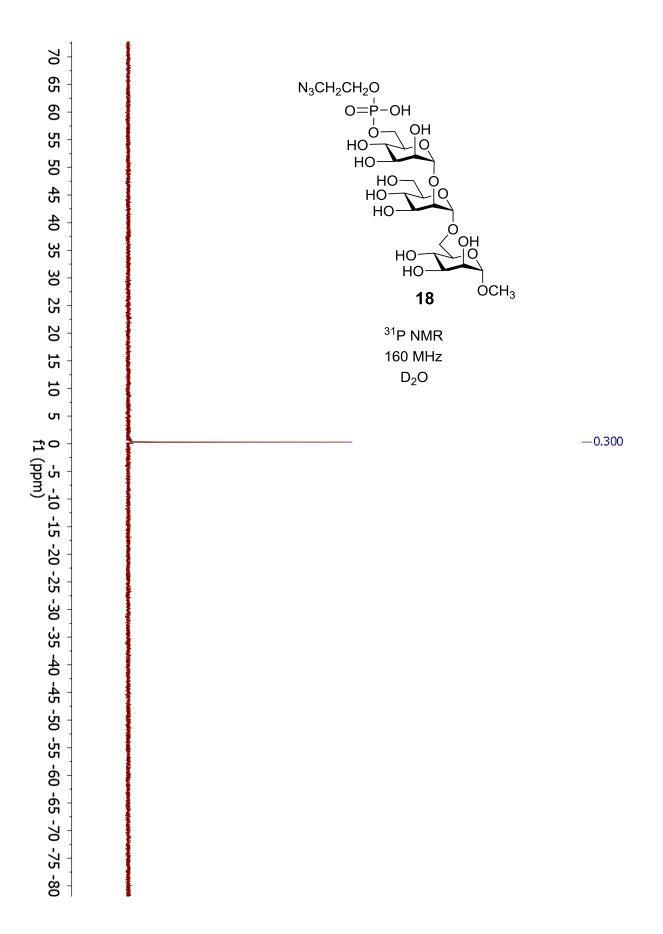


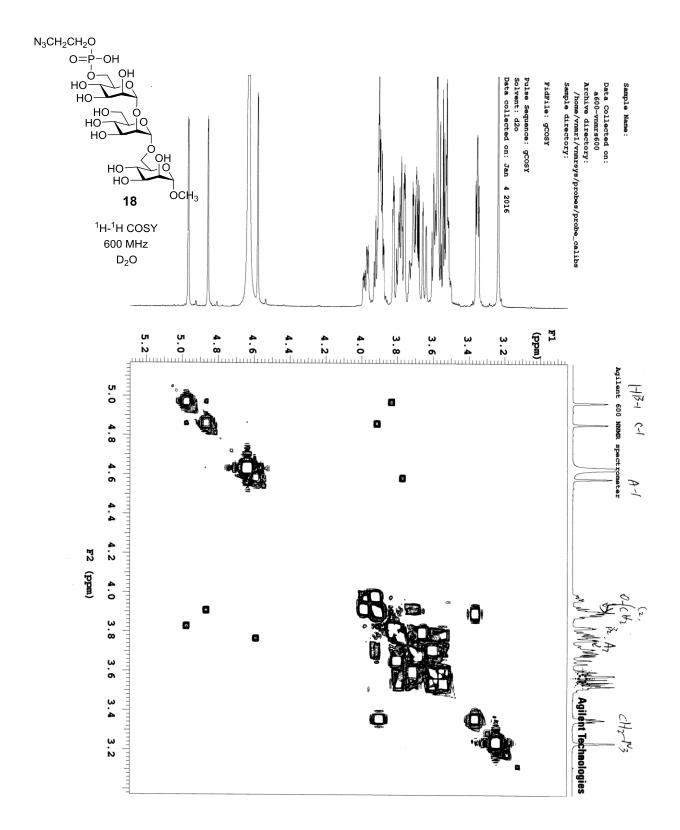


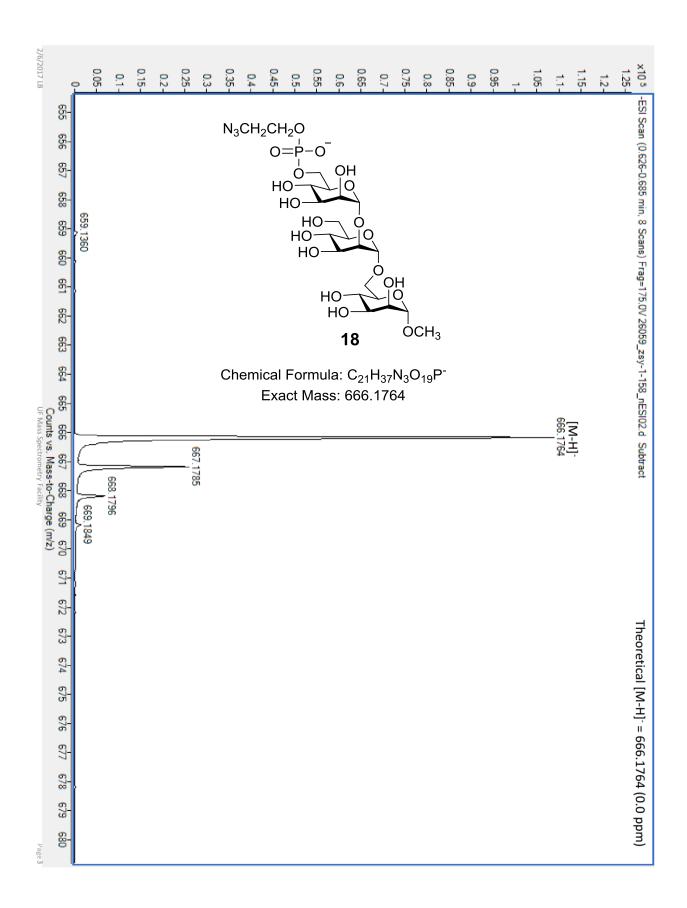


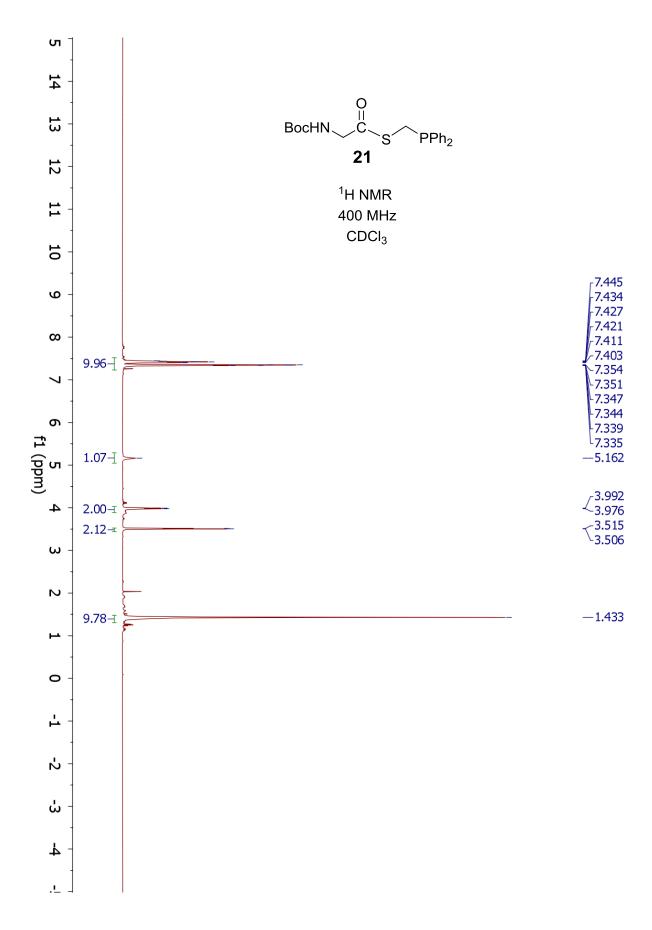


