<u>Supporting Information – Table of Contents</u>

Materials and Methods	S2
Experimental Procedures	S3
A. Syntheses of Heck Cyclization Substrates	S3
A.1. Scalable Synthesis of Imide Substrate 5 for Reaction Discovery	S3
A.2. Syntheses of Halo-Imide Reductive Coupling Partners	S5
A.3. Syntheses of Carbonate Reductive Coupling Partners	S9
A.4. Reductive Cross Coupling of Imides and Carbonates	S18
B. Initial Evaluation of Ligand Effects and Reaction Conditions	S27
C. Scope of Methodology	S28
D. Diastereoselective Heck Cyclization	S36
References	S39
¹ H NMR Spectra	S40
¹³ C NMR Spectra	S90
¹⁹ F NMR Spectra	S140

Materials and Methods. Unless stated otherwise, reactions were conducted in flame-dried glassware under an atmosphere of nitrogen and commercially obtained reagents were used as received. Non-commercially available substrates were synthesized following protocols specified in Section A in the Experimental Procedures. Prior to use, toluene was purified by distillation and taken through three freeze-pump-thaw cycles. 2-Halobenzoic acids derivatives SI-6, SI-8, SI-10 were obtained from Combi-Blocks; SI-4 and SI-1 were obtained from Oakwood; SI-12 was obtained from AstaTech; and SI-16 was obtained from Ark Pharm. Ni(cod)₂ and Benz-ICy•HCl (9) were obtained from Strem Chemicals. Reductive coupling ligands $SI-35^1$ and $SI-41^2$ were prepared from known literature procedures. Reaction temperatures were controlled using an IKAmag temperature modulator, and unless stated otherwise, reactions were performed at room temperature (approximately 23 °C). Thin-layer chromatography (TLC) was conducted with EMD gel 60 F254 pre-coated plates (0.25 mm for analytical chromatography and 0.50 mm for preparative chromatography) and visualized using a combination of UV, anisaldehyde, iodine, and potassium permanganate staining techniques. Silicycle Siliaflash P60 (particle size 0.040-0.063 mm) was used for flash column chromatography. ¹H NMR spectra were recorded on Bruker spectrometers (at 400 and 500 MHz) and are referenced to the residual solvent peak 7.26 ppm for CDCl₃. Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz), integration.¹³C NMR spectra were recorded on Bruker spectrometers (at 125 MHz) and are referenced to the residual solvent peak 77.16 ppm for CDCl₃. Data for ¹³C NMR are reported as follows: chemical shift (δ ppm), multiplicity, and coupling constant (Hz). ¹⁹F NMR spectra were recorded on Bruker spectrometers (at 376 MHz) and are reported in terms of chemical shift in CDCl₃. IR spectra were recorded on a Perkin-Elmer 100 spectrometer and are reported in terms of frequency absorption (cm⁻¹). Highresolution mass spectra were obtained from the UC Irvine and UCLA Mass Spectrometry Facilities using TOF and Orbitrap mass analyzers, respectively.

A. Syntheses of Heck Cyclization Substrates

A.1. Scalable Synthesis of Imide 5 for Reaction Discovery.

Ester SI-3. Following a modification of the general procedure reported by Querolle and coworkers,³ a flask containing a stir bar was charged with CuCN (1.03 g, 11.5 mmol, 1.0 equiv) and LiCl (971 mg, 22.9 mmol, 2.0 equiv) in the glovebox. The flask was removed from the glovebox, and the solids were suspended in THF (39 mL). The resulting mixture was stirred vigorously until a completely dissolved solution of CuCN•2LiCl was formed. In a separate flask containing a solution of methyl-2-iodobenzoate (SI-1) (3.02 g, 11.45 mmol, 1.0 equiv) in THF (115 mL) at -40 °C was added i-BuMgCl (8.6 mL of a 2.0 M solution in THF, 17.2 mmol, 1.5 equiv) dropwise over 1 min. After this mixture was stirred at -40 °C for 1 h, the solution of CuCN•2LiCl was added via cannula. The combined mixture stirred at -40 °C for an additional 15 min, at which point bromide SI-2 (4.65 g, 28.6 mmol, 2.5 equiv) was added dropwise over 1 min. After stirring at -40 °C for an additional hour, the reaction was poured into 9:1 sat. aq. NH₄Cl:NH₄OH (150 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 100 mL). The organic layers were combined, dried over MgSO₄, and concentrated under reduced pressure. The crude mixture was purified via flash chromatography (4:1 Benzene: Hexanes) to afford ester SI-3 (767 mg, 31% yield) as a colorless oil. Ester SI-3: R_f 0.63 (3:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.83 (dd, J = 7.7, 1.3, 1H), 7.40 (td, J =7.5, 1.5, 1H), 7.23 (t, J = 7.5, 1H), 7.20 (d, J = 7.7, 1H), 3.89 (s, 3H), 3.78 (s, 2H) 1.76 (s, 3H), 1.71 (s, 3H), 1.57 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 168.7, 142.1, 131.9, 130.6, 130.3, 129.2, 127.1, 125.73, 125.66, 52.0, 37.7, 20.73, 20.69, 18.6; IR (film): 2916, 1720, 1433, 1262, 1246, 1121, 1076 cm⁻¹; HRMS–APCI (m/z) [M + H]⁺ calcd for C₁₄H₁₉O₇⁺, 219.13796; found 219.13784.

Imide 5. To a solution of ester SI-3 (767 mg, 3.51 mmol, 1.0 equiv) in THF (6.6 mL) was added a solution of NaOH (703 mg, 17.6 mmol, 5.0 equiv) in H₂O (3.3 mL). The reaction was heated to 90 °C and stirred for 12 h. After cooling to room temperature, the reaction mixture was poured into deionized water (25 mL) and diluted with EtOAc (25 mL). The layers were separated and the aqueous layer was acidified to pH ~4 with 1 N HCl (15 mL) and extracted with EtOAc (3 x 25 mL). The organic layers were combined, washed with deionized water (300 mL), dried over MgSO₄, and concentrated under reduced pressure to afford the corresponding carboxylic acid, which was used in the subsequent step without further purification.

To a solution of the crude carboxylic acid, HOBt (591 mg, 3.86 mmol, 1.1 equiv from **SI-3**), and EDC•HCl (740 mg, 3.86 mmol, 1.1 equiv from **SI-3**) in DMF (21 mL) was added benzylamine (0.42 mL, 3.86 mmol, 1.1 equiv from **SI-3**) and triethylamine (0.5 mL, 3.86 mmol, 1.1 equiv from **SI-3**). After stirring for 7 h, the reaction mixture was poured into deionized water (100 mL) and diluted with EtOAc (50 mL). The layers were separated and the aqueous layer was extracted with EtOAc (2 x 50 mL). The organic layers were combined, washed with deionized water (100 mL), dried over MgSO₄, and concentrated under reduced pressure to afford the corresponding amide, which was used in the subsequent step without further purification.

To a solution of the crude amide in CH₃CN (17 mL) was added DMAP (43 mg, 0.351 mmol, 0.1 equiv from **SI-3**) and Boc₂O (996 mg, 4.56 mmol, 1.3 equiv from **SI-3**). After stirring for 7 h, the reaction mixture was concentrated under reduced pressure and purified by flash chromatography (99:1 Hexanes:EtOAc) to yield imide **5** (1.26 g, 91% yield, 3 steps) as a white solid. Imide **5**: mp: 65–67 °C; R_f 0.60 (3:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.43 (d, *J* = 7.9, 2H), 7.34 (d, *J* = 7.4, 2H), 7.31–7.25 (m, 2H), 7.16 (t, *J* = 7.4, 1H), 7.11 (d, *J* = 7.9, 2H), 5.03 (s, 2H), 3.43 (s, 2H), 1.75 (s, 3H), 1.70 (s, 3H), 1.58 (s, 3H), 1.11 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 172.6, 153.0, 138.7, 138.0, 137.7, 129.5, 128.6, 128.40, 128.36, 127.5, 127.2, 125.9, 125.44, 125.37, 83.4, 48.0, 36.8, 27.5, 20.76, 20.75, 18.8; IR (film): 2981,

2922, 1728, 1670, 1368, 1333, 1229, 1138 cm⁻¹; HRMS–APCI (*m/z*) $[M + H]^+$ calcd for $C_{25}H_{32}NO_3^+$, 394.23767; found 394.23462.

A.2. Syntheses of Halo-Imide Reductive Coupling Partners

Representative Procedure (synthesis of imide SI-5 is used as an example).

Iodo-imide SI-5. To a mixture of 2-iodo-benzoic acid (SI-4) (10.0 g, 40.4 mmol, 1.0 equiv), EDC•HCl (8.5 g, 44 mmol, 1.1 equiv), HOBt (6.0 g, 44 mmol, 1.1 equiv) and triethylamine (6.2 mL, 88 mmol, 2.2 equiv) in DMF (238 mL) was added benzylamine (5.0 mL, 44 mmol, 1.1 equiv). The resulting mixture was stirred for 16 h, and then diluted with deionized water (100 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 100 mL). The combined organic layers were washed with 0.1 N HCl (100 mL), sat. aq. NaHCO₃ (100 mL), and brine (100 mL), dried over Na₂SO₄, and filtered. Concentration under reduced pressure afforded the crude amide, which was used in the subsequent step without further purification.

To the vessel containing the crude amide was added DMAP (0.5 g, 4 mmol, 0.1 equiv from **SI-4**), followed by acetonitrile (192 mL). Boc₂O (11.5 g, 52.5 mmol, 1.3 equiv from **SI-4**) was added in one portion and the reaction vessel was flushed with N₂. The reaction mixture was allowed to stir for 16 h. The reaction was concentrated under reduced pressure and the resulting crude residue was purified by flash chromatography (9:1 Hexanes:EtOAc) to yield iodo-imide **SI-5** (16.4 g, 93% yield, 2 steps) as a white solid. Iodo-imide **SI-5**: mp: 100–101 °C; R_f 0.54 (4:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.79 (d, *J* = 8.0, 1H), 7.47 (d, *J* = 8.0, 2H), 7.37–7.32 (m, 3H), 7.30–7.27 (m, 1H), 7.18–7.15 (m, 1H), 7.10–7.05 (m, 1H), 5.05 (s, 2H), 1.14 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 171.7, 152.1, 144.6, 139.2, 137.5, 130.3, 128.6, 128.5, 127.9, 127.6, 127.0, 91.7, 83.9, 48.0, 27.6; IR (film): 2979, 1731, 1668, 1228, 741 cm⁻¹; HRMS– APCI (*m/z*) [M + H]⁺ calcd for C₁₉H₂₁INO₃⁺, 438.05606; found 438.05536.

Iodo-imide SI-7. Following the representative procedure with 2-iodo-5-fluorobenzoic acid (**SI-6**) (2.0 g, 7.52 mmol), purification by flash chromatography (99:1 Pentane:Et₂O → 19:1 Pentane:Et₂O) afforded iodo-imide **SI-7** (2.46 g, 72% yield, 2 steps) as a white solid. Iodo-imide **SI-7**: mp: 61–63 °C; R_f 0.60 (3:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.72 (dd, J = 8.7, 5.2, 1H), 7.46 (d, J = 7.3, 2H), 7.34 (tt, J = 7.1, 1.4, 2H), 7.28 (tt, J = 7.3, 1.4, 1H), 6.93 (dd, J = 8.5, 3.1, 1H), 6.83 (dt, J = 8.5, 3.1, 1H), 5.04 (s, 2H), 1.20 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 170.3 (d, J = 2.2), 162.7 (d, J = 246), 151.8, 146.2 (d, J = 7.2), 140.6 (d, J = 7.7), 137.2, 128.63, 128.56, 127.7, 117.7 (d, J = 22), 114.7 (d, J = 24), 84.6 (d, J = 3.6), 84.3, 48.0, 27.6; ¹⁹F NMR (376 MHz, CDCl₃): δ −113.7, (s, 1F); IR (film): 2981, 1736, 1671, 1369, 1350, 1331, 1232, 1149 cm⁻¹; HRMS–APCI (m/z) [M + H]⁺ calcd for C₁₉H₂₀FINO₃⁺ 456.04664; found 456.04664.

Iodo-imide SI-9. Following the representative procedure with 2-iodo-5-(trifluoromethyl)benzoic acid (**SI-8**) (1.98 g, 6.27 mmol), purification by flash chromatography (99:1 Pentane:Et₂O → 19:1 Pentane:Et₂O) afforded iodo-imide **SI-9** (2.79 g, 88% yield, 2 steps) as an off-white solid. Iodo-imide **SI-9**: mp: 60–62 °C; R_f 0.70 (3:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.93 (d, J = 8.3, 1H), 7.48 (d, J = 7.3, 2H), 7.41 (d, J = 2.0, 1H), 7.35 (tt, J = 7.6, 1.5, 2H), 7.33– 7.28 (m, 2H), 5.07 (s, 2H), 1.15 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 170.4, 151.7, 145.5, 139.8, 137.1, 130.8 (q, J = 33), 128.7, 128.6, 127.8, 126.5 (q, J = 3.6), 123.68 (q, J = 273), 123.67 (q, J = 3.8), 95.8, 84.4, 48.0, 27.5; ¹⁹F NMR (376 MHz, CDCl₃): δ –63.0, (s, 3F); IR (film): 2982, 1737, 1669, 1317, 1225, 1126, 1079 cm⁻¹; HRMS–APCI (*m/z*) [M + H]⁺ calcd for C₂₀H₂₀F₃INO₃⁺ 506.04345; found 506.04387.

Iodo-imide SI-11. Following the representative procedure with 2-iodo-5-methoxybenzoic acid (**SI-10**) (1.0 g, 3.6 mmol), 2-iodo-imide **SI-11** (1.5 g, 87% yield, 2 steps) was obtained as a colorless oil. Iodo-imide **SI-11**: R_f 0.24 (4:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.62 (d, *J* = 8.8, 1H), 7.48–7.45 (m, 2H), 7.36–7.32 (m, 2H), 7.30–7.26 (m, 1H), 6.73 (d, *J* = 3.1, 1H), 6.66 (dd, *J* = 8.7, 3.1, 1H), 5.04 (s, 2H), 3.76, (s, 3H), 1.17 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 171.3, 159.6, 151.9, 145.1, 139.7, 137.3, 128.5, 128.4, 127.4, 116.8, 112.8, 83.7, 80.0, 55.5, 47.9, 27.4; IR (film): 2979, 1735, 1466, 1144, 848, 699 cm⁻¹; HRMS–APCI (*m/z*) [M + H]⁺ calcd for C₂₀H₂₃INO₄⁺, 468.06663; found 468.06671.

Bromo-imide SI-13. Following the representative procedure with 2-bromo-4-methoxybenzoic acid (**SI-12**) (0.46 g, 2.0 mmol), 2-bromo-imide **SI-13** (0.86 g, quantitative yield, 2 steps) was obtained as a yellow oil. Bromo-imide **SI-13**: R_f 0.25 (9:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.46–7.44 (m, 2H), 7.35–7.31 (m, 2H), 7.32–7.29 (m, 1H), 7.22 (d, *J* = 8.7, 1H), 7.07 (d, *J* = 2.5, 1H), 6.86 (dd, *J* = 8.7, 2.5, 1H), 5.02 (s, 2H), 3.81, (s, 3H), 1.19 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 170.5, 160.8, 152.5, 137.7, 132.7, 129.3, 128.5 (4 carbons), 127.5, 119.8, 118.11, 113.2, 83.5, 55.8, 48.2, 27.6; IR (film): 2979, 1731, 1599, 1227, 848, 558 cm⁻¹; HRMS–APCI (*m*/*z*) [M + H]⁺ calcd for C₂₀H₂₃BrNO₄⁺, 420.08050; found 420.08082.

