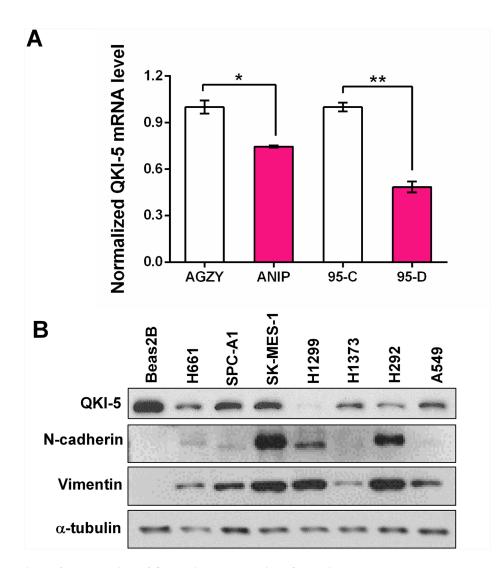
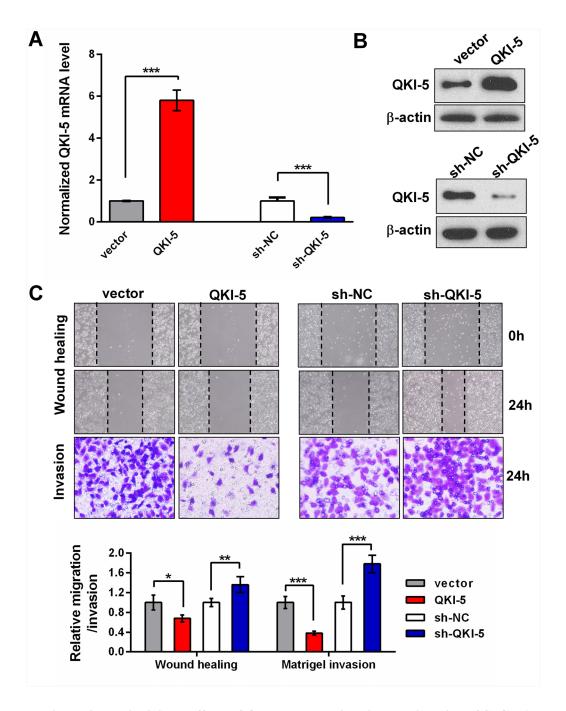

# Quaking-5 suppresses aggressiveness of lung cancer cells through inhibiting $\beta$ -catenin signaling pathway

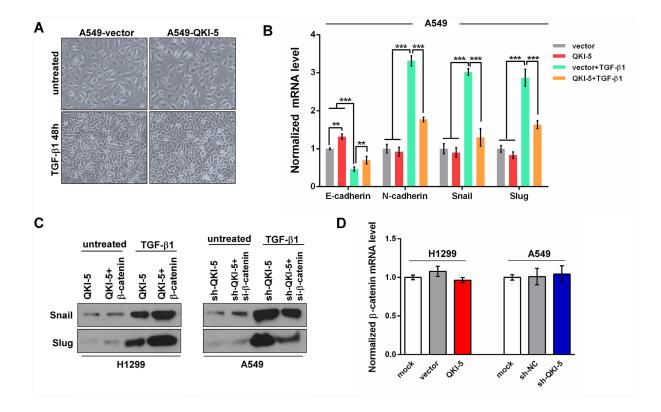

### SUPPLEMENTARY MATERIALS



**Supplementary Figure 1: QKI-5 is the dominant isoform of QKIs expressed in LC cells. (A)** Schematic representation of the exon organization of five *QKI* isoforms generated by alternative splicing of exon6-exon8 annotated by NCBI. Gray boxes indicate 5' or 3' untranslated regions. Two pairs of RT–PCR primers flanking exons 6 and 7 (blue arrows) theoretically produce five splicing isoforms with respective length. (B) *QKI* mRNA splicing pattern in LC cell lines (A549, SPC-A1, H661) analyzed by RT–PCR using two primer pairs (blue arrows in **A**). Ful-gels showed that *QKI-5* was the dominant isoform. (C) Western blotting detection of QKI protein expression in the indicated LC cells. The results showed that QKI-5 was the dominant isoform.