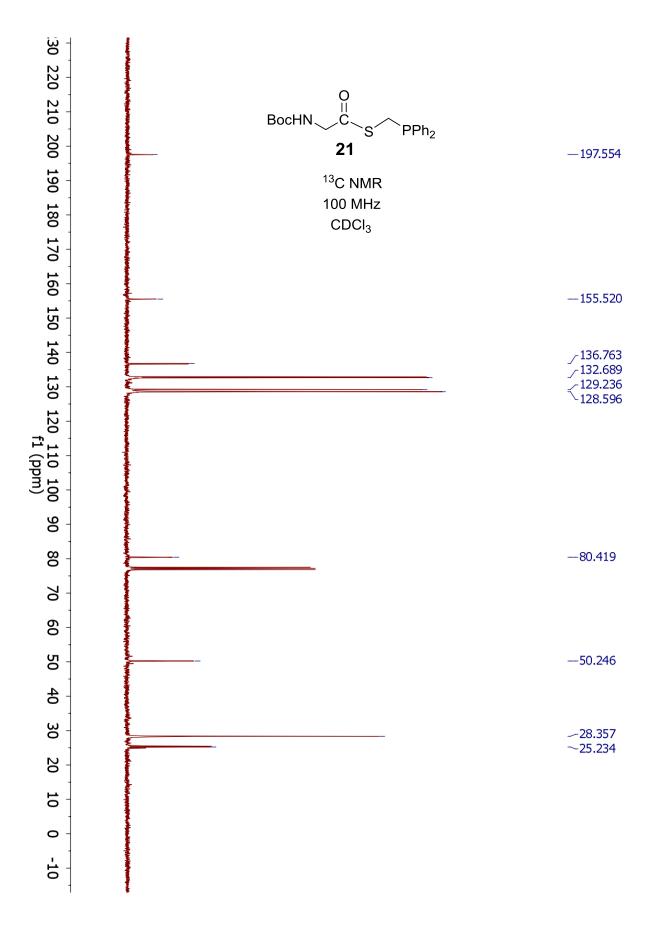


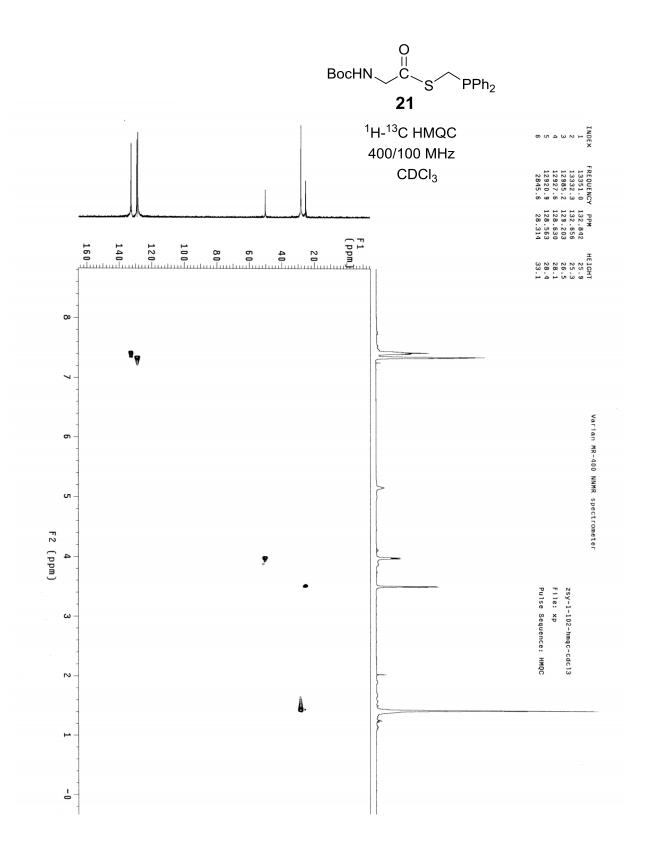


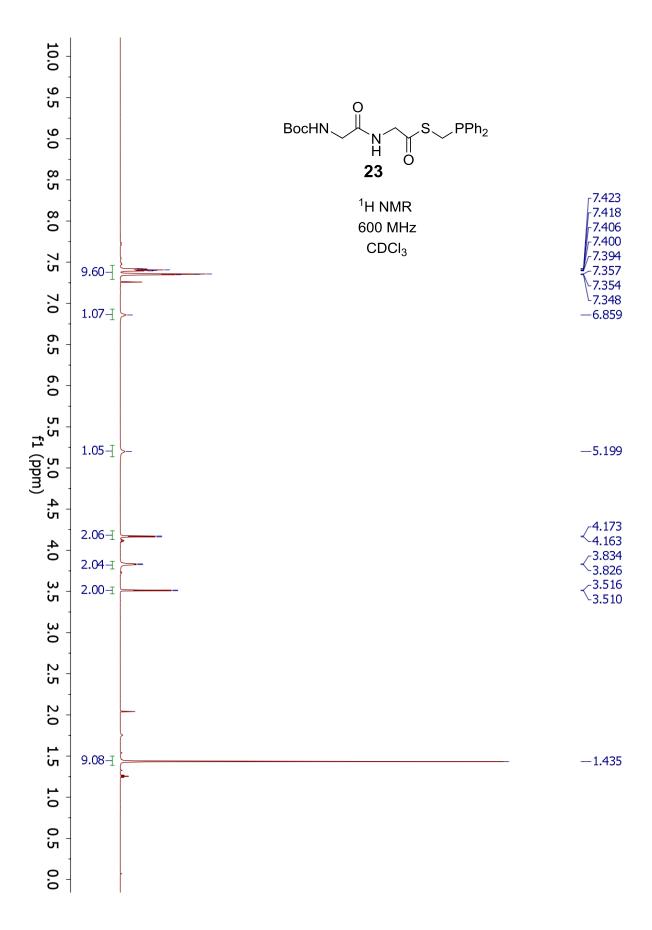


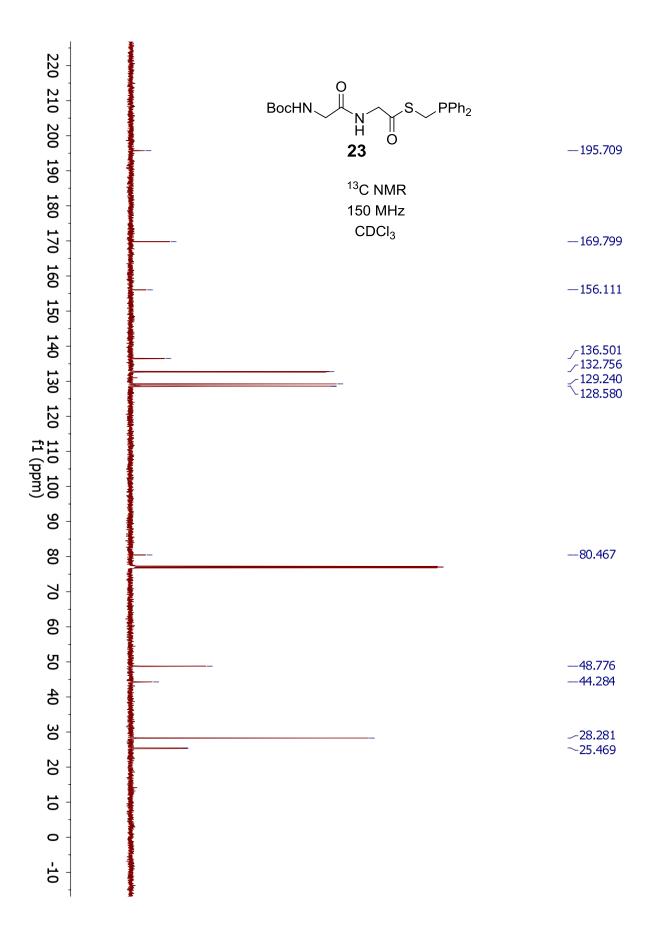


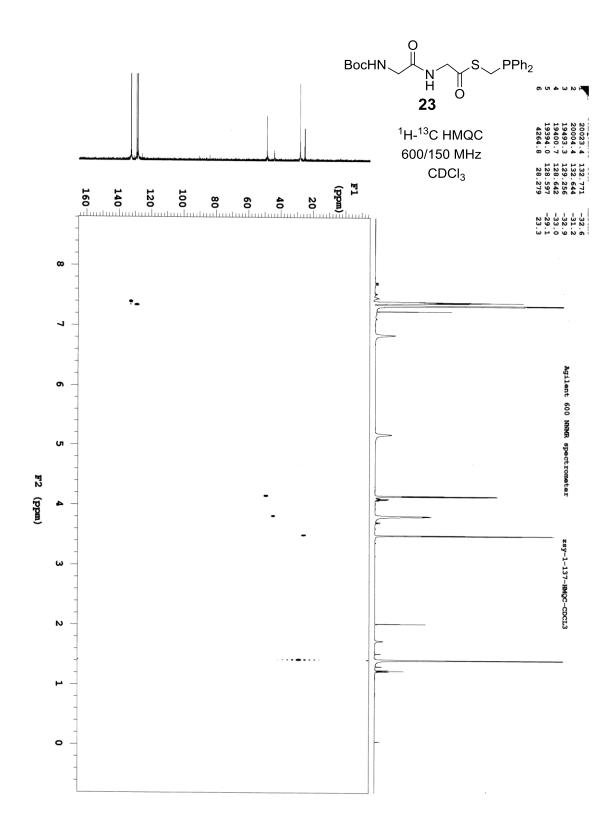