Iodo-imide SI-15. Following the representative procedure with 2-iodo-4-methylbenzoic acid (SI-14) (2.0 g, 7.6 mmol), iodo-imide SI-15 (3.3 g, 92% yield, 2 steps) was obtained as a colorless oil. Iodo-imide SI-15: R_f 0.34 (9:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.65 (d, J = 7.8, 1H), 7.48–7.45 (m, 2H), 7.35–7.31 (m, 2H), 7.29–7.25 (m, 1H), 7.00 (d, J = 2.1, 1H), 6.89 (ddd, J = 8.1, 2.1, 0.8, 1H), 5.04 (s, 2H), 2.29 (s, 3H), 1.15 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 171.7, 152.1, 144.2, 138.8, 138.0, 137.4, 131.2, 128.5, 128.4, 127.8, 127.4, 87.4, 83.6, 47.9, 27.4, 20.8; IR (film): 2979, 1731, 1668, 1141, 848, 698 cm⁻¹; HRMS–APCI (m/z) [M + H]⁺ calcd for C₂₀H₂₃INO₃⁺, 452.07171; found 452.07080.

Iodo-imide SI-17. Following the representative procedure with 2-iodo-3-methylbenzoic acid (**SI-16**) (3.0 g, 12 mmol), iodo-imide **SI-17** (4.4 g, 85% yield, 2 steps) was obtained as a white solid. Iodo-imide **SI-17**: mp: 87–89 °C; R_f 0.62 (4:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.48 (d, J = 7.8, 2H), 7.36–7.32 (m, 2H), 7.29–7.26 (m, 1H), 7.24–7.20 (m, 2H), 6.90 (dd, J = 6.7, 2.4, 1H), 5.07 (s, 2H), 2.46 (s, 3H), 1.11 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 171.9, 152.0, 145.7, 142.2, 137.4,129.5, 128.42, 128.36, 127.9, 127.4, 123.7, 98.5, 83.6, 47.7, 28.8, 27.4; IR (film): 2979, 1732, 1338, 1145, 849, 699 cm⁻¹; HRMS–APCI (*m/z*) [M + H]⁺ calcd for C₂₀H₂₃INO₃⁺, 452.07171; found 452.07177.

A.3. Syntheses of Carbonate Reductive Coupling Partners

Carbonate SI-18. To a suspension of K_2CO_3 (39.0 g, 0.282 mol, 4.0 equiv) in DMF (116 mL) was added AcOH (12 mL, 0.212 mol, 3.0 equiv). The mixture was cooled to 0 °C. After stirring for 5 min, bromide **SI-2**⁴ (11.5 g, 0.0705 mol, 1.0 equiv) was added. After stirring vigorously at 0 °C for 2 h, the reaction mixture was poured into deionized water (300 mL) and diluted with Et₂O (150 mL). The layers were separated and the aqueous layer was extracted with Et₂O (2 x 150 mL). The organic layers were combined, washed with deionized water (300 mL), dried over MgSO₄, and concentrated under reduced pressure (~100 mbar, at room temperature) to afford the corresponding acetate, which was used in the subsequent step without further purification.

To a solution of the crude acetate in MeOH (141 mL) was added K_2CO_3 (48.7 g, 0.353 mol, 4.0 equiv from **SI-2**). After stirring vigorously for 12 h, the reaction mixture was poured into deionized water (300 mL) and diluted with Et₂O (150 mL). The layers were separated and the aqueous layer was extracted with Et₂O (2 x 150 mL). The organic layers were combined, washed with deionized water (300 mL), dried over MgSO₄, and concentrated under reduced pressure (~100 mbar, at room temperature) to afford the corresponding alcohol, which was used in the subsequent step without further purification.

To a solution of the crude alcohol in CH₂Cl₂ (176 mL) was added pyridine (17.0 mL, 0.212 mol, 3.0 equiv from **SI-2**). The reaction was cooled to 0 °C. After stirring for 5 min, methyl chloroformate (11 mL, 0.141 mol, 2.0 equiv from **SI-2**) was added dropwise over 1 min. The reaction was stirred for 6 h, and allowed to warm to room temperature, at which point additional pyridine (8.50 mL, 0.141 mol, 1.0 equiv from **SI-2**) and methyl chloroformate (5.5 ml, 0.106 mol, 1.5 equiv from **SI-2**) was added. After stirring for an additional 12 h, the reaction mixture was poured into brine (200 mL) and diluted with Et₂O (150 mL). The layers were separated and the aqueous layer was extracted with Et₂O (2 x 150 mL). The organic layers were combined, washed with 1 N HCl (300 mL), dried over MgSO₄, and concentrated under reduced pressure (~100 mbar, at room temperature). The crude mixture was purified via flash

chromatography (99:1 Pentane:Et₂O \rightarrow 15:1 Pentane:Et₂O) to afford carbonate **SI-18** (4.62 g, 41% yield, 3 steps) as a colorless oil. Carbonate **SI-18**: R_f0.61 (3:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 4.63 (s, 2H), 3.74 (s, 3H), 1.75–1.73 (m, 3H), 1.70–1.68 (m, 3H), 1.67 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 156.1, 132.8, 122.4, 69.3, 54.7, 20.9, 20.3, 16.7; IR (film): 2988, 2919, 1744, 1442, 1246 cm⁻¹; HRMS–ESI (*m/z*) [M + Na]⁺ calcd for C₈H₁₄NaO₃⁺, 181.0841; found 181.0843.

Carbonate SI-20. To a solution of tiglic aldehyde (**SI-19**) (3.0 g, 36 mmol, 1.0 equiv) in MeOH (15 mL) at 0 °C was added NaBH₄ (1.6 g, 43 mmol, 1.2 equiv) in 10 portions over 5 min at 0 °C. After 3 h of stirring at room temperature, the mixture was poured into deionized water (50 mL) and diluted with CH_2Cl_2 (50 mL). The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (2 x 50 mL). The organic layers were combined, washed with brine (50 mL), dried over MgSO₄, and concentrated under reduced pressure to afford the corresponding alcohol, which was used in the subsequent step without further purification.

To a solution of the crude alcohol in CH₂Cl₂ (180 mL) was added pyridine (2.57 mL, 31.9 mmol, 3.0 equiv from **SI-19**) and DMAP (0.86 g, 7.1 mmol, 0.2 equiv). The reaction was cooled to 0 °C. After stirring for 5 min, methyl chloroformate (0.87 mL, 11.3 mmol, 2.0 equiv from **SI-19**) was added dropwise over 20 min. The reaction was allowed to warm to room temperature. After stirring for 1 h, the reaction mixture was poured into brine (50 mL) and diluted with CH₂Cl₂ (50 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (2 x 50 mL). The organic layers were combined, washed with 1 N HCl (50 mL), dried over MgSO₄, and concentrated under reduced pressure. The crude mixture was purified via flash chromatography (9:1 Pentane:Et₂O) to afford carbonate **SI-20** (4.6 g, 80% yield, 2 steps) as a colorless oil. Carbonate **SI-20**: R_f 0.61 (4:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 5.59 (q, *J* = 7.0, 1H), 4.51 (s, 2H), 3.77 (s, 3H), 1.67 (s, 3H), 1.63 (d, *J* = 7.0, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 156.0, 130.4, 125.2, 74.0, 54.8, 13.7, 13.4; IR (film): 2957, 1745, 1442,

1250, 935, 792 cm⁻¹; HRMS–ESI (m/z) $[M + Na]^+$ calcd for C₈H₁₄O₃Na 181.0843; found 181.0841.

Carbonate SI-22. To a solution of methyl ester **SI-21** (1.26 g, 10.0 mmol, 1.0 equiv) in Et₂O (17 mL) at 0 °C was added LiAlH₄ (570 mg, 15.0 mmol, 1.5 equiv) at 0 °C. After stirring for 4 h, deionized water (3 mL) was added dropwise over 5 min at 0 °C. The resulting heterogeneous mixture was filtered through a plug of celite® (50 mL of Et₂O eluent) and the filtrate was diluted with deionized water (50 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 x 50 mL). The organic layers were combined, dried over MgSO₄, and concentrated under reduced pressure (~100 mbar, at room temperature) to afford the corresponding alcohol, which was used in the subsequent step without further purification.

To a solution of the crude alcohol in CH₂Cl₂ (30 mL) was added pyridine (2.50 mL, 30.0 mmol, 3.0 equiv from **SI-21**). The reaction was cooled to 0 °C. After stirring for 5 min, methyl chloroformate (1.55 mL, 20.0 mmol, 2.0 equiv from **SI-21**) was added dropwise over 1 min. The reaction was allowed to warm to room temperature. After stirring for 15 h, the reaction mixture was poured into brine (150 mL) and diluted with CH₂Cl₂ (50 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 x 50 mL). The organic layers were combined, washed with 1 N HCl (50 mL), dried over MgSO₄, and concentrated under reduced pressure (~100 mbar, at room temperature). The crude mixture was purified via flash chromatography (98:2 Hexanes:Et₂O) to afford carbonate **SI-22** (792 mg, 50% yield, 2 steps) as a colorless oil. Carbonate **SI-22**: R_f 0.48 (9:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 5.72 (s, 1H), 4.69 (s, 2H), 3.79 (s, 3H), 2.38–2.31 (m, 4H), 1.92 (quint, *J* = 7.7, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 156.0, 138.6, 129.6, 66.9, 54.9, 32.9, 32.6, 23.4; IR (film): 2960, 2918, 2848, 1750, 1447, 1263, 949 cm⁻¹; HRMS–ESI (*m*/*z*) [M + Na]⁺ calcd for C₈H₁₂O₃Na, 179.0684; found 179.0677.

Carbonate SI-24. To a solution of carboxylic acid **SI-23** (2.00 g, 16.5 mmol, 1.0 equiv) in Et₂O (40 mL) at 0 °C was added LiAlH₄ (18.2 mL of a 1.0 M solution in Et₂O, 18.2 mmol, 1.1 equiv) dropwise over 5 min at 0 °C. After stirring for 15 min, deionized water (5 mL) was added dropwise at 0 °C. The resulting heterogeneous mixture was filtered through a plug of celite® (25 mL of Et₂O eluent) and the filtrate was diluted with deionized water (50 mL). The layers were separated and the aqueous layer was extracted with Et₂O (2 x 50 mL). The organic layers were combined, dried over MgSO₄, and concentrated under reduced pressure (~100 mbar, at room temperature) to afford the corresponding alcohol, which was used in the subsequent step without further purification.

To a solution of the crude alcohol in CH₂Cl₂ (40 mL) was added pyridine (2.55 mL, 49.5 mmol, 3.0 equiv from **SI-23**). The reaction was cooled to 0 °C. After stirring for 5 min, methyl chloroformate (2.6 mL, 33.0 mmol, 2.0 equiv from **SI-23**) was added dropwise over 1 min. The reaction was allowed to warm to room temperature. After stirring for 4 h, the reaction mixture was poured into brine (50 mL) and diluted with CH₂Cl₂ (50 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (2 x 50 mL). The organic layers were combined, washed with 1 N HCl (50 mL), dried over MgSO₄, and concentrated under reduced pressure (~100 mbar, at room temperature). The crude mixture was purified via flash chromatography (99:1 Pentane:Et₂O \rightarrow 49:1 Pentane:Et₂O) to afford carbonate **SI-24** (2.00 g, 71% yield, 2 steps) as a colorless oil. Carbonate **SI-24**: R_f 0.86 (1:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 5.78 (m, 1H), 4.49 (s, 2H), 3.78 (s, 3H), 2.02 (m, 4H), 1.64 (m, 2H), 1.57 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 156.0, 132.5, 127.5, 72.7, 54.8, 25.9, 25.1, 22.4, 22.2; IR (film): 2930, 1744, 1441, 1250 cm⁻¹; HRMS–ESI (*m*/*z*) [M + Na]⁺ calcd for C₉H₁₄NaO₃⁺, 193.0841; found 193.0839.

Carbonate SI-26. To a solution of known ester **SI-25**⁵ (3.15 g, 18.7 mmol, 1.0 equiv) in Et₂O (30 mL) at 0 °C was added LiAlH₄ (1.07 g, 28.1 mmol, 1.5 equiv) at 0 °C. After stirring for 4 h, deionized water (3 mL) was added dropwise over 5 min at 0 °C. The resulting heterogeneous mixture was filtered through a plug of celite® (25 mL of Et₂O eluent) and the filtrate was diluted with deionized water (25 mL). The layers were separated and the aqueous layer was extracted with Et₂O (2 x 50 mL). The organic layers were combined, dried over MgSO₄, and concentrated under reduced pressure (~100 mbar, at room temperature) to afford the corresponding alcohol, which was used in the subsequent step without further purification.

To a solution of the crude alcohol in CH₂Cl₂ (40 mL) was added pyridine (4.65 mL, 56.1 mmol, 3.0 equiv from **SI-25**). The reaction was cooled to 0 °C. After stirring for 5 min, methyl chloroformate (2.9 mL, 37.4 mmol, 2.0 equiv from **SI-25**) was added dropwise over 1 min. The reaction was allowed to warm to room temperature. After stirring for 15 h, the reaction mixture was poured into brine (100 mL) and diluted with Et₂O (50 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 x 50 mL). The organic layers were combined, washed with 1 N HCl (25 mL), dried over MgSO₄, and concentrated under reduced pressure. The crude mixture was purified via flash chromatography (95:5 Hexanes:Et₂O) to afford carbonate **SI-26** (2.09 g, 61% yield, 2 steps) as a colorless oil. Carbonate **SI-26**: R_{*f*} 0.45 (9:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 4.63 (s, 2H), 3.78 (s, 3H), 2.33 (s, 2H), 2.22 (s, 2H), 1.70–1.63 (m, 7H); ¹³C NMR (125 MHz, CDCl₃): δ 156.2, 145.0, 119.6, 70.6, 54.8, 31.3, 30.4, 27.0, 26.4, 17.2; IR (film): 2956, 2867, 1748, 1442, 1373, 1256, 942 cm⁻¹; HRMS–APCI (*m/z*) [M + H]⁺ calcd for C₁₀H₁₇O₃⁺, 185.11722; found 185.11700.

Carbonate SI-28. To a solution of known ester **SI-27**³ (3.08 g, 16.9 mmol, 1.0 equiv) in Et₂O (30 mL) at 0 °C was added LiAlH₄ (965 mg, 25.4 mmol, 1.5 equiv). After stirring for 1 h, deionized water (3 mL) was added dropwise over 5 min at 0 °C. The resulting heterogeneous mixture was filtered through a plug of celite® (25 mL of Et₂O eluent) and the filtrate was diluted with deionized water (25 mL). The layers were separated and the aqueous layer was extracted with Et₂O (2 x 50 mL). The organic layers were combined, dried over MgSO₄, and concentrated under reduced pressure (~100 mbar, at room temperature) to afford the corresponding alcohol, which was used in the subsequent step without further purification.

