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Supplemental Figures and Legends 
 

Figure S1. The same cells are tracked over three sessions spanning more than a month. 
Related to Figure 1. 
Identification of individual cells and extraction of their Ca2+ dynamics using principal component 
analysis and independent component analysis. (A,C,E) Contours of 10 spatial footprints overlaid on a 
representative single frame from day 1 (A), day 3 (C) and day 33 (E). (B,D,F) Corresponding Ca2+ 
traces for the same cells shown in A. Typical Ca2+ dynamics are observed for individual neurons. Data 
taken from three sessions recorded in the hippocampal CA1 of a Thy1-GCaMP6f transgenic mouse 
while freely exploring the same environment. 
 
 



 
Figure S2. A stable preparation is maintained across all days of the experiment. Related to 
Figure 1. 
(A,B) The translations (A) and rotations (B) that result in maximal correlation between the projection of 
the spatial footprint centroids in each session and that of the reference session. Session ten was 
chosen as a reference. (C) The maximal correlation between the projections of the spatial footprint 
centroids in each session and that of the reference session (blue asterisks), and the average maximal 
correlation across all sessions (red dashed curve). (D) The number of detected cells in each imaging 
session (blue asterisks) and the average number of cells across all sessions (red dashed curve). (E) 
The average cell event rate in each imaging session (SD is shown as shaded blue area), and the 
average cell event rate across all sessions (red dashed curve). (F) The average cell event amplitude in 
each imaging session (SD is shown as shaded blue area), and the average cell event amplitude 
across all sessions (red dashed curve). A-C can potentially point out deviations in the FOV of each 
session compared to the reference session, while significant deviations in the cellular activity detected 
in each session compared to the average cellular activity could potentially be uncovered in D-F. Data 
in all panels was taken from 16 sessions recorded on eight different days in the hippocampal CA1 of a 
mouse while freely exploring the same environments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	
	



 
Figure S3. Image alignment with sub-pixel resolution increases the spatial footprint similarity 
between pairs of nearest neighbor cells. Related to Figure 2. 
(A-D) Distributions of centroid distances and spatial correlations between pairs of nearest neighbor 
cells across days obtained after alignment (rigid-body registration) with single-pixel (A and B) and sub-
pixel (C and D) resolution. We limited the distribution to cell-pairs with centroid distances <12μm. The 
blue dashed lines show centroid distances =2μm and spatial correlation =0.9. Note the higher 
probabilities for nearest neighbors to have centroid distances <2μm and spatial correlation >0.9 for 
alignment with sub-pixel resolution in comparison with their single-pixel counterparts. This fine spatial 
resolution of alignment was attainable because of the large number of centroid locations that were 
used to align each session. The data presented here were pre-processed with a pixel size of 
2.3X2.3μm which is not negligible compared to the typical cell size. The effect of sub-pixel resolution 
on alignment should be less significant for imaging data with higher spatial resolution. Data in all 
panels was taken from 16 sessions recorded on eight different days in the hippocampal CA1 of a 
mouse while freely exploring the same environments.  



Figure S4. Examples of the distributions of spatial correlations and centroid distances modeled 
for each mouse individual. Related to Figure 2. 
(A-F) Distributions of spatial correlations (A-C) and centroid distances (D-F) in three different mice for 
neighboring cell-pairs (blue bars), and the modeled distributions of same cells (dashed green curves), 
different cells (dashed red curves), and their weighted sum (solid black curves). Estimated distributions 
were obtained by assuming that the data consists of a weighted sum of two subpopulations, 
corresponding to same cells and different cells, and finding the parameters that best fit the data. Data 
and models in A and D are for 16 sessions recorded on eight different days in the hippocampal CA1 of 
a GCaMP6f virus injected mouse while freely exploring the same environments. Data and models in B 
and E are for seven sessions recorded on seven different days in the hippocampal CA1of a Thy1-
GCaMP6f transgenic mouse while freely exploring the same environment. Data and models in C and F 
are for six sessions recorded on six different days in the prefrontal cortex of a CaMKII-GCaMP6s 
transgenic mouse while freely exploring the same environments. (G) The intersection between the 
estimated distribution of same cells and different cells (corresponding to a registration threshold of 
Psame=0.5) for the centroid distances model versus the spatial correlations model. Each dot represents 
a different mouse (N=12). Black dashed lines show the minimum and maximum of these values across 
all mice. Note that data from different mice yielded different registration thresholds. (H) The weight of 
the subpopulation of same cells (Wsame) obtained by the centroid distances (dist.) model versus Wsame 
obtained by the spatial correlations (corr.) model. Each dot represents a different mouse (N=12). Black 
dashed line represents the y=x curve. Note that the spatial correlations and centroid distances models 
independently reach similar Wsame values. 



