Supporting Information

for

Structural diversity in the host–guest complexes of the antifolate pemetrexed with native cyclodextrins: gas phase, solution and solid state studies

Magdalena Ceborska^{*1} Magdalena Zimnicka² Aneta Aniela Kowalska¹, Kajetan Dąbrowa² and Barbara Repeć²

Address: ¹Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 and

²Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw,

Poland

Email: Magdalena Ceborska - mceborska@ichf.edu.pl

*Corresponding author

Copies of MS, UV, NMR, IR and Raman spectra.

Contents

1. Copies of the mass spectra for α -, β -, and γ -CD complexes with a PTX dianion	2
2. UV–vis	4
3. ¹ H and 2D NMR spectra in D_2O	6
4. ¹ H spectra in DMSO-d6	13
5. FTIR-ATR and Raman	20

1. Copies of the mass spectra for α -, β -, and γ -CD complexes with a PTX dianion

Figure S1. Negative-ESI mass spectra (Q1) of solutions containing: a) α-CD/PTX, b) β-CD/PTX, and c) γ -CD/PTX.

000

900 860

437.4

385.1

254.3

Figure S2. CID spectra of gas-phase complexes of a) α -CD/PTX, b) β -CD/PTX, and c) γ -CD/PTX.

Figure S3. Absorption spectra of PTX upon titration with β -CD.

Figure S4. Titration plot for titration of PTX with β -CD (shown at $\lambda = 245$ (left) and for 11th titration point (right).

Figure S5. Titration plot for titration of PTX with γ -CD (shown at $\lambda = 245$ (left) and for the 11th titration point (right).

3. ¹H and 2D NMR spectra in D₂O

Figure S6. ¹H NMR stacked spectra of PTX, α -CD, and their 1:1 molar mixture (from top-to-bottom) in D₂O at 298 K.

Figure S7. ¹H NMR stacked spectra of PTX, methyl α -D-glucopyranoside, and their 1:1 mixture (from top-to-bottom) in D₂O at 298 K; inset - enlargement of the spectrum exemplifying marginal chemical shift changes of the sugar' protons.

Figure S8. ¹H NMR stacked spectra of PTX, β -CD, and their 1:1 molar mixture (from top-to-bottom) in D₂O at 298 K.

Figure S9. ¹H NMR stacked spectra of PTX, γ -CD, and their 1:1 molar mixture (from top-to-bottom) in D₂O at 298 K.

Figure S10. 2D ROESY NMR spectra of a 1:1 (a) and 1:16 (b) molar mixture of α -CD and PTX in D₂O at 298 K.

Figure S11. 2D ROESY NMR spectra of a 1:1 molar mixture of γ -CD and PTX in D₂O at 298 K.

Figure S12. Experimental chemical shift changes ($\Delta\delta$) of the PTX guest in the 1:1 (solid) and 1:16 (dashed) molar mixtures with an appropriate sugar in D₂O (methyl α -D-glucopyranoside – violet, α -CD/PTX – red, β -CD/PTX – blue, γ -CD/PTX – green).

Figure S13. Experimental chemical shift changes ($\Delta\delta$) of the CD host in the presence of equimolar (solid) and a 16-fold excess (dashed) of PTX guest in D₂O (α -CD – red, β -CD – blue, γ -CD – green).

Figure S14. Partial ¹H NMR spectra showing signals of the bridging ethylene moiety (PTX#H5+H6) of the PTX guest: (a) free PTX, equimolar mixtures with (b) methyl α -D-glucopyranoside, (c) α -CD, (d) β -CD, (e) γ -CD, and 1:16 molar mixtures (sugar/PTX) with (f) α -CD and (g) γ -CD.

Signal	δ_{free}	δ_{complex}	$\Delta \delta_{ m complex}$
PTX#8	7.75	7.70	-0.05
PTX#7	7.33	7.26	-0.07
PTX#4	6.48	6.15	-0.34
PTX#10	4.39	4.35	-0.04
PTX#5+6	3.05	2.94	-0.11
PTX#12	2.37	2.34	-0.03
PTX#11	2.16	2.13	-0.03
α−CD#H1	5.08	5.07	-0.01
α−CD#H5	3.90	n.r.	n.r.
α−CD#H3	4.01	4.01	0.00
α-CD#H6.6'	3.86	3.86	0.00
α−CD#H2	3.66	3.66	-0.01
α−CD#H4	3.58	3.60	0.02

Table S1. Chemical shifts (δ) for protons of α -CD, PTX, and their 1:1 mixture (in D₂O) ^[a]

[a] in D₂O at 298 K; δ_{free} , $\Delta\delta_{\text{complex}}$ (defined as $\delta_{\text{complex}} - \delta_{\text{free}}$) are given in ppm; only protons for which important changes appear are presented; n.r. = not resolved due to overlapping with other signals.