To a solution of the crude alcohol in CH₂Cl₂ (40 mL) was added pyridine (4.21 mL, 50.7 mmol, 3.0 equiv from **SI-27**). The reaction was cooled to 0 °C. After stirring for 5 min, methyl chloroformate (2.6 mL, 33.8 mmol, 2.0 equiv from **SI-27**) was added dropwise over 1 min. The reaction was allowed to warm to room temperature. After stirring for 15 h, the reaction mixture was poured into brine (100 mL) and diluted with Et₂O (50 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 x 50 mL). The organic layers were combined, washed with 1 N HCl (25 mL), dried over MgSO₄, and concentrated under reduced pressure. The crude mixture was purified via flash chromatography (95:5 Hexanes:Et₂O) to afford carbonate **SI-28** (1.83 g, 54% yield, 2 steps) as a colorless oil. Carbonate **SI-28**: R_f 0.45 (9:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 4.68 (s, 2H), 3.77 (s, 3H), 2.28–2.22 (m, 2H), 2.21–2.15 (m, 2H), 1.73 (s, 3H), 1.60–1.48 (m, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 156.2, 141.4, 119.1, 69.0, 54.8, 31.0, 30.7, 28.4, 27.9, 26.8, 16.5; IR (film): 2925, 2854, 1744, 1443, 1373, 1247, 937 cm⁻¹; HRMS–APCI (*m/z*) [M + H]⁺ calcd for C₁₁H₁₉O₃⁺, 199.13287; found 199.13247.

Carbonate SI-30. To a solution of known ester **SI-29**⁶ (2.15 g, 10.9 mmol, 1.0 equiv) in Et₂O (20 mL) at 0 °C was added LiAlH₄ (626 mg, 16.4 mmol, 1.5 equiv). After stirring for 1 h, deionized water (3 mL) was added dropwise over 5 min at 0 °C. The resulting heterogeneous mixture was filtered through a plug of celite® (25 mL of Et₂O eluent) and the filtrate was diluted with deionized water (25 mL). The layers were separated and the aqueous layer was extracted with Et₂O (2 x 50 mL). The organic layers were combined, dried over MgSO₄, and concentrated under reduced pressure (~100 mbar, at room temperature) to afford the corresponding alcohol, which was used in the subsequent step without further purification.

To a solution of the crude alcohol in CH₂Cl₂ (30 mL) was added pyridine (2.80 mL, 32.9 mmol, 3.0 equiv from **SI-29**). The reaction was cooled to 0 °C. After stirring for 5 min, methyl chloroformate (1.7 mL, 21.9 mmol, 2.0 equiv from **SI-29**) was added dropwise over 1 min. The reaction was allowed to warm to room temperature. After stirring for 15 h, the reaction mixture was poured into brine (100 mL) and diluted with Et₂O (50 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 x 50 mL). The organic layers were combined, washed with 1 N HCl (25 mL), dried over MgSO₄, and concentrated under reduced pressure. The crude mixture was purified via flash chromatography (95:5 Hexanes:Et₂O) to afford carbonate **SI-30** (1.49 g, 64% yield, 2 steps) as a colorless oil. Carbonate **SI-30**: R_{*f*} 0.52 (9:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 4.67 (s, 2H), 3.77 (s, 3H), 2.33 (t, *J* = 6.0, 2H), 2.26 (t, *J* = 6.0, 2H), 1.71 (s, 3H), 1.60–1.53 (m, 4H), 1.51–1.44 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 156.1, 142.2, 122.4, 69.1, 54.6, 32.3, 31.2, 28.9, 28.6, 28.2, 26.8, 16.4; IR (film): 2922, 2854, 1748, 1443, 1374, 1256, 936 cm⁻¹; HRMS–ESI (*m*/*z*) [M + Na]⁺ calcd for C₁₂H₂₀O₃Na⁺, 235.1310; found 235.1301.

Carbonate SI-32. To a solution of ester **SI-31**⁷ (1.47 g, 8.0 mmol, 1.0 equiv) in Et₂O (20 mL) at 0 °C was added LiAlH₄ (8.8 mL of a 1.0 M solution in Et₂O, 8.8 mmol, 1.1 equiv) dropwise over 5 min. After stirring for 1 h, deionized water (1 mL) was added dropwise over 5 min at 0 °C. The resulting heterogeneous mixture was filtered through a plug of celite® (25 mL of Et₂O eluent) and the filtrate was diluted with deionized water (25 mL). The layers were separated and the aqueous layer was extracted with Et₂O (2 x 50 mL). The organic layers were combined, dried over MgSO₄, and concentrated under reduced pressure (~100 mbar, at room temperature) to afford the corresponding alcohol, which was used in the subsequent step without further purification.

To a solution of the crude alcohol in CH₂Cl₂ (20 mL) was added pyridine (1.93 mL, 24.0 mmol, 3.0 equiv from **SI-31**). The reaction was cooled to 0 °C. After stirring for 5 min, methyl chloroformate (1.24 mL, 16.0 mmol, 2.0 equiv from **SI-31**) was added dropwise over 1 min. The reaction was allowed to warm to room temperature. After stirring for 12 h, the reaction mixture was poured into brine (25 mL) and diluted with Et₂O (25 mL). The layers were separated and the aqueous layer was extracted with Et₂O (2 x 50 mL). The organic layers were combined, washed with 1 N HCl (25 mL), dried over MgSO₄, and concentrated under reduced pressure. The crude mixture was purified via flash chromatography (9:1 Hexanes:EtOAc \rightarrow 5:1 Hexanes:EtOAc) to afford carbonate **SI-32** (1.14 g, 71% yield, 2 steps) as a colorless oil. Carbonate **SI-32**: R_f 0.73 (1:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 4.66 (s, 2H), 3.78 (s, 3H), 3.67 (app ddd, *J* = 13.2, 7.7, 5.5, 4H), 2.39 (t, *J* = 5.5, 2H), 2.32 (t, *J* = 5.5, 2H) 1.75 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 156.1, 135.6, 121.5, 68.9–68.2 (2 carbons), 54.9, 31.3 & 31.1 (1 carbon), 16.3; IR (film): 2958, 2847, 1743, 1442, 1251 cm⁻¹; HRMS–APCI (*m/z*) [M + H]⁺ calcd for C₁₀H₁₇O₇⁺, 201.11214; found 201.11059.

Note: The data for carbonate **SI-32** *represents empirically observed chemical shifts from the* ¹³*C NMR spectrum, presumably due to the oxygen-containing heterocycle.*

Carbonate SI-34. To a solution of ester **SI-33**⁸ (1.60 g, 5.65 mmol, 1.0 equiv) in THF (14 mL) at 0 °C was added DIBAL-H (11.3 mL of a 1.0 M solution in THF, 11.3 mmol, 2.0 equiv) dropwise over 5 min. The reaction was stirred for 3 h, and allowed to warm to room temperature, at which point additional DIBAL-H (5.65 mL of a 1.0 M solution in THF, 5.65 mmol, 1.0 equiv) was added. After stirring for an additional hour, the reaction mixture was poured into water (50 mL) and diluted with Et₂O (50 mL). The resulting heterogeneous mixture was filtered through a plug of celite® (100 mL of Et₂O eluent). The layers of the resulting filtrate were separated and the aqueous layer was extracted with Et₂O (1 x 50 mL). The organic layers were combined, dried over MgSO₄, and concentrated under reduced pressure to afford the corresponding alcohol, which was used in the subsequent step without further purification.

To a solution of the crude alcohol in CH₂Cl₂ (14 mL) was added pyridine (2.57 mL, 31.9 mmol, 3.0 equiv from **SI-33**). The reaction was cooled to 0 °C. After stirring for 5 min, methyl chloroformate (0.87 mL, 11.3 mmol, 2.0 equiv from **SI-33**) was added dropwise over 1 min. The reaction was allowed to warm to room temperature. After stirring for 1 h, the reaction mixture was poured into brine (50 mL) and diluted with CH₂Cl₂ (50 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (2 x 50 mL). The organic layers were combined, washed with 1 N HCl (50 mL), dried over MgSO₄, and concentrated under reduced pressure. The crude mixture was purified via flash chromatography (9:1 Hexanes:EtOAc) to afford carbonate **SI-34** (1.18 g, 70% yield, 2 steps) as a colorless oil. Carbonate **SI-34**: R_f 0.78 (1:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 4.66 (s, 2H), 3.77 (s, 3H), 3.40 (app q, *J* = 6.8, 4H), 2.35 (t, *J* = 5.6, 2H), 2.28 (t, *J* = 5.6, 2H) 1.75 (s, 3H), 1.45 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 156.0, 154.9, 136.2, 122.3, 79.6, 68.3, 54.9, 29.9, 29.5, 28.6, 16.5; IR (film): 2974, 1745, 1691, 1441, 1420, 1365, 1250, 1228, 1164 cm⁻¹; HRMS–APCI (*m/z*) [M + H]⁺ calcd for C₁₅H₂₆NO₅⁺, 300.18055; found 300.17829.

A.4. Reductive Cross Coupling of Imides and Carbonates

Representative Procedure (synthesis of imide 5 is used as an example).

Reductive couplings were performed using a modification of the procedure reported by Gong and co-workers for the coupling of aryl bromides with substituted allylic acetates.¹

Imide 5. A scintillation vial containing imide **SI-5** (219 mg, 0.50 mmol, 1.0 equiv), ligand **SI-35** (9.1 mg, 0.050 mmol, 10 mol%), and a magnetic stir bar was sequentially charged with NiI₂ (15.6 mg, 0.050 mmol, 10 mol%), MgCl₂ (47.6 mg, 0.50 mmol, 1.0 equiv), TBAB (161 mg, 0.50 mmol, 1.0 equiv) and Zn⁰ (65.4 mg, 1.0 mmol, 2.0 equiv) in the glovebox. The vial was removed from the glovebox, at which point DMA (2.0 mL), pyridine (40 μ L, 0.5 mmol, 1.0 equiv), and carbonate **SI-18** (158 mg, 1.0 mmol, 2.0 equiv) were added. The vial was quickly sealed with a teflon-lined screw cap, and stirred at 60 °C for 14 h. After cooling to room temperature, the mixture was passed through a column of silica gel and flushed (5:2 Hexanes:EtOAc) until TLC indicated the desired product had eluted. The volatiles were removed under reduced pressure and the crude mixture was further purified by flash chromatography (99:1 Hexanes:EtOAc) to yield imide **5** (92 mg, 47% yield) as a white solid. Spectral data matched what is reported in Section A.1.

Any modifications of the conditions shown in the representative procedures above are specified in the following schemes.

Imide SI-36. Following the representative procedure with iodo-imide **SI-5** (218 mg, 0.5 mmol, 1.0 equiv), purification by flash chromatography (9:1 Hexanes:EtOAc) yielded **SI-36** as an inseparable mixture of olefin isomers (79 mg, 41% yield, 7:1 isomer ratio E:Z) and as a colorless oil. Configurational isomers of imide **SI-36** were analyzed as a mixture: R_f 0.62 (4:1 Hexanes:EtOAc); Major (*E*)-isomer **SI-36** ¹H NMR (500 MHz, CDCl₃): δ 7.45–7.41 (m, 2H), 7.36–7.32 (m, 2H), 7.31–7.26 (m, 1H), 7.21–7.12 (m, 2H), 5.24 (q, *J* = 6.8, 1H), 5.01 (s, 2H), 3.34 (s, 2H), 1.57 (d, *J* = 6.8, 3H), 1.53 (s, 3H), 1.10 (s, 9H); Minor (*Z*)-isomer **SI-36** ¹H NMR (500 MHz, CDCl₃): (20 of 29 signals observed) δ 5.45 (q, *J* = 6.8, 1H), 5.07–5.03 (m, 1H), 4.90–4.85 (m, 1H), 3.41 (s, 2H), 1.63 (d, *J* = 6.8, 3H), 1.61 (s, 3H), 1.11 (s, 9H); Major (*E*)-isomer **SI-36** ¹³C NMR (125 MHz, CDCl₃): δ 172.5, 153.0, 138.6, 138.1, 137.5, 134.2, 130.0, 129.4, 127.5, 126.4, 125.8, 121.7, 83.4, 48.1, 42.8, 27.6, 16.0, 13.7; Minor (*Z*)-isomer **SI-36** ¹³C NMR (125 MHz, CDCl₃): δ 172.6, 153.1, 138.7, 138.0, 137.0, 133.8, 129.7, 129.6, 127.6, 126.1, 125.7, 121.9, 83.5, 48.1, 34.2, 27.7, 23.8, 13.8; IR (film): 2979, 1726, 1669, 1228, 1137, 739 cm⁻¹; HRMS–APCI (*m*/z) [M + H]⁺ calcd for C₂₄H₂₉NO₃ 380.22202; found 380.22186.

Imide SI-37. Following the representative procedure with iodo-imide **SI-5** (874 mg, 2.0 mmol, 1.0 equiv), imide **SI-37** (165 mg, 21% yield) was obtained as a colorless oil. Imide **SI-37**: R_f 0.48 (9:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.43 (d, J = 7.4, 2H), 7.35–7.24 (m, 4H), 7.22–7.13 (m, 3H), 5.32 (s, 1H), 5.01 (s, 2H), 3.45 (s, 2H), 2.32–2.24 (m, 2H), 2.20–2.14 (m, 2H), 1.83 (quint, J = 7.7, 2H), 1.10 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 172.4, 152.9,

142.6, 138.2, 138.0, 137.3, 130.1, 129.4, 128.5, 128.4, 127.5, 126.7, 126.4, 125.7, 83.3, 48.1, 35.1, 34.9, 32.6, 27.5, 23.6; IR (film): 2933, 1728, 1671, 1369, 1334, 1229, 1139 cm⁻¹; HRMS–APCI (m/z) [M + H]⁺ calcd for C₂₅H₃₀NO₃⁺, 392.22202; found 392.21992.

Imide SI-38. Following the representative procedure with iodo-imide **SI-5** (1.09 g, 2.5 mmol, 1.0 equiv), imide **SI-38** (417 mg, 41% yield) was obtained as a colorless oil. Imide **SI-38**: R_f 0.66 (3:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.43 (d, J = 7.1, 2H), 7.33 (t, J = 7.6, 2H), 7.31–7.24 (m, 2H), 7.23–7.13 (m, 3H), 5.43 (m, 1H), 5.01 (s, 2H), 3.31 (s, 2H), 1.98 (s, 2H), 1.83 (s, 2H), 1.55 (m, 4H), 1.11 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 172.5, 152.9, 138.4, 138.0, 137.4, 136.2, 129.9, 129.4, 128.6, 128.4, 127.5, 126.4, 125.7, 124.2, 83.3, 48.1, 41.4, 28.3, 27.5, 25.5, 23.0, 22.4; IR (film): 2929, 1728, 1671, 1334, 1230, 1140 cm⁻¹; HRMS–APCI (*m/z*) [M + H]⁺ calcd for C₂₆H₃₂NO₃⁺, 406.23767; found 406.23493.