Figure S5. Examples of the joint distribution of spatial correlations and centroid distances 
modeled for each mouse individually. Related to Figure 2. 
Joint distribution of spatial correlations and centroid distances and their corresponding marginal 
distributions for neighboring cell-pairs as observed in the data of three different mice (A-C), and the 
weighted sum of the models for same cells and different cells (D-F). The color scale was set to reach 
0.25 of the maximal value to enable visualization of both subpopulations. Data and models in A and D 
are for 16 sessions recorded on 8 different days in the hippocampal CA1 of a GCaMP6f virus injected 
mouse while freely exploring the same environments. Data and models in B and E are for seven 
sessions recorded on seven different days in the hippocampal CA1 of a Thy1-GCaMP6f transgenic 
mouse while freely exploring the same environment. Data and models in C and F are for six sessions 
recorded on six different days in the prefrontal cortex of a CaMKII-GCaMP6s transgenic mouse while 
freely exploring the same environments. 
 
 
 
 
 
 
  



Figure S6. Obtaining the joint model for the joint distribution of spatial correlations and 
centroid distances based on nearest neighbors and other neighbors. Related to Figure 2. 
(A) An RG overlay of the density of nearest neighbor (green) and other neighbor (red) cell-pairs given 
the centroid distance and spatial correlation. (B) Ratio of the density of nearest neighbor to all neighbor 
cell-pairs given the centroid distance and spatial correlation. Note the high fraction of nearest neighbor 
cell-pairs for high spatial correlations and low centroid distances. (C) The average spatial correlation 
as a function of the centroid distance for nearest neighbors (solid green curve), and other neighbors 
(solid red curve), and extrapolations of the data (dashed and dotted green and red curves), used to 
obtain the models for same cells and different cells, respectively. Dotted green curve represents 
centroid distances for which Psame<0.01, a region for which the extrapolation for the same cells model 
is insignificant, while the dotted red curve represents centroid distances for which Psame>0.99, a region 
for which the extrapolation for the different cells model is insignificant. (D) The probability for two cells 
from two different sessions to be the same cell (Psame) given the centroid distance and spatial 
correlation, as estimated by the model. Psame is presented exclusively for centroid distances and spatial 
correlations where the model’s probability for cell-pairs of either type (same cell or different cells) is 
>10-5. Data and model in all panels are for 16 sessions recorded on eight different days from 
GCaMP6f-expressing CA1 neurons of a mouse while freely exploring the same environments.  
  



Figure S7. False positive and false negative rates can be controlled by the registration 
threshold. Related to Figure 5. 
True positive (A and D), true negative (B and E), and register (C and F) scores for cell registers with 
thresholds of Psame=0.95 (A-C) and Psame=0.05 (D-F), for the centroids distances (red), spatial 
correlations (blue), and joint (green) models. Insets, cumulative fraction of cell registers as a function 
of the score reversed from 1 to 0. (G) Average true positive, true negative and register scores for the 
joint model with thresholds of Psame=0.05 (white bars), Psame=0.5 (gray bars), and Psame=0.95 (black 
bars). Error bars show SEM. The average true positive score increases while the average true 
negative score decreases with the registration threshold. Note, that using a more relaxed registration 
threshold (Psame=0.05) results in a slightly higher average register score than a stringent threshold 
(Psame=0.95). This result is partially explained by the fact that if more than one candidate exceeds the 
registration threshold, only the one with highest Psame will be registered as the same cell, thus 
eliminating a large fraction of false positives. (H) Final number of cell registers obtained by centroid 
distances based registration versus spatial correlations based registration. Dots represent the 
thresholds Psame=0.05 (white circles), Psame=0.5 (gray circles), and Psame=0.95 (black circles) for each 
mouse. Black dashed line represents the y=x curve. Note that the spatial correlations and centroid 
distances models obtain similar numbers of cell registers and that increasing the registration threshold 
increases the final number of cell registers. Data in all panels are pooled from N=12 mice. 



Supplemental Experimental Procedures 

Animals and surgical procedures 
All procedures were approved by the Weizmann’s Institute Institutional Animal Care and Use 

Committee. We used data from a total of 12 male mice. Mice were housed in cages with 

running wheels in a reverse light cycle facility, and were 8-12 weeks old at the beginning of 

the study. For Ca2+ imaging in the hippocampal CA1, we used five Thy1-GCaMP6f mice 

(Jackson Laboratory, #025393) (Dana et al., 2014), and five AAV injected C57BL/6 wild type 

mice (data from four out of five wild type mice were taken from our previous work (Rubin et 

al., 2015)). For Ca2+ imaging in the prefrontal cortex, we used two CaMKII-tTA and rtTA-

GCaMP6s double transgenic mice (CamKII-GCaMP6s, for short) (Tg(tetO-GCaMP6s)2Niell; 