Table S2. Chemical shifts for protons of methyl α -D-glucopyranoside, PTX, and their 1:1 mixture (in D₂O) ^[a]

Signal	δ_{free}	$\delta_{complex}$	$\Delta \delta_{complex}$
PTX#8	7.75	7.70	-0.05
PTX#7	7.33	7.27	-0.06
PTX#4	6.48	6.43	-0.05
PTX#10	4.39	4.35	-0.05
PTX#5+6	3.05	2.98	-0.07
PTX#12	2.37	2.33	-0.04
PTX#11	2.16	2.12	-0.04
Sug#H1	4.83	4.83	0.00
Sug#H5	3.65	3.66	0.00
Sug#H3	3.69	3.69	0.00
Sug#H6,6'	3.89, 3.78	3.89, 3.78	0.00, 0.00
Sug#H2	3.58	3.58	0.00
Sug#H4	3.42	3.42	0.00
Sug#OMe	3.44	3.44	0.00

[a] in D₂O at 298K; δ_{free} , $\Delta\delta_{\text{complex}}$ (defined as $\delta_{\text{complex}} - \delta_{\text{free}}$) are given in ppm; only protons for which important changes appear are presented.

Signal	$\delta_{\rm free}$	$\delta_{complex}$	$\Delta \delta_{complex}$
PTX#8	7.75	7.77	0.01
PTX#7	7.33	7.23	-0.10
PTX#4	6.48	6.39	-0.09
PTX#10	4.39	4.38	-0.01
PTX#5+6	3.05	3.11	0.06
PTX#12	2.37	2.33	-0.05
PTX#11	2.16	2.13	-0.03
β–CD#H1	5.10	5.07	-0.03
β–CD#H5	3.88	3.80	-0.08
β–CD#H3	3.99	3.87	-0.12
β-CD#H6,6'	3.91	3.80	-0.11
β–CD#H2	3.68	3.65	-0.02
β–CD#H4	3.61	3.61	-0.01

Table S3. Chemical shifts (δ) for protons of β -CD, PTX, and their 1:1 mixture (in D₂O) ^[a]

[a] in D₂O at 298K; δ_{free} , $\Delta\delta_{\text{complex}}$ (defined as $\delta_{\text{complex}} - \delta_{\text{free}}$) are given in ppm; only protons for which important changes appear are presented.

Signal	δ_{free}	δ_{complex}	$\Delta\delta_{complex}$
PTX#8	7.75	7.72	-0.04
PTX#7	7.33	7.21	-0.12
PTX#4	6.48	6.41	-0.07
PTX#10	4.39	4.36	-0.04
PTX#5+6	3.05	2.98	-0.07
PTX#12	2.37	2.34	-0.03
PTX#11	2.16	2.13	-0.03
γ–CD#H1	5.14	5.13	-0.01
γ–CD#H5	3.87	3.85	-0.02
γ–CD#H3	3.96	3.94	-0.02
γ–CD#H6,6'	3.90	3.88	-0.02
γ−CD#H2	3.68	3.68	0.00
γ–CD#H4	3.62	3.61	0.00

Table S4. Chemical shifts (δ) for protons of γ -CD, PTX, and their 1:1 mixture (in D₂O) ^[a]

[a] in D₂O at 298K; δ_{free} , $\Delta \delta_{\text{complex}}$ (defined as $\delta_{\text{complex}} - \delta_{\text{free}}$) are given in ppm; only protons for which important changes appear are presented.

4. ¹H spectra in DMSO-*d*₆

Figure S15. Stacked spectra of the free PTX, CDs, and complexes of CDs with PTX in DMSO- d_6 (from bottom to top: PTX, α -CD, α -CD+PTX, β -CD, β -CD+PTX, γ -CD, γ -CD+PTX). Notice that broad signals belonging to the PTX molecule became sharp after addition of CDs. This clearly indicates complex formation which increases solubility of PTX salt in that particular solvent.

Figure S16. ¹H NMR (400 MHz) spectrum of disodium salt of PTX in DMSO-*d*₆.

Figure S17. ¹H NMR (400 MHz) spectrum of free α -CD in DMSO- d_6 .

Figure S19. ¹H NMR (400 MHz) spectrum of free γ -CD in DMSO- d_6 .