Imide SI-39. Following the representative procedure with iodo-imide **SI-5** (874 mg, 2.0 mmol), imide **SI-39** (418 mg, 50% yield) was obtained as a colorless oil. Imide **SI-39**: R_f 0.45 (9:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.44 (d, J = 7.7, 2H), 7.33 (t, J = 7.2, 2H), 7.31–7.25 (m, 2H), 7.18–7.10 (m, 3H), 5.03 (s, 2H), 3.39 (s, 2H), 2.25 (m, 4H), 1.67 (m, 4H), 1.55 (m, 3H), 1.10 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 172.6, 153.0, 139.7, 138.7, 138.0, 137.5, 129.5, 128.59, 128.57, 128.4, 127.5, 126.1, 125.5, 122.9, 83.4, 48.0, 38.1, 31.0, 30.9, 27.5, 128.4, 127.5, 126.1, 125.5, 122.9, 83.4, 48.0, 38.1, 31.0, 30.9, 27.5, 128.4, 127.5, 126.1, 125.5, 122.9, 83.4, 48.0, 38.1, 31.0, 30.9, 27.5, 128.4, 127.5, 126.1, 125.5, 122.9, 83.4, 48.0, 38.1, 31.0, 30.9, 27.5, 128.4, 127.5, 126.1, 125.5, 122.9, 83.4, 48.0, 38.1, 31.0, 30.9, 27.5, 128.4, 127.5, 126.1, 125.5, 122.9, 83.4, 48.0, 38.1, 31.0, 30.9, 27.5, 128.4, 127.5, 126.1, 125.5, 122.9, 83.4, 48.0, 38.1, 31.0, 30.9, 27.5, 127.5, 128.4, 127.5, 126.1, 125.5, 122.9, 83.4, 48.0, 38.1, 31.0, 30.9, 27.5, 128.4, 127.5, 126.1, 125.5, 122.9, 83.4, 48.0, 38.1, 31.0, 30.9, 27.5, 128.4, 127.5, 126.1, 125.5, 122.9, 83.4, 48.0, 38.1, 31.0, 30.9, 27.5, 128.4, 127.5, 126.1, 125.5, 122.9, 83.4, 48.0, 38.1, 31.0, 30.9, 27.5, 128.4, 127.5, 126.1, 125.5, 122.9, 83.4, 48.0, 38.1, 31.0, 30.9, 27.5, 128.4, 127.5, 126.1, 125.5, 122.9, 83.4, 48.0, 38.1, 31.0, 30.9, 27.5, 128.4, 127.5, 126.1, 125.5, 122.9, 83.4, 48.0, 38.1, 31.0, 30.9, 27.5, 128.4, 127.5, 126.1, 125.5, 128.4, 127.5, 128.4, 127.5, 128.4, 127.5, 128.4, 127.5, 128.4, 127.5, 128.4, 127.5, 128.4, 127.5, 128.4, 127.5, 128.4, 127.5, 128.4, 128.4, 127.5, 128.4, 128.

27.2, 27.0, 19.3 ; IR (film): 2938, 1729, 1672, 1335, 1229, 1139 cm⁻¹; HRMS–APCI (m/z) [M + H]⁺ calcd for C₂₇H₃₄NO₃⁺, 420.25332; found 420.25300.

Imide SI-40. Following the representative procedure with iodo-imide **SI-5** (0.44 g, 1.0 mmol, 1.0 equiv), imide **SI-40** (0.22 g, 50% yield) was obtained as a colorless oil. Imide **SI-40**: R_f 0.45 (9:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.45–7.42 (m, 2H), 7.46–7.43 (m, 2H), 7.36–7.32 (m, 2H), 7.18–7.10 (m, 3H), 5.04 (s, 2H), 3.44 (s, 2H), 2.25 (t, *J* = 5.8, 2H), 2.17 (t, *J* = 5.8, 2H), 1.60 (s, 3H), 1.59–1.54 (m, 4H), 1.52–1.46 (m, 2H), 1.10 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 172.6, 153.0, 138.7, 138.0, 137.8, 135.9, 129.5, 128.6, 128.4, 128.3, 127.5, 125.9, 125.4, 121.8, 83.4, 48.0, 36.2, 30.84, 30.78, 28.5, 28.3, 27.5, 27.1, 18.4; IR (film): 2922, 1728, 1368, 1137, 740, 672 cm⁻¹; HRMS–APCI (*m*/*z*) [M + H]⁺ calcd for C₂₈H₃₆NO₃⁺, 434.26897; found 434.26866.

Imide SI-42. Following the representative procedure with iodo-imide SI-5 (874 mg, 2.0 mmol, 1.0 equiv), purification by flash chromatography (199:1 Hexanes:EtOAc) yielded imide SI-42 (172 mg, 19% yield) was obtained as a colorless oil. Imide SI-42: R_f 0.50 (9:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.44 (d, *J* = 7.8, 2H), 7.33 (t, *J* = 7.2, 2H), 7.31–7.25 (m, 2H), 7.18–7.10 (m, 3H), 5.04 (s, 2H), 3.42 (s, 2H), 2.31 (t, *J* = 5.9, 2H), 2.25 (t, *J* = 5.9, 2H), 1.65–1.59 (m, 2H), 1.58 (s, 3H), 1.57–1.47 (m, 6H), 1.11 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 172.6, 153.0, 138.7, 138.0, 137.7, 137.0, 129.5, 128.6, 128.4, 128.2, 127.5, 126.0, 125.4, 125.3,

83.4, 48.0, 36.4, 32.0, 31.8, 29.4, 29.0, 28.1, 27.8, 27.5, 18.6; IR (film): 2921, 1730, 1673, 1335, 1229, 1138 cm⁻¹; HRMS–APCI (m/z) [M + H]⁺ calcd for C₂₉H₃₈NO₃⁺, 448.28462; found 448.28241.

Imide SI-43. After following the representative procedure with iodo-imide **SI-5** (1.16 g, 2.66 mmol, 1.0 equiv), the crude reaction mixture was vigorously stirred with 1:1 1 N NaOH/THF (26 mL) solution for 4 h to remove residual carbonate **SI-32**. Purification by flash chromatography (49:1 Hexanes:EtOAc → 9:1 Hexanes:EtOAc) afforded imide **SI-43** (536 mg, 46% yield) as a colorless oil. Imide **SI-43**: R_f 0.49 (3:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.43 (d, J = 7.7, 2H), 7.34 (t, J = 7.7, 2H), 7.29 (dt, J = 7.7, 1.3, 2H), 7.17 (t, J = 7.7, 1H), 7.13 (t, J = 8.0, 2H), 5.03 (s, 2H), 3.71 (d, J = 5.5, 2H), 3.64 (d, J = 5.5, 2H), 3.45 (s, 2H), 2.38 (d, J = 5.5, 2H), 1.63 (s, 3H), 1.11 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 172.5, 153.0, 138.6, 137.9, 137.3, 130.3, 129.6, 128.6, 128.4, 128.2, 127.6, 126.0, 125.6, 124.5, 83.5, 69.2 & 69.1 (1 carbon), 48.1, 35.9, 31.3 & 31.2 (1 carbon), 27.6, 18.3; IR (film): 2962, 2845, 1728, 1669, 1369, 1333, 1228, 1137, 1101 cm⁻¹; HRMS–APCI (*m/z*) [M + H]⁺ calcd for C₂₇H₃₄NO₄⁺, 436.24824; found 436.24824.

Note: The data for imide **SI-43** *represents empirically observed chemical shifts from the* ¹³*C NMR spectrum, presumably due to the oxygen-containing heterocycle.*

Imide SI-44. After following the representative procedure with iodo-imide **SI-5** (1.08 g, 2.47 mmol, 1.0 equiv), the crude reaction mixture was vigorously stirred with 2:1 1 N NaOH/THF (30 mL) solution for 22 h to remove residual carbonate **SI-34**. Purification by flash chromatography (199:1 Benzene:EtOAc → 24:1 Benzene:EtOAc) afforded imide **SI-44** (622 mg, 47% yield) as a colorless oil. Imide **SI-44**: R_f 0.49 (3:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃):): δ 7.44 (d, *J* = 7.9, 2H), 7.34 (tt, *J* = 7.6, 1.4, 2H), 7.32–7.27 (m, 2H), 7.16 (td, *J* = 7.6, 1.0, 1H), 7.11 (td, *J* = 7.4, 1.3, 2H), 5.03 (s, 2H), 3.45 (s, 4H), 3.37 (s, 2H), 2.34 (t, *J* = 5.6, 2H), 2.27 (s, 2H), 1.63 (s, 3H), 1.47 (s, 9H) 1.11 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 172.5, 155.1, 153.0, 138.6, 137.9, 137.2, 130.9, 129.6, 128.6, 128.4, 128.2, 127.6, 126.0, 125.7, 125.3, 83.5, 79.5, 48.1, 45.0 & 44.4 (1 carbon), 36.2, 29.8 & 29.7 (1 carbon), 28.6, 27.6, 18.5; IR (film): 2976, 1730, 1692, 1672, 1367, 1231, 1164, 1141 cm⁻¹; HRMS–APCI (*m*/*z*) [M + H]⁺ calcd for C₃₂H₄₃N₂O₅⁺, 535.31665; found 535.31392.

Note: The data for imide **SI-44** represents empirically observed chemical shifts from the ¹³C NMR spectrum, presumably due to the nitrogen-containing heterocycle.

Imide SI-45. Following the representative procedure with iodo-imide **SI-7** (1.82g, 4.0 mmol) led to appreciable amounts of des-Boc coupled product. As such, the mixture was re-subjected to the general conditions used to install a boc group described in the synthesis of **5** (Section A.1).

Purification by flash chromatography (99:1 Pentane:Et₂O \rightarrow 49:1 Pentane:Et₂O) afforded imide **SI-45** (275 mg, 17% yield, 2 steps) as an off-white oil. Imide **SI-45**: R_f 0.64 (3:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.42 (d, J = 7.8, 2H), 7.34 (tt, J = 7.2, 1.4, 2H), 7.28 (tt, J = 7.4, 1.4, 1H), 7.06 (dd, J = 8.6, 5.6, 1H), 6.98 (dt, J = 8.4, 2.7, 1H), 6.84 (dd, J = 8.6, 2.7, 1H) 5.02 (s, 2H), 3.34 (s, 2H), 1.74 (s, 3H), 1.68 (s, 3H), 1.56 (s, 3H), 1.16 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 171.2 (d, J = 2.4), 160.7 (d, J = 246), 152.6, 139.9 (d, J = 6.8), 137.7, 133.0 (d, J = 3.3), 130.0 (d, J = 7.6), 128.6, 128.3, 127.6, 127.5, 125.2, 116.1 (d, J = 21), 113.0 (d, J = 23), 83.8, 48.0, 36.1, 27.6, 20.8, 20.7, 18.7; ¹⁹F NMR (376 MHz, CDCl₃): δ -117.9, (s, 1F); IR (film): 2982, 2920, 1734, 1673, 1369, 1331, 1229, 1149 cm⁻¹; HRMS–APCI (m/z) [M + H]⁺ calcd for C₂₅H₃₁FNO₃⁺, 412.22825; found 412.22781.

Imide SI-46. Following the representative procedure with iodo-imide **SI-9** (455 mg, 0.9 mmol), purification by flash chromatography (199:1 Benzene:EtOAc) yielded imide **SI-46** (169 mg, 41% yield) as a yellow oil. Imide **SI-46**: R_f 0.75 (3:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.54 (dd, J = 8.2, 1.4, 1H), 7.43 (d, J = 8.0, 2H), 7.37 (d, J = 1.5, 1H), 7.35 (tt, J = 7.8, 1.4, 2H), 7.29 (tt, J = 7.4, 1.3, 1H), 7.24 (d, J = 8.1, 1H) 5.05 (s, 2H), 3.44 (s, 2H), 1.76 (s, 3H), 1.69 (s, 3H), 1.58 (s, 3H), 1.12 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 171.2, 152.4, 141.7, 139.3, 137.6, 128.9, 128.7, 128.4, 128.3, 128.2, 127.7, 125.9 (q, J = 3.7), 124.4, 124.1 (q, J = 274), 122.8 (q, J = 3.7), 84.0, 48.1, 36.9, 27.5, 20.78, 20.75, 18.9; ¹⁹F NMR (376 MHz, CDCl₃): δ -62.4, (s, 3F); IR (film): 2983, 1736, 1672, 1318, 1141, 1123 cm⁻¹; HRMS–APCI (m/z) [M + H]⁺ calcd for C₂₆H₃₁F₃NO₃⁺, 462.22505; found 462.22240.

Imide SI-46. Following the representative procedure with iodo-imide **SI-11** (0.42 g, 0.9 mmol), purification by flash chromatography (99:1 Hexanes:EtOAc) yielded imide **SI-47** (79 mg, 21% yield) as a colorless oil. Imide **SI-47**: R_f 0.52 (4:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.45–7.42 (m, 2H), 7.36–7.31 (m, 2H), 7.29–7.25 (m, 1H), 7.00 (d, *J* = 8.6, 1H), 6.84 (dd, *J* = 8.6, 2.8, 1H), 6.66 (d, *J* = 2.8, 1H), 5.02 (s, 2H), 3.74 (s, 3H), 3.33 (s, 2H), 1.73 (s, 3H), 1.69 (s, 3H), 1.56 (s, 3H), 1.14 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 172.4, 157.5, 153.0, 139.4, 138.0, 129.60, 129.57, 128.7, 128.5, 127.6, 127.0, 125.8, 115.3, 111.5, 83.5, 55.6, 48.1, 36.0, 27.7, 20.84, 20.81, 18.8; IR (film): 2980, 1730, 1672, 1142, 1039, 851 cm⁻¹; HRMS–APCI (*m/z*) [M + H]⁺ calcd for C₂₆H₃₄NO₄⁺, 424.24824; found 424.24803.

Imide SI-48: Following the representative procedure with bromo-imide **SI-13** (0.84 g, 2.0 mmol), purification by flash chromatography (98:2 Hexanes:EtOAc) yielded imide **SI-48** (0.24 g, 28% yield) as a colorless oil. Imide **SI-48**: R_f 0.40 (9:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.44–7.42 (m, 2H), 7.35–7.32 (m, 2H), 7.28–7.24 (m, 1H), 7.13–7.10 (m, 1H), 6.69–6.66 (m, 2H), 5.00 (s, 2H), 3.78 (s, 3H), 3.47 (s, 2H), 1.75 (s, 3H), 1.70 (s, 3H), 1.59 (s, 3H), 1.15 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): (20 of 21 signals observed) δ 172.5, 160.9, 153.3, 140.7, 138.1, 131.0, 128.6, 128.34, 128.30, 127.4, 125.3, 114.7, 109.7, 83.0, 55.4, 48.4, 37.0, 27.7, 20.8, 18.9; IR (film): 2979, 1726, 1328, 1227, 966, 626 cm⁻¹; HRMS–APCI (*m/z*) [M + H]⁺ calcd for C₂₆H₃₄NO₄⁺, 424.24824; found 424.24858.

Imide SI-49. Following the representative procedure with iodo-imide **SI-15** (2.1 g, 4.5 mmol) led to appreciable amounts of des-Boc coupled product. As such, the mixture was re-subjected to the general conditions used to install a boc group described in the synthesis of *5* (Section A.1). Purification by flash chromatography (9:1 Hexanes:EtOAc) afforded imide **SI-49** (0.48 g, 26% yield, 2 steps) as a colorless oil. Imide **SI-49**: $R_f 0.51$ (9:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.42–7.39 (m, 2H), 7.33–7.29 (m, 2H), 7.27–7.22 (m, 1H), 7.01 (d, *J* = 7.7, 1H), 6.94 (d, *J* = 7.7, 1H), 6.88 (s, 1H), 5.00 (s, 2H), 3.41 (s, 2H), 2.30 (s, 3H), 1.73 (s, 3H), 1.69 (s, 3H), 1.56 (s, 3H), 1.11 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 172.6, 153.0, 139.4, 137.9, 137.7, 135.5, 129.0, 128.4, 128.1, 127.2, 126.7, 126.1, 125.9, 125.4, 83.0, 47.9, 36.6, 27.4, 21.5, 20.6, 18.6; IR (film): 2980, 1728, 1670, 1229, 1142, 969 cm⁻¹; HRMS–APCI (*m/z*) [M + H]⁺ calcd for C₂₆H₃₃NO₃⁺, 408.25332; found 408.25332.