Jackson Laboratory, #024742; B6.Cg-Tg(CaMK2a-tTA)1Mmay/DboJ; Jackson Laboratory, 

#007004; all mice were bred on C57BL/6 background). C57BL/6 wild type and Thy1-

GCaMP6f mice were housed with 1-4 cage-mates. CamKII-GCaMP6s mice were single 

housed. All surgical procedures were conducted under isoflurane anesthesia (1.5-2% 

volume). We used a viral vector to express GCaMP6s or GCaMP6f in the CA1 of wild type 

mice. These mice underwent two surgical procedures. In the first, we injected into the CA1 

400 nL of the viral vector AAV2/5-CaMKIIa-GCaMP6s or AAV2/5-CaMKIIa-GCaMP6f (Chen 

et al., 2013)  (~2 X 1013 particles per ml, packed by University of North Carolina Vector 

Core). Stereotactic coordinates were: -1.9 mm anterio-posterior, -1.4 mm mediolateral, -1.6 

mm dorsoventral from bregma. Mice were allowed to recover in their home-cages for at least 

one week before the next surgical procedure, in which we implanted a glass guide tube 

directly above the CA1, as previously described (Ziv et al., 2013; Rubin et al., 2015). This 

procedure was similar for both virus injected and Thy1-GCaMP6f transgenic mice. CamKII-

GCaMP6s mice were implanted with a micro-prism lens (800µm diameter) in the prefrontal 

cortex. Stereotactic coordinates of the implantation were: 1 mm anterior-posterior, 0 mm 

mediolateral, -1.8 mm dorsoventral from bregma.  

 

Ca2+ imaging and behavioral setup  
Preparatory process 

For time-lapse imaging in freely behaving mice using an integrated miniature fluorescence 

microscope (nVistaHD, Inscopix), we followed a previously established protocol (Ziv et al., 

2013; Rubin et al., 2015). Briefly, at least three weeks after the guide tube or micro-prism 

lens implantation, we examined Ca2+ indicator expression and tissue health by imaging mice 

under isoflurane anesthesia using a two-photon microscope (Ultima IV, Bruker, Germany), 

equipped with a tunable Ti: Sapphire laser (Insight, Spectra Physics, Santa Clara, CA). At 



this stage, we inserted into the guide tube of CA1 implanted mice a ‘microendoscope’ 

consisting of a single gradient refractive index lens (0.44 pitch length, 0.47 NA, GRINtech 

GmbH, Germany). We selected for further imaging only those mice that exhibited 

homogenous GCaMP6 expression and healthy appearance of the tissue. For the selected 

CA1 implanted mice, we affixed the microendoscope within the guide tube using ultraviolet-

curing adhesive (Norland, NOA81, Edmund Optics, Barrington, NJ). Next, we attached the 

microscope’s base plate to the dental acrylic cap using light cured acrylic (Flow-It ALC, 

Pentron, Orange, CA). We used a similar procedure to attach the base plate to the skull of 

the mice that were implanted with a micro-prism lens. All mice were returned to their home 

cages for a few days following the aforementioned procedure.  

 

Ca2+ imaging in freely behaving mice 

We used data from three experiments. In the first, we trained the five wild type mice to run 

back and forth on two elevated 96cm straight or ‘L’ shaped linear tracks (Rubin et al., 2015). 

Before beginning with Ca2+ imaging, we trained the mice for 8–11 days, until the mice ran at 

least 60 times the entire length of each track in two consecutive days. We imaged the mice 

every other day for 15 days, making for eight recording days. Each day of the experiment 

consisted of two 15 minutes long sessions, separated by 4–5 hours. In the second 

experiment, we imaged the five Thy1-GCaMP6f mice while they were freely exploring a 

spatial environment (a total of seven 20-55 minutes long sessions, separated by 1-28 days). 

In the third experiment, we imaged the prefrontal cortex of the two CamKII-GCaMP6s mice 

on six consecutive days, while the mice were freely exploring two different environments (3.5 

minutes per day in each environment). Ca2+ imaging of the virus injected and transgenic 

mice was performed at 20Hz and 10Hz, respectively. To record mouse behavior, we used an 

overhead camera (DFK 33G445, The Imaging Source, Germany), which we synchronized 

with the integrated microscope. 

 

Two-photon imaging data 
We obtained published two-photon imaging data from the Allen Brain Observatory, 2016 

(http://observatory.brain-map.org/visualcoding). We used data from ten different experiments 

in head fixed mice (experiment numbers: 511510945; 511510779; 511510699; 511510670; 

511510911; 511510718; 511510870; 511510836; 511856567; 511498742). The 

experiments measured visual responses from GCaMP6f expressing neurons in different 

cortical areas and layers. Each experiment consisted of three recording sessions from the 

same mouse, separated by at least one day.  

 



Processing of Ca2+ imaging data 
We processed imaging data using commercial software (Mosaic, version 1.1.1b, Inscopix) 

and custom MATLAB routines as previously described (Ziv et al., 2013; Rubin et al., 2015). 