Figure S21. ¹H NMR (400 MHz) spectrum of a mixture of β -CD and PTX (1:1 molar ratio) in DMSO- d_6 .

 $DMSO-d_6$.

Figure S23. Experimental changes in chemical shifts of PTX (top) and CD (bottom) upon 1:1 host:guest complex formation in DMSO- d_6 .

Signal	PTX _{free} α-CD/PTX		β–CD	β–CD/PTX		/PTX	
Sigliai	δ_{F}	$\delta_{\rm C}$	Δδ	$\delta_{\rm C}$	Δδ	$\delta_{\rm C}$	Δδ
PTX#3	11.400	10.617	-0.783	10.661	-0.739	10.545	-0.855
PTX#2	10.551	10.551	0.000	10.553	0.002	10.476	-0.075
PTX#9	8.404	8.179	-0.225	8.134	-0.270	8.125	-0.279
PTX#8	7.717	7.777	0.060	7.766	0.049	7.775	0.058
PTX#7	7.241	7.240	-0.001	7.250	0.009	7.252	0.011
PTX#1	6.505	6.280	-0.225	6.290	-0.215	6.291	-0.214
PTX#4	6.278	6.175	-0.103	6.190	-0.088	[b]	[b]
PTX#10	4.045	4.150	0.105	4.124	0.079	4.128	0.083
PTX#6	2,926	2.936	0.010	2.939	0.013	2.941	0.015
PTX#5	2.842	2.849	0.007	2.848	0.006	2.851	0.009
PTX#11	2.011	2.011	0.000	2.000	-0.011	2.002	-0.009

Table S5. Changes in chemical shifts of PTX (added as disodium salt) upon 1:1 complex formation with CD in DMSO- $d_6^{[a]}$

[a] δ_F , δ_C , and $\Delta\delta$ are given in ppm; δ_F and δ_C indicate chemical shift of the uncomplexed and complexed form, respectively; $\Delta\delta = \delta_C - \delta_F$; [b] signal not visible.

Table S6. Changes in chemical	shifts of CD upon 1:1	complex formation	with PTX in DMSO- d_6 ^[a]
<u> </u>	1	1	

	$\alpha - CD_{c}$	$\alpha - C\Gamma$)/PTX	β–CD	B-CT)/PTX	v-CDc	γ _ CΓ	PTX
Signal	$\delta_{\rm F}$	δ _C	Δδ	$\delta_{\rm F}$	δ _C	Δδ	$\delta_{\rm F}$	$\delta_{\rm C}$	Δδ
CD#OH2	5.488	5.783	0.296	5.696	6.104	0.408	5.737	6.142	0.405
CD#OH3	5.417	5.783	0.366	5.651	6.060	0.409	5.708	6.014	0.306
CD#H1	4.796	4.792	-0.004	4.827	4.823	-0.004	4.883	4.876	-0.007
CD#OH6,6 '	4.451	4.459	0.008	4.423	4.445	0.022	4.491	4.494	0.003
CD#H6,6'	3.772	3.799	0.027	3.633	3.674	0.041	3.624	3.624	0.000
CD#H5	3.582	3.613	0.031	3.565	3.579	0.014	3.532	3.552	0.020
CD#H4	3.384	3.381	-0.003	3.350	[b]	[b]	3.347	[b]	[b]
CD#H2	3.276	3.260	-0.016	3.293	3.279	-0.014	3.289	3.299	0.009

[a] δ_F , δ_C , and $\Delta\delta$ are given in ppm; δ_F and δ_C indicate chemical shift of the uncomplexed and complexed form, respectively; $\Delta\delta = \delta_C - \delta_F$; [b] signal not visible.

5. FTIR-ATR and Raman

Figure S24. The FTIR spectra of native CDs.

Table S7. FTIR band position assignments for native cyclodextrins.

FTIR band positions $[cm^{-1}]$		cm^{-1}]		
α-CD	β-CD	γ-CD	Assignments	
762	758	761	(COO) ⁻	
8/13	867	860	Skeletal "C–C" stretching, CH out of plane bending	
045	802	800	(aromatic and skeletal)	
953	945	943	"C=O" stretching, in plane bending of CCH	
1032	1030	1027	C-O in C-O-C stretching	
1078	1080	1079	"C–O", "C–C" stretching, in plane bending of OCH	
1156		1155	In plane bending CCH (aromatic and skeletal),	
1156		1155	"C–O" symmetric stretching	
1240	1225	1226	"C–O–C" stretching, out of plane bending of CH ₃ , in	
1340	1555	1550	plane bending of aromatic CCH	
1407	1417	1413	OCH, CCH	
1450		1457	In plane bending of CH ₃	
1642	1647	1643	Bending vibration of the "O–H", "C=C" stretching	