Imide SI-50. Following the representative procedure with iodo-imide **SI-17** (0.93 g, 2.0 mmol) led to appreciable amounts of des-Boc coupled product. As such, the mixture was re-subjected to the general conditions used to install a boc group described in the synthesis of **5** (Section A.1). Purification by flash chromatography (9:1 Hexanes:EtOAc) afforded imide **SI-50** (102 mg, 15% yield, 2 steps) as a colorless oil. Imide **SI-50**: $R_f 0.57$ (4:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.42–7.39 (m, 2H), 7.34–7.30 (m, 2H), 7.28–7.24 (m, 1H), 7.13 (d, *J* = 8.0, 1H), 7.06 (t, *J* = 8.0, 1H), 6.95 (d, *J* = 8.0, 1H), 5.00 (s, 2H), 3.43 (br s, 2H), 2.21 (s, 3H), 1.74 (s, 3H), 1.67 (s, 3H), 1.39 (s, 3H), 1.10 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 173.1, 153.0, 139.6, 138.3, 138.2, 136.5, 131.2, 128.6, 128.4, 127.5, 125.7, 125.3, 125.1, 123.8, 83.8, 48.0, 34.8, 27.6,

21.1, 20.7, 19.8, 16.9; IR (film): 2979, 1729, 1674, 1368, 1144, 698 cm⁻¹; HRMS–APCI (m/z) [M + H]⁺ calcd for C₂₆H₃₄NO₃⁺, 408.25332; found 408.25311.

B. Initial Evaluation of Ligand Effects and Reaction Conditions

Representative Procedure for the Nickel-Catalyzed Heck Cyclization of Imides

Indanone 6 (Table 1). A dram vial containing imide **5** (39.3 mg, 0.10 mmol, 1.0 equiv), hexamethylbenzene, and a magnetic stir bar was sequentially charged with the appropriate ligand, Ni(cod)₂, and NaO*t*-Bu in a glovebox. Subsequently, toluene (0.20 mL) and the additive (when applicable) were added. The vial was sealed with a Teflon-lined screw cap, removed from the glove box, wrapped with Teflon tape, and stirred at the appropriate temperature for 24 h. After cooling to room temperature, the mixture was diluted with Hexanes (1.0 mL) and filtered through a plug of silica gel (10 mL of EtOAc eluent). The volatiles were removed under reduced pressure, and the yield was determined by ¹H NMR analysis with hexamethylbenzene as the internal standard.

C. Scope of Methodology

Representative Procedure for the Nickel-Catalyzed Heck Cyclization of Imides (synthesis of indanone 6 is used as an example).

Indanone 6 (Table 2). A dram vial containing imide 5 (39.3 mg, 0.10 mmol, 1.0 equiv) and a magnetic stir bar was sequentially charged with 9 (9.6 mg, 0.030 mmol, 30 mol%), Ni(cod)₂ (4.1 mg, 0.015 mmol, 15 mol%), and NaOt-Bu (3.2 mg, 0.033 mmol, 33 mol%) in a glovebox. Subsequently, toluene (0.20 mL) and then *t*-amyl alcohol (32 µL, 0.30 mmol, 3.0 equiv) were added. The vial was sealed with a Teflon-lined screw cap, removed from the glovebox, wrapped with Teflon tape and stirred at 60 °C for 24 h. After cooling to room temperature, the mixture was diluted with hexanes (1.0 mL) and filtered through a plug of silica gel (10 mL of EtOAc eluent). The volatiles were removed under reduced pressure. ¹H NMR analysis of the crude reaction mixture indicated a 95% yield (average of two experiments) of ketone 6 relative to a hexamethylbenzene external standard. Purification by preparative thin-layer chromatography (3:1 Hexanes:EtOAc) afforded indanone 6 (74% yield, average of two experiments) as a colorless oil. The diminished isolated yields of 6 can be attributed to the volatility of the neat compound. Indanone 6: R_f 0.59 (3:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.78 (d, J = 7.7, 1H), 7.61 (td, J = 7.5, 1.1, 1H), 7.45 (dt, J = 7.7, 0.9, 1H), 7.38 (td, J = 7.5, 0.7, 1H), 4.95 (m, 2H), 3.33 (d, J = 17.4, 1H), 2.95 (d, J = 17.4, 1H), 1.65 (s, 3H), 1.38 (s, 3H); ¹³C NMR (125) MHz, CDCl₃): 8 209.2, 152.7, 145.9, 135.9, 135.0, 127.6, 126.5, 124.6, 112.1, 54.5, 41.3, 22.7, 19.9; IR (film): 2966, 2928, 1710, 1604, 1464, 1277 cm⁻¹; HRMS–APCI (m/z) [M + H]⁺ calcd for C₁₃H₁₅O, 187.11174; found 187.11130.

Any modifications of the conditions shown in the representative procedure above are specified in the following schemes, which depict all of the results shown in Table 2 and Figure 2.

Indanone 10 (Table 2). Purification by preparative thin-layer chromatography (9:1 Hexanes:EtOAc) afforded indanone 10 (71% yield, average of two experiments) as a colorless oil. Indanone 10: R_f 0.59 (4:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.77 (d, J = 7.8, 1H), 7.60 (td, J = 7.5, 1.2, 1H), 7.45 (dt, J = 7.7, 0.9, 1H), 7.38 (t, J = 7.8, 1H), 5.95 (dd, J = 7.5, 10.6, 1H), 5.20–5.11 (m, 2H), 3.32 (d, J = 17.0, 1H), 3.02 (d, J = 17.0, 1H), 1.37 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 208.0, 152.0, 140.6, 135.2, 134.9, 127.5, 126.4, 124.6, 113.9, 52.3, 40.7, 23.2; IR (film): 2966, 1714, 1465, 1279, 738 cm⁻¹; HRMS–APCI (*m/z*) [M + H]⁺ calcd for C₁₂H₁₃O⁺, 173.09609; found 173.09618.

Indanone 11 (Table 2). Purification by preparative thin-layer chromatography (95:5 Benzene:CH₃CN) afforded indanones **11a** and **11b** (92% combined yield, average of two experiments) as a \sim 1:1 mixture of olefin isomers. Iterative purification by preparative thin-layer chromatography (Benzene) afforded analytical samples of indanones **11a** and **11b** as colorless oils. Spectral data match those previously reported.⁹

Indanone 12 (Table 2). Purification by preparative thin-layer chromatography (19:1 Benzene:CH₃CN) afforded indanones 12a and 12b (75% combined yield, average of two

experiments) as a ~1:1 mixture of olefin isomers. Iterative purification by preparative thin-layer chromatography (Benzene) afforded analytical samples of **12a** and **12b** as colorless oils. Indanone **12a**: $R_f 0.47$ (benzene); ¹H NMR (500 MHz, CDCl₃): δ 7.77 (d, J = 7.6, 1H) 7.59 (td, J = 7.6, 1.1, 1H), 7.43 (d, J = 7.6, 1H), 7.37 (t, J = 7.6, 1H), 6.00 (ddd, J = 7.5, 4.2, 3.3, 1H), 5.45 (d, J = 9.9, 1H), 3.14 (d, J = 17.1, 1H), 3.07 (d, J = 17.1, 1H), 2.22–2.13 (m, 1H), 2.13–2.04 (m, 1H), 2.04–1.96 (m, 1H), 1.90 (td, J = 11.6, 2.7, 1H), 1.69–1.57 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 210.1, 152.6, 135.9, 135.0, 130.2, 128.3, 127.7, 126.7, 124.7, 51.4, 42.6, 32.8, 24.6, 19.5; IR (film): 3019, 2930, 1712, 1605, 1464, 1282 cm⁻¹; HRMS–APCI (m/z) [M + H]⁺ calcd for C₁₄H₁₅O⁺, 199.11174; found 199.11026. Indanone **12b**: R_f 0.50 (benzene); ¹H NMR (500 MHz, CDCl₃): δ 7.77 (d, J = 7.7, 1H) 7.59 (td, J = 7.6, 0.9, 1H), 7.44 (d, J = 7.5, 1H), 7.38 (t, J = 7.5, 1H), 5.79 (m, 2H), 3.06 (d, J = 17.3, 1H), 2.93 (d, J = 17.3, 1H), 2.48 (dquint J = 17.7, 2.5, 1H), 2.30–2.14 (m, 2H), 1.91 (ddd, J = 17.5, 11.1, 6.6, 1H), 1.79 (dt, J = 17.7, 2.5, 1H), 1.50 (dt, J = 17.5, 2.7, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 211.3, 153.0, 136.0, 135.0, 127.6, 126.81, 126.76, 125.3, 124.5, 48.5, 39.2, 34.1, 28.7, 22.8; IR (film): 3026, 2925, 2840, 1712, 1608, 1284 cm⁻¹; HRMS–APCI (m/z) [M + H]⁺ calcd for C₁₄H₁₅O⁺, 199.11174; found 125 MHz, CDCl₃): δ 211.3, 153.0, 136.0, 135.0, 127.6, 126.81, 126.76, 125.3, 124.5, 48.5, 39.2, 34.1, 28.7, 22.8; IR (film): 3026, 2925, 2840, 1712, 1608, 1284 cm⁻¹; HRMS–APCI (m/z) [M + H]⁺ calcd for C₁₄H₁₅O⁺, 199.11174; found 199.11028.

Indanone 13 (Table 2). Purification by preparative thin-layer chromatography (97:3 Benzene:CH₃CN) afforded indanone 13 (51% yield, average of two experiments) as a colorless oil. Indanone 13: R_f 0.25 (9:1 Hexane:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.77 (d, J = 7.7, 1H), 7.60 (dt, J = 7.5, 1.2, 1H), 7.44 (td, J = 7.7, 0.9, 1H), 7.37 (dt, J = 7.5, 0.9, 1H), 5.57 (quint, J = 2.2, 1H), 3.32 (d, J = 17.2, 1H), 2.97 (d, J = 17.2, 1H), 2.34–2.20 (m, 3H), 2.15–2.06 (m, 1H), 1.88–1.78 (m, 2H), 1.41 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 208.9, 152.7, 145.5, 135.8, 135.0, 127.6, 126.6, 125.7, 124.7, 51.6, 41.4, 32.4, 32.2, 23.6, 22.9; IR (film): 2956, 2929, 2846, 1713, 1608, 1464, 1280 cm⁻¹; HRMS–APCI (*m*/*z*) [M + H]⁺ calcd for C₁₅H₁₇O⁺, 213.12739; found 213.12580.

Indanone 14 (Table 2). Purification by preparative thin-layer chromatography (9:1 Benzene:CH₃CN) afforded indanone 14 (96% yield, average of two experiments) as a colorless oil. Indanone 14: R_f 0.48 (9:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.76 (d, J = 7.6, 1H), 7.59 (td, J = 7.6, 1.2, 1H), 7.43 (dt, J = 7.6, 0.9, 1H), 7.39–7.34 (m, 1H), 5.65 (d, J = 17.6, 1H), 3.29 (d, J = 17.4, 1H), 2.91 (d, J = 17.4, 1H), 2.13–1.99 (m, 2H), 1.92–1.83 (m, 1H), 1.79–1.70 (m, 1H), 1.63–1.50 (m, 4H), 1.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 210.2, 153.1, 138.5, 136.3, 134.9, 127.5, 126.6, 124.5, 122.4, 54.6, 41.7, 25.5 (two carbons), 23.1, 22.32, 22.28; IR (film): 2928, 1712, 1464, 1153, 736 cm⁻¹; HRMS–APCI (m/z) [M + H]⁺ calcd for C₁₆H₁₉O⁺, 227.14304; found 227.14236.

Indanone 15 (Table 2). Purification by preparative thin-layer chromatography (97:3 Benzene:CH₃CN) afforded indanone 15 (80% yield, average of two experiments) as a colorless oil. Indanone 15: R_f 0.48 (9:1 Hexane:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.78 (d, J = 7.7, 1H), 7.60 (dt, J = 7.5, 1.2, 1H), 7.44 (td, J = 7.7, 0.9, 1H), 7.37 (dt, J = 7.5, 0.9, 1H), 5.86 (t, J = 6.8, 1H), 3.26 (d, J = 17.4, 1H), 2.89 (d, J = 17.4, 1H), 2.22–2.10 (m, 2H), 1.98 (ddd, J = 14.9, 9.5, 1.7, 1H), 1.89 (ddd, J = 14.9, 8.9, 1.7, 1H), 1.78–1.64 (m, 2H), 1.55–1.45 (m, 2H) 1.45–1.30 (m, 2H), 1.29 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 210.0, 153.1, 145.0, 136.4, 134.9. 127.5, 127.4, 126.7, 124.6, 55.9, 40.9, 33.0, 31.1, 28.5, 27.4, 26.9, 22.7; IR (film): 2920, 2947, 1710, 1607, 1463, 1440, 1750 cm⁻¹; HRMS–APCI (m/z) [M + H]⁺ calcd for C₁₇H₂₁O⁺, 241.15869; found 241.15748.

Indanone 16 (Table 2). Purification by preparative thin-layer chromatography (2:1 Hexanes:EtOAc) afforded indanone 16 (91% yield, average of two experiments) as a colorless oil. Indanone 16: $R_f 0.34$ (3:1 Hexanes:EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, J = 7.8, 1H), 7.61 (td, J = 7.6, 1.3, 1H), 7.45 (dt, J = 7.8, 1.0, 1H), 7.39 (t, J = 7.6, 1H), 5.65 (app sext, J = 1.4, 1H), 4.19 (app tquint, J = 16.4, 2.6, 2H), 3.73 (td, J = 5.0, 1.1, 2H), 3.34 (d, J = 17.3, 1H), 2.95 (d, J = 17.3, 1H), 2.12 (m, 1H), 1.86 (m, 1H), 1.37 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 209.0, 152.8, 136.4, 136.0, 135.2, 127.8, 126.6, 124.7, 121.4, 65.9, 64.3, 54.0, 41.0, 25.6, 22.1; IR (film): 2961, 2927, 2850, 1709, 1606, 1464, 1277, 1127 cm⁻¹; HRMS–APCI (m/z) [M + H]⁺ calcd for C₁₅H₁₇O₂⁺, 229.12231; found 229.12094.

Indanone 17 (Table 2). Purification by preparative thin-layer chromatography (2:1 Hexanes:EtOAc) afforded indanone 17 (93% yield, average of two experiments) as a colorless oil. Indanone 17: R_f 0.37 (3:1 Hexanes:EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d J = 7.6, 1H) 7.61 (td, J = 7.6, 1.1, 1H), 7.45 (d, J = 7.7, 1H), 7.39 (t, J = 7.7, 1H), 5.61 (br s, 1H), 3.93 (s, 2H), 3.43 (t, J = 4.7, 2H), 3.30 (d, J = 17.4, 1H), 2.95 (d, J = 17.4, 1H), 2.06 (m, 1H), 1.87 (m, 1H), 1.45 (s, 9H), 1.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 209.1, 154.9, 152.7, 137.5, 135.9, 135.2, 127.8, 126.6, 124.7, 119.6, 79.7, 54.1, 43.5, 41.0, 39.7, 28.6, 25.7, 22.3; IR (film): 2975, 2931, 1695, 1419, 1365, 1241, 1171 cm⁻¹; HRMS–ESI (*m/z*) [M + Na]⁺ calcd for C₂₀H₂₅NNaO₃⁺, 350.1732; found 350.1736.