Chemical Formula: C₂₂H₂₇N₂O₄PS Exact Mass: 446.1429

HR ESI-TOF MS

Calc. Mass:

 $[M + H]^+ = 447.1507$

 $[M + Na]^+ = 469.1327$

 $[M + K]^{+} = 485.1066$

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 100.0

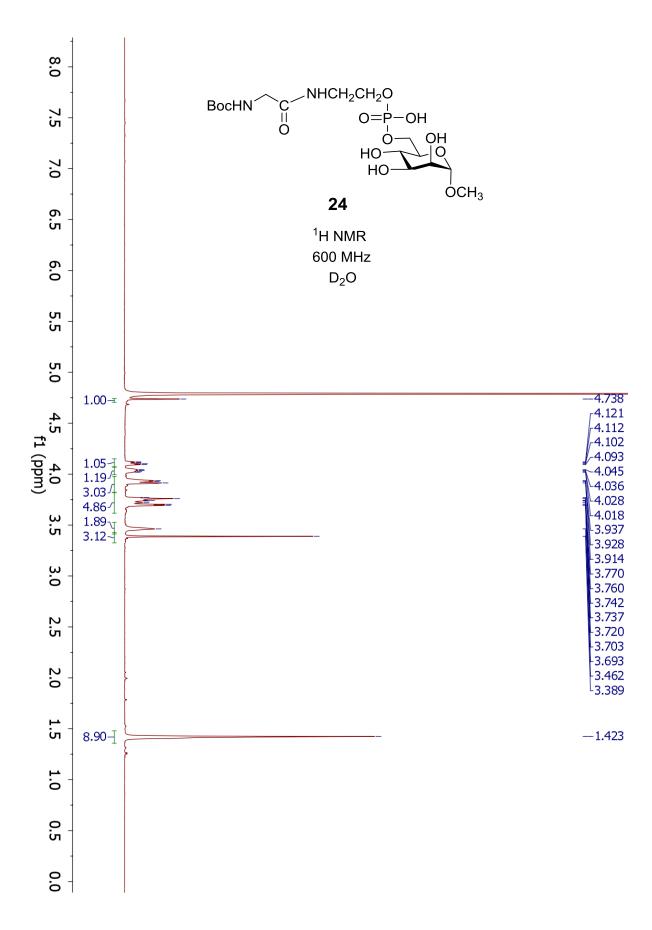
Element prediction: Off

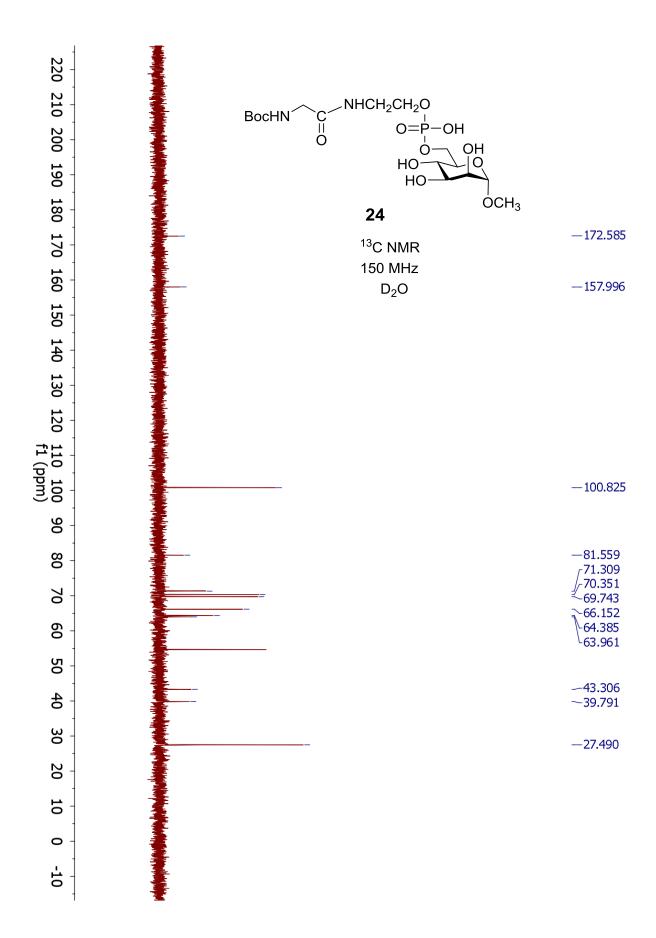
Number of isotope peaks used for i-FIT = 6