-	FTIR band pos			
PTX	α-CD /PTX	β -CD/ PTX	γ-CD/ PTX	Assignments
676				(COO) ⁻
				Skeletal "C–C" stretching, CH out
784		757, 786	759	of plane bending (aromatic and
				skeletal)
812				CH, and CH out of plane bending
833	869	862	860	of aromatic CCH and skeletal CCH
853				of aromatic CCII and sketcial CCII
906	052	9/15	0/13	"C=O" stretching, in plane bending
952)52	743	743	of CCH
				"C–O–C" stretching, out of plane
	1028	1030	1027	bending of CH ₃ , in plane bending
				of aromatic CCH
1083 1006	1077	1080	1070	"C–O", "C–C" stretching, in plane
1085, 1090	1077	1080	1079	bending of OCH
1155	1150	1155	1155	CH overtone stretching, "C–C"
1155	1132	1155	1155	stretching
1070 1007				CH in plane bending of "C=CH",
1272 1287				aromatic "C–O" stretching
1220 1255 1275				In plane bending of CH, enolic
1520, 1555, 1575				COH, skeletal CCC
1404	1414	1417	1413	OCH, CCH
1445 1507 1521	1502	1500	1406	"C=C" stretching, in plane bending
1443, 1507, 1551	1502	1500	1490	of CH ₃ , "C=O" stretching,
1309, 1003	1009	1002	1320	"C–C=O" in plane bending,
1623, 1671	1638	1647	1632, 1663	"C=O", ring "C=C" stretching

Table S8. FTIR band	position assignments for	· PTX and its complexes	with α -, β -, and γ -CDs.
	position assignments for	I III und no complexe.	$,$ μ $,$

Figure S25. The Raman spectra of native CDs.

Rai	man band position	Assignments	
α-CD	β-CD	γ-CD	Assignments
713, 752	711, 755		(COO ⁻)
831, 843, 857	832, 857	831, 855	(COO ⁻), (CH3)
919, 938, 952	925, 948	922, 944	Stretching (CC)
1041	1050		Stretching (CN)
1061, 1082	1085	1081	Stretching (CN)
1331	1325, 1331	1332	Wagging of CH ₂ , CH, OH
1454, 1477	1413, 1464	1415, 1464	In plane bending of CH ₃ , OH and C=C stretching

Table S9. Raman band position assignments for native cyclodextrins.

	Tunnun bu	rissignients		
PTX	α-CD	β-CD	γ-CD	_
810	810	769		(COO ⁻)
834, 857	834, 857	834, 857	831, 855	(COO ⁻), CH ₃
878	887			CH_3
908	923	931, 950		Stretching (CC)
002	002	002	000	Rocking (NH ₂) out of plane, ring
992	992	992	990	deformation ^(a)
1020				Stretching (CN), Rocking
1038				(OH)(CH)(NH ₂) ^(a)
1091	1078	1087	1080	Stretching (CN), Rocking (OH) ^(a)
1150			1150	C=C–H and =C–C=, Rocking
1139			1150	(CH)(OH), wagging $(NH_2)^{(a)}$
1105			1100	Rocking (NH ₃ ⁺), Rocking
1195			1190	(CH)(OH), ring deformations ^(a)
1247, 1273,			1252	Stretching (C–N), bending (N–H),
1295			1255	stretching (CC)
				Wagging CH ₂ , rocking CH,OH
	1368	1362		plane bending of aromatic CCH,
				Rocking (NH), ring deformation ^(a)
				bending CH ₃ , OH and C=C
1447	1433		1436, 1461	stretching, rocking (NH)(CH), ring
				deformation ^(a)
1500 1547	15/3	1531 1555	1537	C=C stretching, rocking (NH)(CH),
1322, 1347	1545	1551, 1555	1557	scissoring (NH2), rocking (NH) ^(a)
1617	1615	1617	1617	C=C stretching, Scissoring (NH2),
1017	1015	1017 1017	1017	rocking (NH) ^(a)

Table S10. Raman band position assignments for PTX and its complexes with α -, β -, and γ -CDs.Raman band positions [cm⁻¹]Assignments

(a) Castillo, J.J.; Rozo, C.E.; Bertel, L.; Rindzevicius, T.; Mendez-Sanchez, S.C.; Martínez Ortegac, F.; Boisen, A. J. Braz. Chem. Soc., **2016**, *27*, 971-977.