Note: The data for indanone **17** *represents empirically observed chemical shifts from the* ¹³*C NMR spectrum, presumably due to the nitrogen-containing heterocycle.*

Indanone 18 (Figure 2). ¹H NMR analysis of the crude reaction mixture indicated a 53% yield (average of two experiments) of ketone 18 relative to a hexamethylbenzene external standard. Purification by preparative thin-layer chromatography (97:3 Benzene: CH₃CN) afforded an analytical sample of 18 as an off-white oil. Diminished isolated yields (i.e. <50%) for 18 were observed and can be attributed to the volatility of the neat compound. Indanone 18: R_f 0.59 (3:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.44–7.39 (m, 2H), 7.32 (td, *J* = 8.6, 2.4, 1H), 4.94 (m, 2H), 3.29 (d, *J* = 17.8, 1H), 2.91 (d, *J* = 17.8, 1H), 1.65 (q, *J* = 0.7, 3H), 1.38 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 208.3 (d, *J* = 2.6), 162.5 (d, *J* = 248), 148.1 (d, *J* = 2.1), 145.6, 137.7 (d, *J* = 7.0), 128.0 (d, *J* = 7.9), 122.8 (d, *J* = 24), 112.4, 110.4 (d, *J* = 22), 55.7, 40.8, 22.7, 20.0; ¹⁹F NMR (376 MHz, CDCl₃): δ -114.3 (s, 1F); IR (film): 2970, 2929, 1712, 1484, 1447, 1263 cm⁻¹; HRMS–APCI (*m*/z) [M + H]⁺ calcd for C₁₃H₁₄FO⁺, 205.10232; found 205.10239.

Indanone 19 (Figure 2). Purification by preparative thin-layer chromatography (4:1 Hexanes:EtOAc) afforded indanone 19 (74% yield, average of two experiments) as a yellow oil. Indanone 19: R_f 0.69 (3:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 8.05 (s, 1H), 7.32 (dd, J = 7.9, 1.3, 1H), 7.59 (d, J = 7.9, 1H), 4.97 (quint, J = 1.1, 1H), 4.95 (s, 1H), 3.40 (d, J = 18.0, 1H), 3.02 (d, J = 18.0, 1H), 1.67 (q, J = 0.7, 3H), 1.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 207.9, 156.0, 145.2, 136.4, 131.5 (q, J = 3.5), 130.6 (q, J = 33), 127.3, 123.9 (q, J = 18.0, 1H)

273), 122.0 (d, J = 3.9), 112.8, 55.2, 41.4, 22.7, 20.0; ¹⁹F NMR (376 MHz, CDCl₃): δ –62.5 (s, 3F); IR (film): 2972, 2936, 1722, 1625, 1332, 1257, 1184, 1128 cm⁻¹; HRMS–APCI (*m/z*) [M + H]⁺ calcd for C₁₄H₁₄F₃O⁺, 255.09913; found 255.09744.

Indanone 20 (Figure 2). Purification by preparative thin-layer chromatography (99:1 Benzene:CH₃CN) afforded indanone 20 (63% yield, average of two experiments) as a white crystalline solid. Indanone 20: mp: 41–43 °C; R_f 0.32 (10:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.33 (d, J = 8.0, 1H), 7.23–7.18 (m, 2H), 4.95 (m, 2H), 3.84 (s, 3H), 3.24 (d, J = 17.4, 1H), 2.87 (d, J = 17.4, 1H), 1.64 (s, 3H), 1.37 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 209.2, 159.5, 145.9, 145.5, 137.0, 127.2, 124.5, 112.0, 105.5, 55.6, 40.6, 22.7, 19.8; IR (film): 2964, 1707, 1275, 1280, 894 cm⁻¹; HRMS–APCI (m/z) [M + H]⁺ calcd for C₁₄H₁₈O₂⁺, 217.12231; found 217.12123.

Indanone 21 (Figure 2). Purification by preparative thin-layer chromatography (9:1 Hexanes:Et₃N) afforded indanone **21** (60% yield, average of two experiments). Spectral data match those previously reported.¹⁰

Indanone 22 (Figure 2). Purification by preparative thin-layer chromatography (9:1 Hexanes:EtOAc) afforded indanone 22 (87% yield, average of two experiments) as a colorless oil. Indanone 22: $R_f 0.43$ (9:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.67 (d, J = 7.8, 1H), 7.25–7.23 (m, 1H), 7.20–7.18 (m, 1H), 4.95–4.93 (m, 2H), 3.27 (d, J = 17.6, 1H), 2.89 (d, J = 17.4, 1H), 2.44 (s, 3H), 1.63 (s, 3H), 1.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 208.8, 153.3, 146.3, 146.1, 133.7, 128.9, 126.9, 124.5, 112.0, 54.7, 41.2, 22.8, 22.2, 19.9; IR (film): 2965, 1705, 1608, 1322, 585 cm⁻¹; HRMS–APCI (*m*/*z*) [M + H]⁺ calcd for C₁₄H₁₇O⁺, 201.12739; found 201.12719.

Indanone 23 (Figure 2). Purification by preparative thin-layer chromatography (9:1 Hexanes:EtOAc) afforded indanone 23 (85% yield, average of two experiments) as a colorless oil. Indanone 23: R_f 0.38 (10:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.63 (d, *J* = 7.4, 1H), 7.43 (d, *J* = 7.4, 1H), 7.31 (t, *J* = 7.4, 1H), 4.97–4.94 (m, 2H), 3.21 (d, *J* = 17.5, 1H), 2.84 (d, *J* = 17.4, 1H), 2.35 (s, 3H), 1.65 (s, 3H), 1.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 209.5, 151.6, 146.0, 135.67, 135.66, 135.4, 127.8, 122.0, 112.0, 54.5, 40.3, 22.8, 19.9, 17.8; IR (film): 2966, 1708, 1591, 1268, 893 cm⁻¹; HRMS–APCI (*m/z*) [M + H]⁺ calcd for C₁₄H₁₇O⁺, 201.12739; found 201.12701.

D. Diastereoselective Heck Cyclization

Ester SI-52. Following a modification of the general procedure reported by Querolle and coworkers.³ a flask containing a stir bar was charged CuCN (680 mg, 7.50 mmol, 1.0 equiv) and LiCl (650 mg, 15.0 mmol, 2.0 equiv) in the glovebox. The flask was removed from the glovebox, and the solids were suspended in THF (25 mL). The resulting mixture was stirred vigorously until a completely dissolved solution of CuCN•2LiCl was formed. In a separate flask containing a solution of methyl-2-iodobenzoate (SI-1) (1.97 g, 7.50 mmol, 1.0 equiv) in THF (70 mL) at -40 °C was added *i*-BuMgCl (5.60 mL of a 2.0 M solution in THF, 11.3 mmol, 1.5 equiv) dropwise over 1 min at -40 °C. After this mixture was stirred at -40 °C for 1 h, the solution of CuCN•2LiCl was added via cannula. The combined mixture was stirred at -40 °C for an additional 15 min, at which point known bromide SI-51¹¹ (2.43 g, 15.0 mmol, 2.0 equiv) was added dropwise over 1 min. After stirring at -40 °C for an additional hour, the reaction was poured into 9:1 sat. aq. NH₄Cl:NH₄OH (100 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 75 mL). The organic layers were combined, dried over MgSO₄, and concentrated under reduced pressure. The crude mixture was purified via flash chromatography (97:3 Hexanes:EtOAc) to afford ester SI-52 (1.61 g, 98% yield) as an inseparable mixture of olefin isomers and as a colorless oil (4:1 mixture of alkene isomers). Configurational isomers of ester SI-52 were analyzed as a mixture. Ester SI-52: Rf 0.55 (9:1 Hexanes: EtOAc); ¹H NMR (500 MHz, CDCl₃): Major (*E*)-isomer **SI-52** δ 7.71 (dd, *J* = 7.7, 1.5, 1H), 7.40 (dt, J = 7.8, 1.6, 1H), 7.30 (dd, J = 8.0, 1.24, 1H), 7.22 (dt, J = 7.7, 1.6, 1H), 5.38 (tq, J= 6.7, 1.6, 1H, 4.23 (q, J = 7.1, 1H), 3.88 (s, 3H), 1.63 (dt, J = 6.8, 1.2, 3H), 1.45 (br s, 3H), 1.33 (d, J = 7.0, 3H); Minor (Z)-isomer SI-52 δ 7.60 (dd, J = 7.8, 1.3, 1H), 7.45–7.38 (m, 2H), J = 1.5, 3H, 1.40 (quint, J = 1.5, 3H), 1.35 (d, J = 7.3, 3H); ¹³C NMR (125 MHz, CDCl₃): (27 of 28 signals observed) δ 169.4, 169.1, 146.9, 145.1, 139.3, 138.9, 131.7, 131.6, 131.1, 130.9, 129.8, 129.4, 127.8, 127.6, 125.8, 120.3, 118.3, 52.3, 52.1, 42.7, 35.3, 20.3, 20.2, 18.3, 16.0, 13.6, 13.3;
IR (film): 2968, 1721, 1601, 1576, 1485, 1446, 1371 cm⁻¹; HRMS–APCI (m/z) [M + H]⁺ calcd for C₁₄H₁₉O₂⁺, 219.13796; found 219.13794.

Imide 24. To a solution of ester **SI-52** (1.61 g, 7.40 mmol, 1.0 equiv) in THF (35 mL) was added a solution of NaOH (1.48 g, 37.0 mmol, 5.0 equiv) in H₂O (35 mL). The reaction was heated to 90 °C and stirred for 12 h. After cooling to room temperature, the reaction mixture was poured into deionized water (25 mL) and diluted with EtOAc (25 mL). The layers were separated and the aqueous layer was acidified to pH ~2 with 1 N HCl (100 mL) and extracted with EtOAc (3 x 50 mL). The organic layers were combined, washed with deionized water (300 mL), dried over MgSO₄, and concentrated under reduced pressure to afford the corresponding carboxylic acid, which was used in the subsequent step without further purification.

To a solution of the crude carboxylic acid, HOBt (1.08 g, 7.80 mmol, 1.1 equiv from **SI-52**), and EDC•HCl (1.53 g, 7.80 mmol, 1.1 equiv from **SI-52**) in DMF (40 mL) was added benzylamine (0.90 mL, 7.80 mmol, 1.1 equiv from **SI-52**) and triethylamine (1.17 mL, 7.80 mmol, 1.1 equiv from **SI-52**). After stirring for 15 h, the reaction mixture was poured into deionized water (300 mL) and diluted with EtOAc (50 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 50 mL). The organic layers were combined, washed with deionized water (100 mL), dried over MgSO₄, and concentrated under reduced pressure to afford the corresponding amide, which was used in the subsequent step without further purification.

To a solution of the crude amide in CH₃CN (45 mL) was added DMAP (82 mg, 0.65 mmol, 0.1 equiv) and Boc₂O (1.85 g, 8.50 mmol, 1.3 equiv from **SI-52**). After stirring for 15 h, the reaction mixture was concentrated under reduced pressure and purified by flash chromatography (99:1 Hexanes:EtOAc) to yield imide **24** (1.97 g, 68% yield, 3 steps) as an inseparable mixture of olefin isomers and as a colorless oil (4:1 mixture of alkene isomers).

Configurational isomers of imide **24** were analyzed as a mixture. Imide **24**: R_f 0.52 (9:1 Hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃): Major (*E*)-isomer **24** δ 7.43 (d, *J* = 7.5, 2H), 7.37–7.31 (m, 3H), 7.29–7.22 (m, 2H), 7.16 (dt, *J* = 7.7, 1.4, 1H), 7.12–7.08 (m, 1H), 5.36 (tq, *J* = 6.8, 1.3, 1H), 5.06 (s, 2H), 3.67 (q, *J* = 6.9, 1H), 1.60 (d, *J* = 6.7, 3H), 1.48 (s, 3H), 1.30 (d, *J* = 7.0, 3H), 1.13 (s, 9H); Minor (*E*)-isomer **24** δ 7.45–7.37 (m, 2H), 7.37–7.31 (m, 3H), 7.29–7.22 (m, 2H), 7.18 (dt, *J* = 7.5, 1.3, 1H), 7.12–7.08 (m, 1H), 5.22 (br s, 1H), 4.99 (br s, 2H), 4.34 (br s, 1H), 1.57 (d, *J* = 6.9, 3H), 1.53 (t, *J* = 1.4, 3H), 1.34 (d, *J* = 7.2, 3H), 1.11 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 172.4, 152.8, 142.8, 141.3, 138.9, 138.6, 138.1, 138.04, 138.02, 129.4, 129.0, 128.5, 128.3, 127.5, 127.4, 126.3, 126.2, 125.4, 120.0, 118.6, 83.5, 48.0, 43.2, 27.7, 27.6, 20.2, 18.7, 15.5, 13.5, 13.3; IR (film): 2973, 1728, 1670, 1456, 1369, 1335, 1228 cm⁻¹; HRMS–APCI (*m*/*z*) [M + H]⁺ calcd for C₂₅H₃₂NO₃⁺, 394.23767; found 394.23814.

Indanone 25 (Figure 3). Following the representative procedure described in Section C, purification by preparative thin-layer chromatography (98:2 Benzene:CH₃CN) afforded indanone 25 (80% yield, 92:8 dr, average of two experiments) as a colorless oil. Indanone 25: R_f 0.48 (9:1 Hexane:EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.75 (d, *J* = 7.7, 1H), 7.62 (dt, *J* = 7.7, 1.2, 1H), 7.49 (dd, *J* = 7.8, 0.9, 1H), 7.38 (tt, *J* = 7.5, 0.9, 1H), 5.94 (dd, *J* = 17.4, 10.6, 1H), 5.23–5.15 (m, 2H), 3.40 (q, *J* = 7.5, 1H), 1.32 (d, *J* = 7.4, 3H), 1.19 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 208.4, 157.2, 141.0, 135.1, 134.5, 127.8, 125.1, 124.5, 114.6, 56.2, 43.1, 18.5, 15.1; IR (film): 2972, 1712, 1606, 1466, 1328, 1285, 1226 cm⁻¹; HRMS–APCI (*m/z*) [M + H]⁺ calcd for C₁₃H₁₅O⁺, 187.11174; found 187.11180.

The stereochemistry of indanone **25** *was verified by NOESY (500 MHz, CDCl₃), as the following correlation was observed:*

References

¹ Cui, X.; Wang, S.; Zhang, Y.; Deng, W.; Qian, Q.; Gong, H. Org. Biomol. Chem. **2013**, *11*, 3094–3097.

² Hansen, E. C.; Pedro, D. J.; Wotal, A. C.; Gower, N. J.; Nelson, J. D.; Caron, S.; Weix, D. J. *Nat. Chem.* **2016**, *8*, 1226–1230.