Monoisotopic Mass, Even Electron Ions

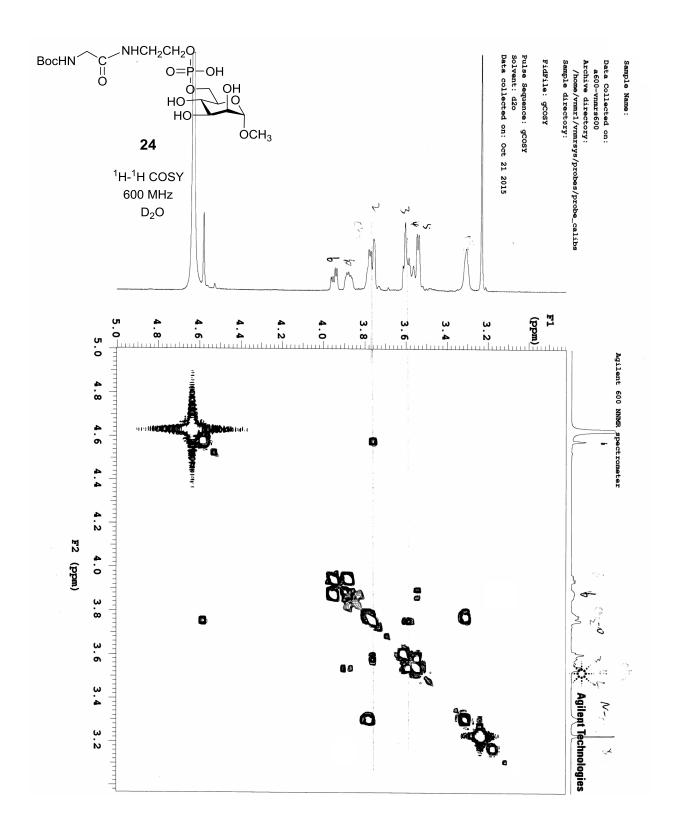
934 formula(e) evaluated with 4 results within limits (all results (up to 1000) for each mass)

Elements Used:


C: 22-22 H: 0-40 N: 0-5 O: 0-10 Na: 0-1 31P: 0-1 S: 0-1 39K: 0-1


S.Zhu ZSY-1-137 in AcN Cone(V)50

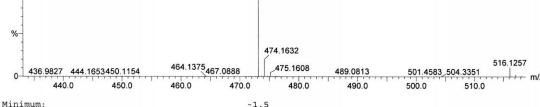
LCT Premier KD128 TOF MS ES+


2.72e+004 485.1138 100-% 469.1286 486.1225 509.0633 562.2490₅76.1333 363.0984 391.0812 407.0839 447.1503 280.0826306.9248 633.2465 m/z 380 400 300 320 340 360 420 440 460 540 480 500 560 580 620 520 600 Minimum: -1.5 3.0 10.0 100.0 Maximum: Calc. Mass PPM DBE i-FIT i-FIT (Norm) Formula

Mass 447.1503 447.1507 -0.4 -0.9 10.5 39.9 C22 1.4 H28 N2 04 31P C22 447.1485 1.8 4.0 8.5 39.8 1.3 H29 N2 02 Na S 39K 447.1525 40.0 -2.2 -4.9 6.5 1.5 C22 H33 03 39K C22 447.1467 3.6 8.1 12.5 39.8 1.3 H24 N4 03 Na

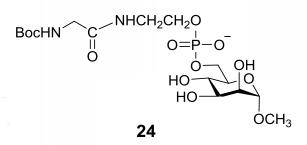
Elemental Composition Report

Single Mass Analysis
Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0
Element prediction: Off