**Supplementary Figure 2: QKI mRNA expression correlates with the prognosis of LC patients.** Kaplan-Meier analysis of the correlation between the level of *QKI* mRNA and overall survival of 1926 LC patients from the Kaplan Meier plotter (http://www. kmplot.com).




**Supplementary Figure 3: Expression of QKI-5 is decreased in LC cell lines.** (A) *QKI-5* mRNA expression in two pairs of LC cell lines with different metastatic potentials (AGZY vs ANIP, 95C vs 95D). The data are presented as the mean  $\pm$  SD. \**P*<0.05, \*\**P*<0.01. (B) Western blotting analyses of QKI-5 and mesenchymal markers (N-cadherin, Vimentin) expressions in a panel of LC cell lines and the bronchial epithelial cell (Beas2B).  $\alpha$ -tubulin was used as the loading control.

#### **Oncotarget, Supplementary Materials 2017**



**Supplementary Figure 4: The inhibitory effects of QKI-5 on the migration and invasion of SPC-A1 cells. (A** and **B**) Detections of qRT-PCR (A) and Western blotting (B) of QKI-5 overexpression and knockdown efficiencies in stable SPC-A1 subcell lines constructed with the indicated viruses or plasmids. The *QKI-5* mRNA level was normalized against *GAPDH*. The ratios of *QKI-5/GAPDH* in the vector and sh-NC groups were arbitrarily set to 1.0. (C) Migration and invasion abilities of the indicated SPC-A1 subcell lines assessed by wound-healing and transwell assays. All the experiments were performed at least in triplicate and the data in A and C are presented as the mean  $\pm$  SD. \**P*<0.05, \*\**P*<0.001.



Supplementary Figure 5: QKI-5 overexpression inhibits the TGF- $\beta$ 1-induced EMT of LC cells via interdicting  $\beta$ -catenin signaling pathway. (A) Representative images of A549-vector (control) and A549-QKI-5 (QKI-5-overexpressing) cells untreated or incubated with TGF- $\beta$ 1 (5 ng/mL) for 48 h (×200). (B) mRNA levels of *E*-cadherin, *N*-cadherin, *Snail* and *Slug* in the indicated cells incubated with TGF- $\beta$ 1 or untreated in DMEM for 72 h. (C) Protein levels of Snail and Slug determined by Western blotting in the indicated cells. (D)  $\beta$ -catenin mRNA level in the indicated cells; mock = blank control, sh-NC = Scr control, sh-QKI-5 = QKI-5 silence with shRNA. The mRNAs were detected by qRT-PCR and normalized against *GAPDH*. The ratios of the above mRNAs to *GAPDH* mRNA in mock cells were arbitrarily set to 1.0 and the data in B and D are presented as the mean  $\pm$  SD. \*\**P*<0.001, \*\*\**P*<0.001.

## Supplementary Table 1: Clinical characteristics of all tested tissue samples

See Supplementary File 1

| Name                  | Sequences                         |
|-----------------------|-----------------------------------|
| RT-PCR primers        |                                   |
| QKI exon5-Forward-1   | 5'-GGAGAAGACAGCCTGAAGAAGA-3'      |
| QKI exon7-Reverse-1   | 5'-GTAAGGATGGACACGCATATCG-3'      |
| QKI exon5-Forward-2   | 5'-AAGGAGAAGACAGCCTGAAGAA-3'      |
| QKI exon7-Reverse-2   | 5'- TGGTAAGGATGGACACGCATAT-3'     |
| β-catenin RIP-Forward | 5'-CAGCTGTATTGTCTGAACTTGC-3'      |
| β-catenin RIP-Reverse | 5'-CACTTCTTGAGTCACTCCCAAA-3'      |
| MSP primers           |                                   |
| QKI5 MSP-M-Forward    | 5'-TAATAAGATCGTTTTTTTAGAGGCG-3'   |
| QKI5 MSP-M-Reverse    | 5'- CCGTAACTTCTTTCGATATTCGTA-3'   |
| QKI5 MSP-U-Forward    | 5'- GGTGTAATAAGATTGTTTTTTAGAGGT-3 |
| QKI5 MSP-U-Reverse    | 5'- CCATAACTTCTTTCAATATTCATA-3'   |