³ Querolle, O.; Dubois, J.; Thoret, S.; Roussi, F.; Guéritte, F.; Guénard, D. *J. Med. Chem.* **2004**, *47*, 5937–5944.

⁴ Clennan, E. L.; Chen, X. J. Am. Chem. Soc. 1989, 111, 5787-5792.

⁵ Tanaka, K.; Uneme, H.; Ono, N.; Kaji, A. Chem. Lett. 1979, 9, 1039–1040.

- ⁶ Friese, A.; Hell-Momeni, K.; Zundorf, I.; Winckler, T.; Dingermann, T.; Dannhardt, G. J. Med. Chem. **2002**, *45*, 1535–1542.
- ⁷ Shimano, M.; Kamei, N.; Tanaka, T.; Harada, T.; Haino, M.; Okuyama, A.; Arakawa, Y.

Murakami, Y. Reverse Hydroxamic Acid Derivatives. Eur. Pat. Appl. 1431285. June 23rd, 2004.

- ⁸ Sato, K.; Sugimoto, H.; Rikimaru, K.; Imoto, H.; Kamaura, M.; Negoro, N.; Tsujihata, Y.;
- Miyashita, H.; Odani, T.; Murata, T. Bioorg. Med. Chem. 2014, 22, 1649-1666.
- ⁹ (a) Mori, M.; Kaneta, N.; Isono, N.; Shibasaki, M. J. Organomet. Chem. 1993, 455, 255-260.
- (b) Kotha, S.; Mandal, K.; Tiwari, A.; Mobin, S. M. Chem. Eur. J. 2006, 12, 8024-8038.
- ¹⁰ Hayashi, T.; Tang, J.; Kato, K. Org. Lett. 1999, 1, 1487–1489.
- ¹¹ Van Zyl. C. M.; McKeeby, J. L.; Van Dort, P. C.; Larson, E. J.; Silver, M. E. *Inorg. Chim. Acta.* **1987**, *133*, 289–294.

¹H NMR Spectra:

Medina et al.: Nickel-Catalyzed Heck Cyclization of Amides – S46

Medina et al.: Nickel-Catalyzed Heck Cyclization of Amides – S53

Current Data Parameters NAME JM-5-019 EXPNO 300 PROCNO 1	F2 - Acquisition Parameters Date18.22 h INSTRUM 20170109 INSTRUM 20170109 INSTRUM 219224 0002 (PULPROG 5536 SOLVENT 5033 SOLVENT 5033 SOLVENT 0000 Hz NS 8 0 SWH 10000.000 Hz 0.305176 Hz 12.14 0.000 usec 12.14 0.000 usec 12.14 D1 2.0000000 sec 11.10 00 usec 11.00 usec NUC1 11.100 usec NUC1 11.100 usec NUC1 11.100 usec	F2 - Processing parameters SI 65536 SF 500.1300122 MHz WDW EM SSB 0 0.30 Hz CB 0 0.30 Hz GB 0 1.00		
22230 222230 222230 222230 22223 22232 22322 2232 2232 22322				4 4 (2011) 8 (2011) 8 (2011) 8 (2011) 8 (2011) 8 (2011) 8 (2011) 8 (2011) 1 (2011) 8 (2011) 1 (2
- 2.045 - 2.249 - 2.492 - 2.458 - 2.458 - 2.458 - 2.458 - 2.458 - 2.458 - 2.492 - 2.492 - 2.492 - 2.492 - 2.492 - 2.495 - 2.49			~	م – 2.000 م –
620°5 122°9 922°9 222°9 182°9 182°9 182°9 182°9 198°2 92°2 92°2				α
7.781 - 7.590 - 7.606 - 7.592 - 7.592 - 7.430 - 7.4300 - 7.4300 - 7.4300 - 7.4300 - 7.4400 - 7				- 0

Current Data Parameters NAME JMM-7-212(A1) EXPNO 999 PROCNO 999	F2 - Acquisition Parameters Date 20161216 Time 9.07 NDSTRUM av500 PULPROG 507 PULPROG 5336 SOLVENT 13 DS 0.152588 Hz SOLVENT 13 DS 0.152588 Hz SWH 10000.000 Hz DW 0.152588 Hz AG 5.167999 sec AG 5.167999 sec DW 1000.000 Hz DW 0.152588 Hz AG 5.000 usec TE 2.0000000 sec TD 1 DW 10.00 usec TH 1 DW 1 NUC1 1 PLW1 13.5000000 Wz SE 500.1300122 MHz SSB 0 SSB 0 SSB 0 SSB 0 SSB 0.30 Hz CB 0.30 Hz CB 0.30 Hz <th></th> <th></th>		
- 1.412 - 1.809 - 1.815 - 1.815 - 1.818 - 1.819 - 1.819 - 1.819			
-1.842 -1.826 -1.828 -1.8488 -1.8488 -1.8488 -1.8488 -1.8488 -1.8488 -1.8488 -1.8488 -1.8488 -1.8488 -1.8488 -1.8488 -1.8488 -1.8488 -1.8488 -1.8488		L L L A AM	<u>3.051</u> <u>2.025</u> <u>2.025</u> N
- 2.311 - 2.304 - 2.304 - 2.284 - 2.284 - 2.284 - 2.228 - 2.238 - 2.23	F F		- ↔ <u>- +20.1</u>
- 5'313 - 5'316 - 5'360 - 5'360 - 3'333 - 2'260 - 2'26			ο - σ - σ
298:2 638:2 2325 2325 2325 2325 2325 2325 2325 23			α α α α α α α α α α α α α α
119.7 119.7 119.7 120.5 10			- 0
192.7 - 977.7 - 877.7 -			

Current Data Parameters NAME JMM-7-198(Cchar) EXPNO 1 PROCNO 1	F2 - Acquisition Parameters Date 20161204 Time 15.48 INSTRUM av500 PULPROG 2gpg30 TD 65536 SOLVENT C6D6	SWH S0000.000 Hz FIDRS 0.762939 Hz AQ 0.6553600 sec PIO 204.54 DW 10.000 usec 100.00 usec 100.00 usec TE 298.0 K D11 2.0000000 sec D11 0.0300000 sec TD0 1	EXECT 125.7640769 MHz SFO1 125.7640769 MHz NUC1 13C P1 9.63 usec PLW1 23.0000000 W	EFO2 EAANNEL f2 ===== SFO2 500.1330008 MHz NUC2 11 CPDPRG[2 waltz16 CPD2 13.500000 W PLW2 13.5000000 W PLW13 0.13500001 W	F2 - Processing parameters SI 65536 SF 500.1300123 MHz WDW EM SSB 0 LB 0.30 Hz GG 0 1 00	о - ГЕ
- 1.326 - 1.326 - 1.520 - 1.520 - 1.520 - 1.540 - 1.553 - 1.523 - 1.533 - 1.53						2 1 0 D D D D D D D D D D D D D D D D D D
2.002 2.						- ro - 4 - <u></u>
2:53 2:54 2:56						0 1.032 1.032 0 0 0 0 0 0 0 0 0 0 0 0 0
867.7 17.2	Me	74				10 0

Current Data Parameters NAME JMM-7-225-char EXPNO 999 PROCNO 999	F2 - Acquisition Parameters Date 20170126 Time 13.13 Time 13.13 NDSTRUM av500 PNDRPDBHD 5 mm DCH 13C-1 PULPROG 65536 SOLVENT CDCI3 TD 65536 SOLVENT CDCI3 NS 15 DS 0.152588 Hz AQ 3.2767999 sec TE 2.000 usec D1 2.0000 usec D1 2.0000000 sec D1 2.0000000 sec PLW1 10.00 usec TE 298.0 K D1 2.0000000 sec PLW1 13.5000000 Wz PLW1 13.5000000 Wz PLW1 13.5000000 Wz F0 10.00 Usec PLW1 13.5000000 Wz SF 500.1300121 MHz WDW 6M	PC BB 0 0:30 HZ
- 1.289 - 1.480 - 1.480 - 1.490 - 1.490 - 1.203		I dd
- 1.895 - 1.895 - 1.728 - 1.728 - 1.892 - 1.892 - 1.892 - 1.895 - 1.89		2.082 1.049 2.095 2.097 2.096 2.096 2.096 2.096 2.095 2.
- 2.1913 - 2.146 - 2.142 - 1.956 - 1.976 - 1.976 - 2.146 - 2.146 - 2.146 - 2.146	F	- 4
- 5.861 - 5.848 - 5.848 - 3.246 - 2.176 - 2.176 - 2.176 - 2.176	1	- ω = <u>θ10.</u> Γ ω
7.434 7.432 7.359 7.358 7.358 7.358 7.358 7.358 7.358 7.358		∞ → ∞ → ∞ → → → → → → → → → → → → → → →
977.7 277.7 972.7 973.7 973.7 163.7 163.7 263.7 263.7	12 Me	- თ
687.7 - 806.7 - 806.7 - 807.7 - 807.7 - 807.7 - 807.7 - 805.7 - 805.7 -		9

¹³C NMR Spectra:

Current Data Parameters NAME JM-5-073 EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date 18.26 h INSTRUM av500 PROBHD 2119248_0002 (18.26 h INSTRUM av500 PROBHD 2119248_0002 (55356 536 5536 536 5537 4 Hz 0.953674 Hz 0.95374 Hz 0.953674 Hz 0.95374 Hz 0.95376760 Hz 0.95276760 Hz 0.957777576767767777777777777777777777777	F2 - Processing parameters SI 131072 SF 125.757764 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 1.40 PC 1.40
50.73	20 20 10
02.76	
25.00	20
	09
	6
	100
- 159.66	110
81.021	30
90'2#L 95'02L 99'2#L	140
	150
	160
	0
	90

Current Data Parameters NAME JM-4-296 EXPNO 101 PROCNO 1 F2 - Acquisition Parameters Date 17.23 h INSTRUM av500 PROBHD 2119248_0002 (PULPROG 250930 TD 65536 SOU VENT CDC13	NS 144 DS 2 SWH 31250.000 Hz FIDRES 0.953674 Hz AQ 1.0485760 sec RG 1.0485760 sec RG 1.0485760 sec RG 16.000 usec 18.00 usec D1 2.0000000 sec D1 2.0000000 sec D1 0.0300000 sec D1 2.0000000 sec D1 2.0000000 sec D1 2.0000000 sec D1 2.0000000 sec	NUC1 13C P1 10.50 usec PLW1 23.0000000 W SFO2 500.1330008 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW12 0.21094000 W PLW13 0.10610000 W	F2 - Processing parameters SI 131072 SF 125.757727 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 1.40 PC 1.40	udd
				20 10
52.75				 30
				40
86'27				 50
				60
98.88				 0
89 10				 001
				110
156.98				120
128.62				 130
- 130'58				 140
- 144.60				 150
				160
₱9 [°] µ ∠ µ ────	<u>Б</u> ,			 170
	B_z′ 1;)=⊂			0 180
				00
L				10 20
				5

Current Data Parameters NAME JM-5-033.500.2 EXPNO 3 PROCNO 1	F2 - Acquisition Parameters Date 20170130 Time 9.36 h NSTRUM av5000 PULPROG 20170130 PULPROG 299930 PULPROG 299930 PULPROG 299930 PULPROG 299300 PULPROG 299300 PULPROG 299300 PULPROG 299300 PULPROG 20000 PULPROG 20000 PULPROG 20000 PULPROG 20000 PULPROG 1.128 PULPROG 1.128 PULPROG 0.053674 Hz PULPROG 1.0485760 sec PUL 1.0485760 sec PUL 1.0485760 sec PUL 1.0.03000000 sec PUL 1.0.03000000 sec PUL 1.0.03000000 sec PUL 1.0.50 usec PUL 1.0.50 usec PUL 1.0.50 usec PUL 1.130000000 W PUL 2	F2 - Processing parameters SI 131072 SF 125.7577916 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40		Eedd
				10
				20
244.72				30
				40
68.74				50
				09
600.08				02 08
Z17.83				3 06
				100
				110
				120
128.368				130
139.680		-		140
806.131				0 150
119.931				0 16
272.171	E o			80 17
				190
	sr1			200 1
	Meo			210
			ſ	. È

Current Data Parameters NAME JMM-7-68-1 EXPNO 2 PROCNO 999	F2 - Acquisition ParametersDate20170207Date20170207Time19.50INSTRUMav500NSTRUMav500PULPROG52pg330PULPROG52pg330TD0.762336SOLVENTCDCI3NS106DS2SOLVENT0.6553600 secRG204.54DW10.000 usecDE18.00 usecTE2980.0 KD12.00000000 secTD10.03000000 secTD01TD01	ETRIC CHANNEL f1 ===== SFO1 125.7766527 MHz NUC1 13C P1 9.63 usec PLW1 23.0000000 W	EFFO2 500.1330008 MHz SFO2 500.1330008 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 13.5000000 W PLW2 13.5000000 W PLW13 0.13500001 W	F2 - Processing parameters SI 131072 SF 125.757729 MHz WDW EM SSB 0 1.00 Hz GB 0 1.40 PC 1.40	mdd 0
009.72					to 30 20 10
⊅62.3 3 ——					70 60 5
					100 90 80
113.234					110
127.503					120
122.665					130
132.684				_	140
784.221					150
977.091 ——				-	160
767°021					170
					180
) 190
	v v v v				210 200

Current Data Parameters NAME sr-1-116.500.11 EXPNO 2 PROCNO 1	F2 - Acquisition Parameters Date 20170210 Time 9.09 h INSTRUM av500 INSTRUM av500 PULPROG 5536 SOLVENT CDCI3 SOLVENT CDCI3 SOLVENT CDCI3 SOLVENT CDCI3 SOLVENT 0.953674 Hz DW 1.0485760 sec RG 204.54 DW 10.0485760 sec DE 18.00 usec TE 298.0 K	D1 2.0000000 sec TD0 1 0.0300000 sec TD0 1 5501 SFO1 125.7722511 MHz NUC1 13C P1 13C NUC1 13C NUC1 13C P1 13C NUC2 1H P2 11H CPDPRG[2 80.0100000 W NUC2 1H CPDPRG[2 80.00 Wesc PLW12 0.21094000 W PLW13 0.10610000 W	F2 - Processing parameters SI 131072 SF 125.757887 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 1.40 PC 1.40	udd
124.72 648.02				30 20
L78.74				60 50 40
814.78 —— 213.68 ——				02 00 90
127.427	-			130 120 110 1
152.251 144.155 138.850 137.4888 137.488 17				160 150 140
929.171 ——	Me N ⁻ Bn Boc			210 200 190 180 170 1
				1 🖡

Current Data Parameters NAME sr-1-088 EXPNO 2 PROCNO 1	F2 - Acquisition Parameters Date 20170124 Time 9.23 h INSTRUM 9.23 h PULPROG 2929930 SOLVENT CDCI3 NS 194 NS 194 NS 194 NS 10485760 sec RG 204.54 DW 10.0485760 sec RG 204.54 DW 10.0485760 sec TE 298.0 K TE 2.0000000 sec D11 2.00000000 sec D11 2.00000000 sec D11 2.00000000 sec TD0 1 PLW1 23.0000000 sec PLW1 23.0000000 W PLW1 0.10610000 W	F2 - Processing parameters SI 1310722 SF 125.7577907 MHz WDW EM SSB 0 1.00 Hz GB 0 1.40 PC 1.40 PC 1.40
28.765 27.366 27.366		30 - 20 - 10
029.74		50 50 50
- 		20 20 80
184.86		
127.423 129.450 128.359 127.374 127.890 127.890 127.890 127.890		40 130 120 1
151.975		160 150 1
078.171	SI-17	210 200 190 180 170