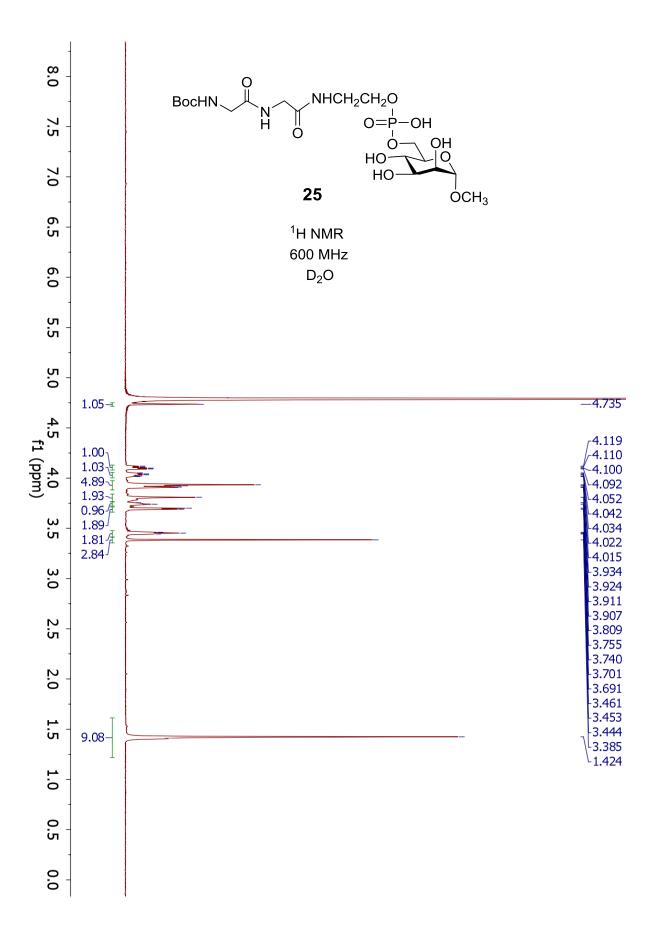

Number of isotope peaks used for i-FIT = 6

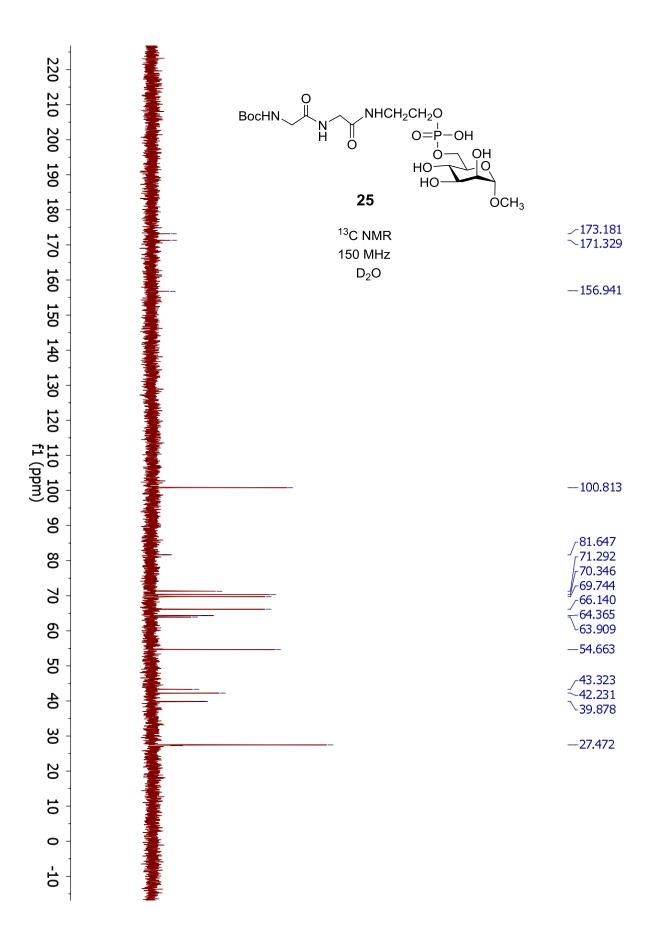
Monoisotopic Mass, Even Electron Ions

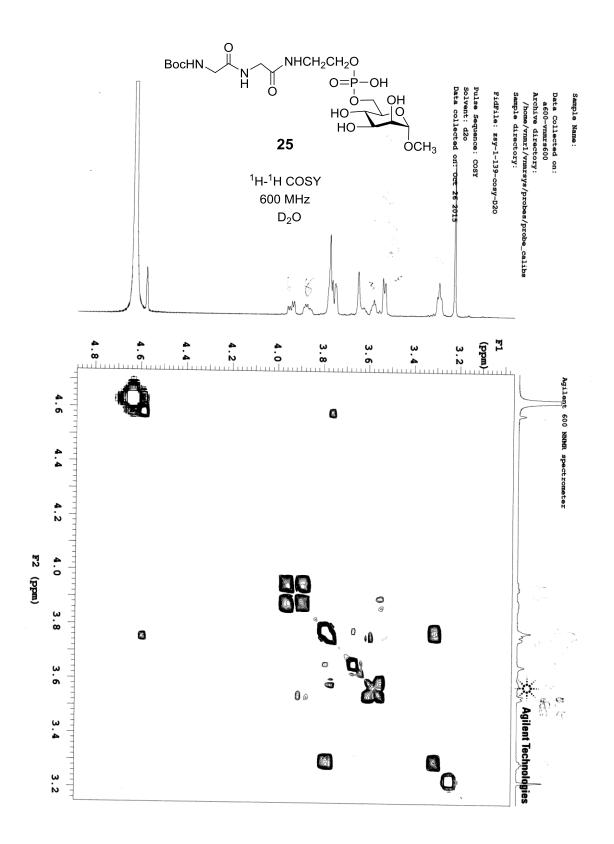
238 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)


Elements Used: C: 16-16 H: 0-35 N: 0-5 O: 0-20 31P: 0-1 S.Zhu ZSY-1-136 inMeOH Cone(V)50