## Supplementary Table 2: Sequences of RT-PCR and MSP primers

| Name               | Sequences                      |
|--------------------|--------------------------------|
| QKI-5-Forward      | 5'-AGCTGCCCTGCGTACTCCTA-3'     |
| QKI-5-Reverse      | 5'-TGGGTGAGGAGTTCCGTTTG-3'     |
| β-actin-Forward    | 5'-GATCATTGCTCCTCCTGAGC-3'     |
| β-actin-Reverse    | 5'-ACTCCTGCTTGCTGATCCAC-3'     |
| E-cadherin-Forward | 5'-TTCCCTCGACACCCGATTC-3'      |
| E-cadherin-Reverse | 5'-GTCCCAGGCGTAGACCAAGA-3'     |
| N-cadherin-Forward | 5'-CCCCTTCACCCAACATGTTT-3'     |
| N-cadherin-Reverse | 5'-GTGGGATTGCCTTCCATGTC-3'     |
| Vimentin-Forward   | 5'-GAACGCCAGATGCGTGAAAT-3'     |
| Vimentin-Reverse   | 5'-CAGGCGGCCAATAGTGTCTT-3'     |
| Snail-Forward      | 5'-ACCCCAATCGGAAGCCTAAC-3'     |
| Snail-Reverse      | 5'-CGTAGGGCTGCTGGAAGGTA-3'     |
| GAPDH-Forward      | 5'-CCACCCATGGCAAATTCCATGGCA-3' |
| GAPDH-Reverse      | 5'-TCTAGACGGCAGGTCAGGTCCACC-3' |
| β-catenin-Forward  | 5'-GGCTGGTGACAGGGAAGACAT-3'    |
| β-catenin-Reverse  | 5'-TTCTGGGCCATCTCTGCTTCT-3'    |

Supplementary Table 3: Sequences of qRT-PCR primers

## Supplementary Table 4: Sequences of QKI-5 cloning primers

| Name                       | Sequences                            |
|----------------------------|--------------------------------------|
| pcDNA3.1-HindIII-Forward   | 5'-CCCAAGCTTATGGTCGGGGAAATGGAAACG-3' |
| pcDNA3.1-BamHI-Reverse     | 5'-CGCGGATCCTTAGTTGCCGGTGGCGGCT-3'   |
| pCMV-tag2b-BamHI-Forward   | 5'-CGCGGATCCATGGTCGGGGAAATGGAAAC-3'  |
| pCMV-tag2b-HindIII-Reverse | 5'-CCCAAGCTTTTAGTTGCCGGTGGCGGCT-3'   |
| pMSCV-puro-BglII-Forward   | 5'-GGAAGATCTATGGTCGGGGAAATGGAAACG-3' |
| pMSCV-puro-EcoRI-Reverse   | 5'-CCGGAATTCTTAGTTGCCGGTGGCGGCT-3'   |

## Supplementary Table 5: Sequences of shRNAs

| Name               | Sequences                                                            |
|--------------------|----------------------------------------------------------------------|
| sh-NC-Sense        | 5'-ccggTTCCTGGAACAATTGCTTTTACTCGAGTAAAAG<br>CAATTGTTCCAGGAATTTTTg-3' |
| sh-NC-Antisense    | 5'-aatteAAAAATTCCTGGAACAATTGCTTTTACTCGAGT<br>AAAAGCAATTGTTCCAGGAA-3' |
| sh-QKI-5-Sense     | 5'-ccggAAGCACCTACAGAGATGCCAACTCGAGTTGGCA<br>TCTCTGTAGGTGCTTTTTTg-3'  |
| sh-QKI-5-Antisense | 5'-aatteAAAAAAAGCACCTACAGAGATGCCAACTCGAGT<br>TGGCATCTCTGTAGGTGCTT-3' |

Supplementary Table 6: Sequences of siRNAs

| Name                   | Sequences                     |
|------------------------|-------------------------------|
| si-β-catenin-Sense     | 5'-CCCACUAAUGUCCAGCGUUdTdT-3' |
| si-β-catenin-Antisense | 5'-AACGCUGGACAUUGUGGGAdTdT-3' |
| si-NC-Sense            | 5'-GGUGGAACAAUUGCUUUUAdTdT-3' |
| si-NC-Antisense        | 5'-UAAAAGCAAUUGUUCCACCdTdT-3' |