Data Parameters sr-1-035 o 2 1 2 17.49 h 17.49 h 17.49 h 300000 65536 NT 7 2 31250.000 Hz 0.953674 Hz 1.0485760 sec 204.54 10.000 usec 203000000 sec 203000000 sec 203.51 MHz 10.50 usec 2.0000000 sec 2.0000000 sec 2.0000000 sec 2.0000000 sec 2.0000000 sec 2.0000000 sec 0.03000000 sec 0.030000000 sec	500.1330008 MHz 1H 1H 80.00 usec 13.5000000 W 0.21094000 W 0.21094000 W 0.21094000 W 0.2001000 W 131072 131072 125.757774 MHz 0 1.00 Hz 0 1.40
Current AMB AMB AMB AMB AMB AMB AMB AMB AMB AMB	
69.91 —	
20.94	50
	- Ce
	- 64
99'72	
97'69	
	00
	0
00.221	120
20.201	130
	140
	15
120-13	16-
<u>e</u>	170
	180
v √ √ ™e √	-19
MeC	200
	210

Medina et al.: Nickel-Catalyzed Heck Cyclization of Amides – S101

Current Data Parameters NAME JMM-7-192-3 EXPNO 2 PROCNO 1	F2 - Acquisition Parameters Date14.09 Time14.09	INSTRUM av500 PROBHD 5 mm DCH 13C-1 PULPROG 220930	LD 65536 SOLVENT CDCI3 NS 67	SWH 43859.648 Hz FIDRES 0.669245 Hz AQ 0.7471104 sec	DW 11.400 usec DE 18.00 usec TE 298.0 K	D11 0.03000000 sec TD0 1	EECI 125.7728799 MHz SFO1 125.7728799 MHz NUC1 13C P1 9.63 usec PLW1 23.0000000 W	====== CHANNEL f2 ===== SFO2 500.1330008 MHz NUC2 1H	CPDPRG[2 waltz16 PCPD2 80.00 usec PLW2 13.5000000 W PLW12 0.21094000 W PLW13 0.13500001 W	F2 - Processing parameters SI 131072 SF 125.7577719 MHz	WUW EM SSB 0 LB 1.00 Hz GB 0	PC 1.40	mdd 0
53 86 36 53 75										=			 40 30 20 10
62	·••24'												 60 50
19.	.07 —— 70. -												70
													10 100 90 80
09.6	611 —											-	 120 1
													130
26.4	77L											_	140
5.22	991												 0 150
					_								70 16
				$\widehat{\mathcal{P}}$									180
				Me∕	SI-26								190
			MeO										200
													210
													 • F

ata Parameters JM-4-287 101 1	isition Parameters 20161216 10.28 h av500 2119248_0002 (3 5536 65536 65536 5536 5536 5536 5536	U.3505/1 HZ 1.0485760 Sec 204.54 16.000 usec 18.00 usec 298.0 K 2.0000000 Sec 0.03000000 Sec 1 125.7722511 MHz	13C 10.50 usec 23.0000000 W 500.133008 MHz 1H 11 11 13.5000000 W 0.21094000 W 0.21094000 W 0.10610000 W	sssing parameters 131072 125.757740 MHz EM 1.00 Hz 1.40	
Current D NAME EXPNO PROCNO	F2 - Acqu Date INSTRUM PROBHD PULPROG TD SOLVEN SS SOLVEN SS SOLVEN	STORES ST	PLW1 PLW1 SF02 NUC2 PCPD2 PLW2 PLW12 PLW13 PLW13	F2 - Proce SF SF SSB SSB FC GB PC PC	L L L L L L L L L L L L L L L L L L L
0c.	91			_	10
28.57				20	
06.	52				30
98.	2 4			-	09
33	89 ——				
79	62				
					- 06
					100
					110
2.30	21				 0 120
912	El ——				13
					50 1
4.94 4.03					160 1
					170
		NB00			180
		31-34			190
	Me 2CO	0,			200
	MeC				210

Current Data Parameters NAME JMM-7-71.500 EXPNO 2 PROCNO 1	F2 - Acquisition Parameters Date 20170131 Time 9.25 h INSTRUM av500 PULPROG 292930 PULPROG 299930 PULPROG 299930 PULPROG 299930 SOLVENT 65536 SOLVENT 65536 SOLVENT 69 SOLVENT 69 DW 10485760 sec RG 10485760 sec BG 10485760 sec DW 102600 usec TE 200000000 sec D11 0.3000000 sec D11 2.00000000 sec D11 0.3300000 sec D11 2.00000000 sec D11 10.50 usec D11 2.30000000 sec PLW1 2.30000000 sec PLW1 2.30000000 sec PLW1 2.30000000 sec PLW2 1.1050 usec PLW1 2.021330000 W PLW2 2.02133000 W PLW2 2.02133000 W PLW2 1.10610000 W	WDW EM SSB 0 1:00 Hz GB 0 1:40 PC 1:40	mqq
220.826 20.805 20.805 20.805			30 20 10
36.052			40
761.84			50
±09.65	-		70 60
			08 06 00
111.540			0 120 110 1
129.821			40 130
010.531			150 1
787.721 ——			160
072.271	Sec. B		170
			30 180
	Si de		00 15
			10 2

rent Data Parameters ME JM-5-025 NO 3 DCNO 1 Acquisition Parameters 13.55 h TRUM av500 DBDG 70002 (20002 (VENT 65536 900 Hz PES 0.953674 Hz RES 1.0485760 sec 204.54 1.0485760 sec 10.000 usec 18.00 usec 18.00 usec 298.0 K 2.0000000 sec 125.7722511 MHz 13C 000000 sec 140 000000 W 155.0100000 W 155.01000000 W 155.0100000 W 155.0100000 W 155.0100000 W 	V13 0.10610000 W Processing parameters 131072 MHz 125.757892 MHz W EM 0 1.00 Hz 0 1.40	
PRC		PCBBSBD PCBBSBD PCBBSBD	udd .
			0
88.61			50
55'62	-		30
41.28			40
+0:F0			20
29 29			60
			20
_			80
			06
			100
01.211			0 110
154.58			0 12(
28'92'1 136'98 132'22			to 13
142.85			50 1
122.69			60 1
	Me o o		200 190 180 170 1
91.00.16			210

Current Data Parameters NAME sr-1-108.500.6 EXPNO 2 PROCNO 1	F2 - Acquisition Parameters Date 20170207 Time 10.18 h INSTRUM av500 PULPROG 299930 PULPROG 5536 SOLVENT CDC13 NS 65536 SOLVENT CDC13 NS 62 SOLVENT CDC13 SOLVENT 0.9553674 Hz AQ 10.04560 sec PUL 10.0300000 sec TE 2.98.0 K D1 0.0300000 sec D1 125.7722511 MHz NUC2 13500000 W PLW1 2.00000000 sec <	F2 - Processing parameters SI 131072 SF 125.7578023 MHz WDW EM SSB 0 1.00 Hz GB 0 PC 1.40	mdd
			0
			1
53.244			30
672.04			40
		· · · · · · · · · · · · · · · · · · ·	50
			60
			02
-			80
			06
			100
			110
124.607) 120
134.885) 130
140.613			0 140
162.023			0 15(
			0 16
	Me		71 08
			90 18
			200 1
208.002			210 2

Current Data Parameters NAME JM-5-019 EXPNO 301 10,03 h INSTRUM 20170110 Time 10,03 h INSTRUM 20170110 Time 10,03 h INSTRUM 20002 (20170110 Time 20000 (55536 SOLVENT 20053674 Hz AQ 5053674 Hz AQ 500 USEC 1045576 SEC FIDRES 10,035674 Hz AQ 500 USEC 10,035074 Hz AQ 500 USEC 10,035074 Hz AQ 500 USEC 10,0300000 SEC 10,000 USEC 132,000 USEC 13,000 USEC 13,000 USEC 13,000 USEC 13,000 USEC 11,000000 SEC 10,000 USEC 11,000000 SEC 10,000 USEC 11,0000000 SEC 10,000 USEC 11,0000000 SEC 10,000 USEC 11,0000000 SEC 11,0000000 SEC 10,000000 SEC 10,0000000 SEC 10,00000000 SEC 10,0000000 SEC 10,0000000 SEC 10,00000000 SEC 10,00000000 SEC 10,00000000 SEC 10,0000000 SEC 10,00000000 SEC 10,00000000 SEC 10,00000000 SEC 10,0000000 SEC 10,00000000 SEC 10,00000000 SEC 10,000000000 SEC 10,00000000 SEC 10,000000000 SEC 10,00000000 SEC 10,00000000 SEC 10,00000000 SEC 10,00000000 SEC 10,00000000 SEC 10,00000000 SEC 10,000000000 SEC 10,00000000 SEC 10,00000000 SEC 10,00000000 SEC 10,00000000 SEC 10,00000000 SEC 10,000000000 SEC 10,0000000000 SEC 10,0000000000 SEC 10,0000000000 SEC 10,00000000000000000000000000000000000	udd
48.45 — 48.45 — 34.12 — 34.12 — 28.68 — 28.82	
124,47 126,76 126,29 124,47	130 120 110 100 90 80 70
66.2∂1 — 70.6£1 72.451 2.3751 2.3751 2.3751 2.3751 2.3751 2.3751 2.3751 2.3751 2.3751 2.3751 2.351 2.551 2.551 2.551 2.551 2.551 2.551 2.551 2.551 2	190 180 170 160 150 140
	210 200

Current Data Parameters NAME JMM-7-212(A1) EXPNO 2 PROCNO 999	F2 - Acquisition Parameters Date20161216 Time9.10 INSTRUMav500 PUN PDCM0_5 mm DCH 13C-1	TDLFHUG 5536 SOLVENT 55536 SOLVENT CDCI3 NS 40 DS 2 SWH 50000 Hz FIDRES 0.762339 Hz AQ 0.6553600 sec RG 204.54 DW 10.000 usec DE 18.00 usec D1 2.0000000 sec D11 0.0300000 sec	====== CHANNEL f1 ===== SFO1 125.7728799 MHz NUC1 13C P1 9.63 Usec P1 23.0000000 W	====== CHANNEL f2 ===== SFO2 500.1330008 MHz NUC2 1H CPDPRG[2 waltz16 CPDPRG[2 waltz16 CPDPRG[2 waltz16 CPDPRG[2 waltz16 0.01 usec PLW2 0.21094000 W PLW13 0.13500001 W	F2 - Processing parameters SI 131072 SF 125.7577731 MHz WDW EM SSB 0 LB 1.00 Hz CB 0 1.00	0 ppm
65. 88 88 88						60 50 40 30 20 10
84,69 5.65 6.75 6.75 6.75 7.59 6.75 7.59 7.59 7.59 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.6					-	150 140 130 120 110 100 90 80 7
£6.8	50	Me o t				210 200 190 180 170 160

Current Data Parameters NAME JM-5-017 EXPNO 101 PROCNO 1	F2 - Acquisition Parameters Date 20161216 Time 11.32 h NNSTRUM av500 PROBHD Z119248_0002 (PULPROG z9pg30 SOLVENT CDC13 SOLVENT 0.9553674 Hz AQ 1.0485760 sec DU 1.00300000 sec DU 1.00300000 sec DU 1.003000000 sec DU 1.0550 usec PLW1	mdd (
5.09 2.09	2 —— 2 ——	 30 20 10
26.0	7	 40
4.04	3) 50
4.33 5.85		 09 02
52.77 52.77 52.75 52.75 52.75 52.75 52.75 52.75 52.75 52.75 52.75 52.77 52.77		170 160 150 140 130 120 110 100 90 80
96.80		210 200 190 180 1

Current Data Parameters NAME sr-1-105.500 EXPNO 2 PROCNO 1	F2 - Acquisition Parameters Date 20170203 Time 9.22 h Date 20170203 Time 9.22 h PROBHD Z119248_0002 (PULPROG 5536 SOLVENT 66 DS 20170203 SOLVENT 209730 SOLVENT 65536 SOLVENT CDC13 BS 20953674 Hz DS 204.54 DS 204.54 DW 10.485760 sec DW 10.485760 sec DW 10.000 usec DWUC1 10.000 usec DWUC1 10.50 usec DWUC1 10.50 usec DWUC1 10.50 usec DWUC2 110.00 usec PLW1 2.00000000 WHz NUC2 10.50 usec DWUC2 10.50 usec DWUC2 10.50 usec PLW1 0.10610000 W NUC2 11.000000 W DUC2 10.000000 W <th>PC</th> <th>mdd</th>	PC	mdd
600.61			10
			0 20
			30
419.04			40
22.603			0 50
)9 C
)Z (
			0 8(
			6 00
102.539			0 10
296.111			0 11
154 [.] 483			0 12
100.751			0 13
142.500			0 14
			0 15
113.931			0 16
			0 17
			0 18
			0 19
012.602			0 20
	ă		21 21

Current Data Parameters NAME sr-1-112.500.11 EXPNO 2 PROCNO 1	F2 - Acquisition Parameters Date 16.16 h InsTRUM 16.16 h InSTRUM 16.16 h InSTRUM 16.16 h InSTRUM 20170208 PULPROG 2119248 PULPROG 55536 SOLVENT 65536 SOLVENT 65536 SOLVENT 0.953674 Hz DS 2 SWH 31250.000 Hz DS 2 SWH 31250.000 Hz DW 1.0485760 sec RG 1.0485760 sec DW 1.0485760 sec DW 1.0485760 sec DW 1.0485760 sec DW 1.03000000 sec D1 2.00000000 sec D1 0.0300000 sec D1 1.05000000 sec D1 1.05000000 sec PLW1 23.00000000 sec D1 1.05000000 sec D1 1.05000000 sec D1 1.05000000 W PLW1 2.00000000 Sec PLW1 0.02133000 W <t< th=""><th>F2 - Processing parameters SI 131072 SF 125.7577887 MHz WDW EM SSB 0</th><th>LB 1.00 Hz GB 0 1.40 PC 1.40</th><th>udd</th></t<>	F2 - Processing parameters SI 131072 SF 125.7577887 MHz WDW EM SSB 0	LB 1.00 Hz GB 0 1.40 PC 1.40	udd
218.71 218.755		_		 30 20 10
40.252				 40
94.465				 30 50
) 02
				 0 80
				100 90
766 [.] III ——		-		 110
096.121 ——				 0 120
135.451 735.657 735.667				 140 13
151.630 151.630				 150 1
				160
868. <u>9</u> 05	Me 23			10 200 190 180 170
				N N

¹⁹F NMR Spectra:

Current Data Parameters NAME JM-5-054 EXPNO 130 PROCNO 130 F2 - Acquisition Parameters Date 20170313 Time 20170313 INSTRUM av400 PROBHD 5 mm PABBO BB/ TID 262144 SOLVENT 262144 SOLVENT 262144 SOLVENT 262144 SOLVENT 2621333 NS 48 0 SWH 150000000 Hz 150000000 Hz 100000000 sec 11 0.00000000 sec	Environment of the second seco	PC 0 PC 1.00
		-120 -130 -140 -150 -160 -170 -180
99:611		
F SI-7 SI-7 Boc		-10 -20 -30 -40 -50 -60