LCT Premier KD128 TOF MS ES-473.1521 100-%

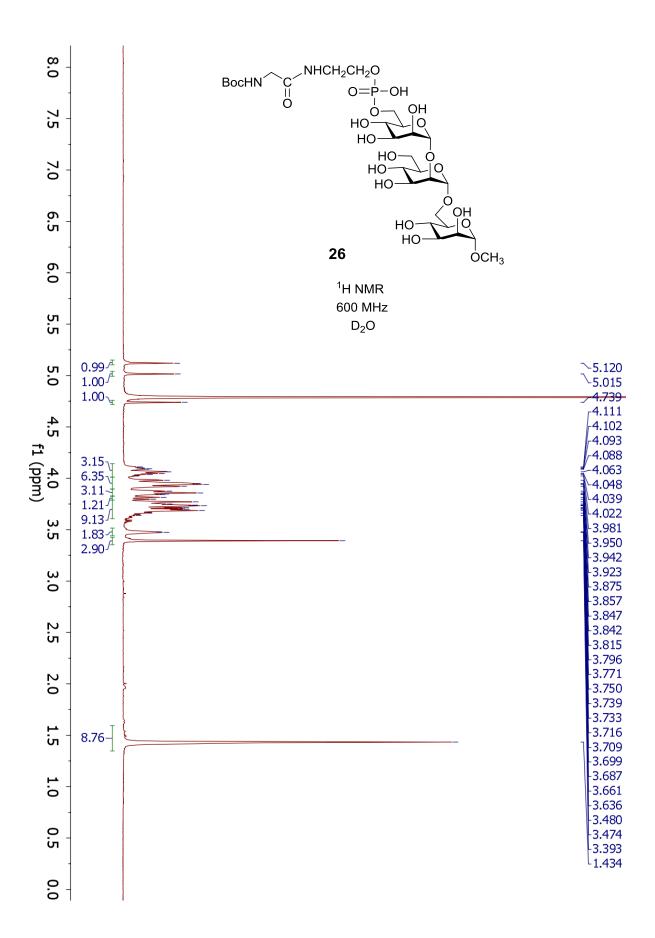

3.30e+005

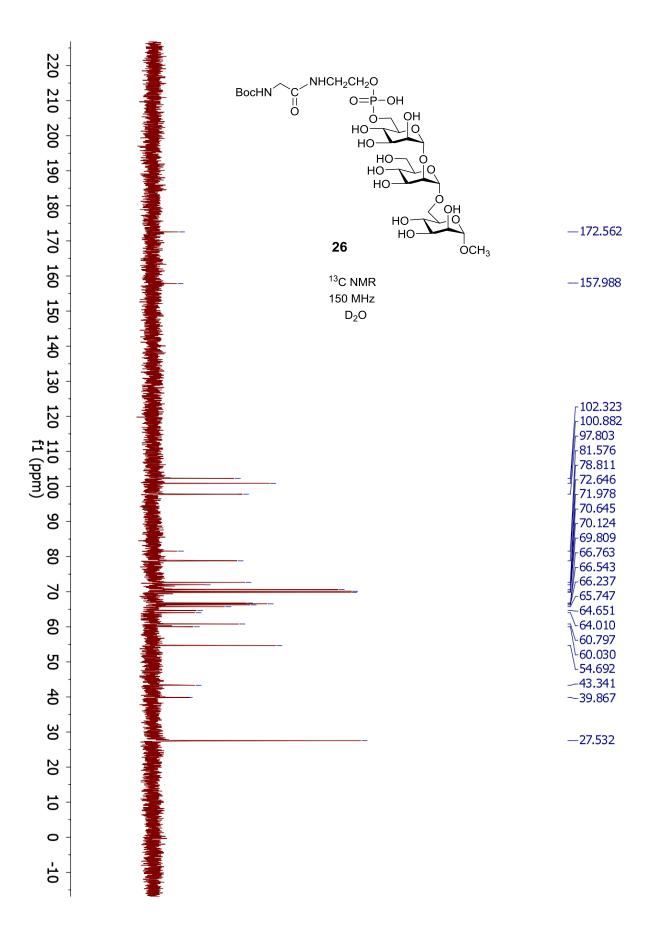

-1.5 100.0 Maximum: 3.0 5.0 Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula 473.1521 473.1536 -1.5 3.5 125.1 C16 H30 N2 O12 -3.2 0.0 31P

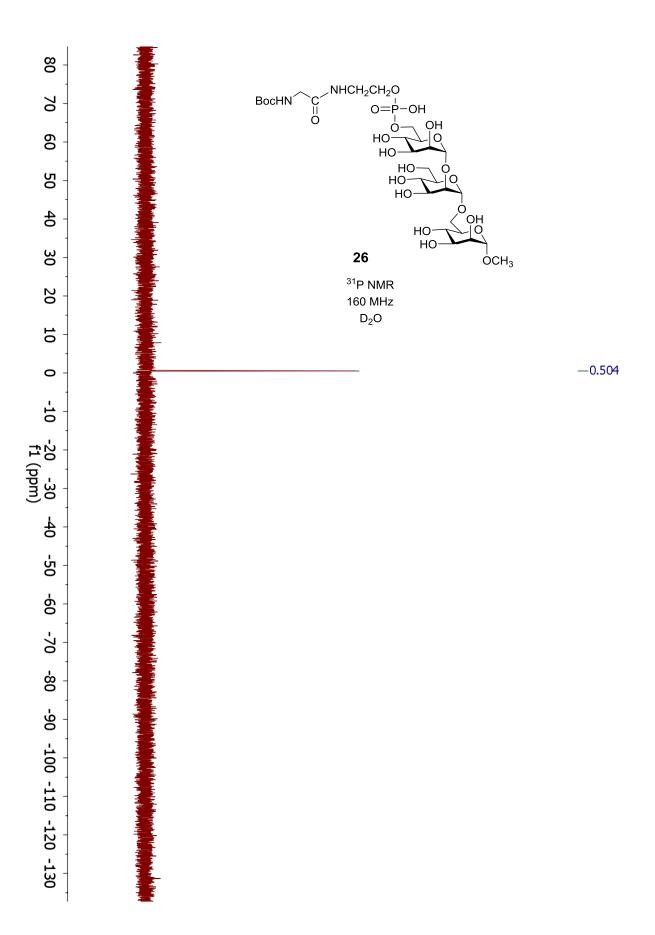


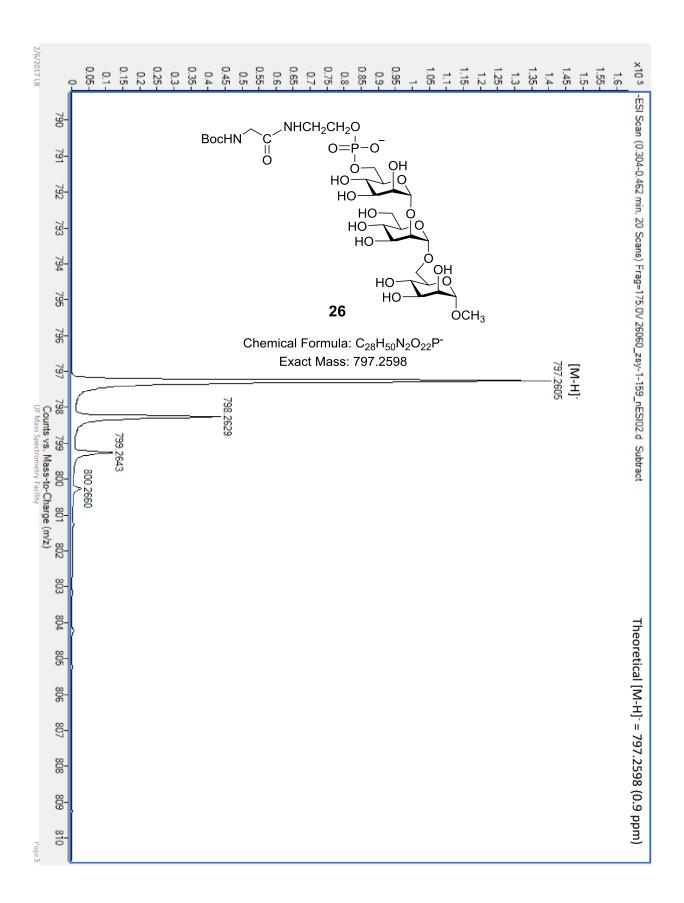
Chemical Formula: C₁₆H₃₀N₂O₁₂P⁻

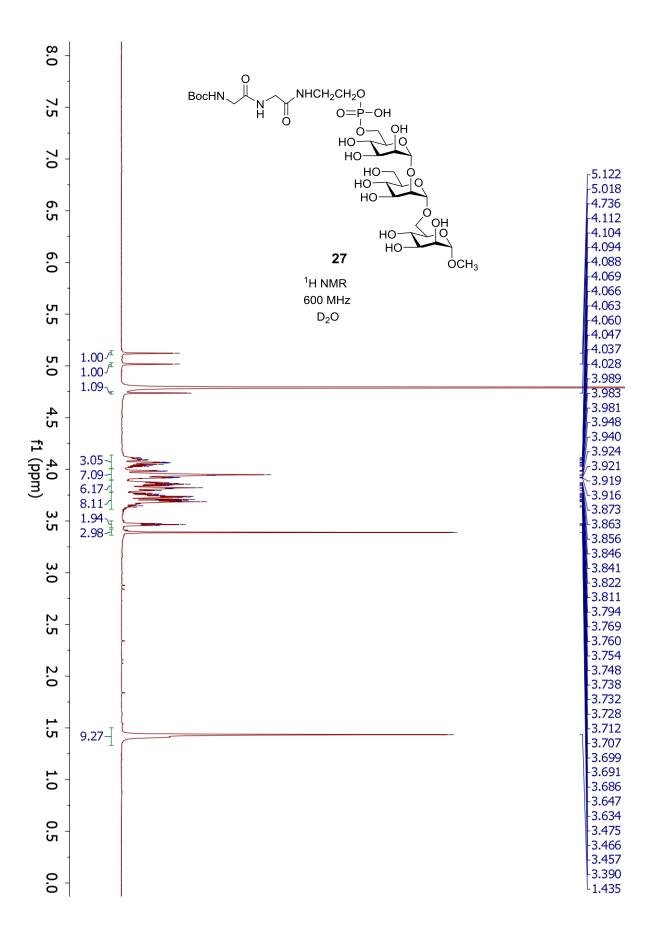
Exact Mass: 473.1542








Chemical Formula: C₁₈H₃₃N₃O₁₃P⁻ Exact Mass: 530.1756


Elemental Composition Report Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 6 Monoisotopic Mass, Even Electron lons 182 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 18-18 H: 0-40 N: 0-5 O: 0-15 31P: 0-1 S.Zhu ZSY-1-139 in MeOH Cone(V)50 LCT Premier KD128 TOF MS ES-1.07e+004 530.1728 100-% 531.1774 532.1860 _{588.1337} 757.0703.770.2238 m/z 301.1855 343.5188 672.1175 489.8228 642.1938 0-575 600 425 450 475 500 525 550 625 650 725 750 775 675 700 Minimum: -1.5 Maximum: 10.0 3.0 100.0 Mass Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula 530.1728 530.1751 -2.3 -4.3 4.5 38.2 0.0 C18 H33 N3 O13 31P