To increase computation speed, we spatially down-sampled the data by a factor of two in 

each dimension (final pixel size of 2.3 X 2.3μm). To correct for non-uniform illumination both 

in space and time, we normalized the images by dividing each pixel by the corresponding 

value of that pixel in a smoothed version. The smoothed version was obtained by applying a 

Gaussian filter with a radius of 100μm on the movies. Normalization also enhanced the 

appearance of the blood vessels, which were later used as stationary fiducial markers for 

image registration. We used a rigid-body registration to correct for lateral displacements of 

the brain. This procedure was performed on a high contrast subregion of the normalized 

movies for which the blood vessels were most prominent. The movies were then transformed 

into relative changes in fluorescence, ( ) ( )( )0 0 0ΔF t F = F t - F / F , where F0 is the value for 

each pixel averaged over time. For the purpose of cell detection, the movies were down-

sampled in time by a factor of five or two for data recorded at 20Hz and 10Hz, respectively. 

We detected spatial footprints (i.e., weighted regions of interest consisting of each pixel’s 

contribution to the cell’s fluorescence) corresponding to individual cells using an established 

cell detection algorithm that applies principal and independent component analyses (PCA 

and ICA; (Mukamel, Nimmerjahn and Schnitzer, 2009). For each spatial footprint, we used a 

threshold of 50% of the footprint’s maximum intensity, and each pixel that did not cross the 

threshold was set to zero. Once the cells were detected, further cell sorting was performed to 

find the spatial footprints that follow a typical cellular structure. This was done by measuring 

the footprints’ area and circularity and discarding those whose radius was smaller than 5μm 

or larger than 15μm, or which had a circularity smaller than 0.8. In some cases, the output of 

the PCA-ICA algorithm included more than one component that corresponded to a single 

cell. To eliminate such occurrences, we examined all pairs of cells with centroid distances 

<18μm, and whenever their traces had a correlation >0.9, the cell with the lower average 

event peak amplitude was discarded. As an independent technique for cell detection, we 

also used CNMF-E (Zhou et al., 2016), an extension of the constrained nonnegative matrix 

factorization method (Pnevmatikakis et al., 2016) for one-photon microendoscopic data. 

 

Detection of Ca2+ events 
Ca2+ activity was extracted by applying the thresholded spatial footprints to the full temporal 

resolution (20Hz or 10Hz) ( ) 0ΔF t F movies. Baseline fluctuations were removed by 

subtracting the median trace (20sec sliding window). The Ca2+ traces were smoothed with a 



low-pass filter with a cutoff frequency of 2Hz. Ca2+ candidate events were detected 

whenever the amplitude crossed a threshold of 4 or 5 median absolute deviations (MAD), for 

GCaMP6s or GCaMP6f, respectively. We considered for further analysis only candidate Ca2+ 

events with decay time equal or longer than 600msec or 200msec for GCaMP6s or 

GCaMP6f, respectively, consistent with typically observed indicator decay times (Chen et al., 

2013). To avoid the detection of several peaks for a single Ca2+ event, only peaks that were 

4 or 5 MAD higher than the previous peak (within the same candidate event) and 2 or 2.5 

MAD higher than the next peak for GCaMP6s or GCaMP6f, respectively, were regarded as 

true events. We set the Ca2+ event occurrence to the time of the peak fluorescence. To 

mitigate the effects of crosstalk (i.e., spillover of Ca2+ fluorescence from neighboring cells), 

we adopted a conservative approach, allowing only one cell from a group of neighbors 

(<18μm apart) to register a Ca2+ event in a 200msec time window (the event with highest 

peak ( ) 0ΔF t F value). If two neighboring cells had a correlation >0.9 in their events, the cell 

with the lower average peak amplitude was discarded. Once the events were identified, 

further event sorting was performed to find the cells with sufficient signal-to-noise ratios. This 

was accomplished by measuring the event rate and the average event peak amplitude for 

each cell and discarding those whose event rate was smaller than 0.01Hz or which had an 

average event amplitude smaller than 1% ( ) 0ΔF t F . 

 
Registration of cells across sessions 
We developed a probabilistic method for registering cells across multiple sessions based on 

the similarity in the spatial footprint of their cellular activity. We used two similarity measures, 

the distance between centers of mass of two spatial footprints (centroid distance) and the 

Pearson correlation between spatial footprints (spatial correlation), to decide whether or not 

pairs of neighboring cells from two different sessions are the same entity. Note, that the 

spatial correlation is not merely a measure of shape similarity (as in spatial cross-

correlation), but also accounts for differences in the cells’ locations within the FOV. We 

registered cells using three main stages: (1) image alignment: rigid-body transformation was 

applied to all sessions according to a single reference session to correct for translation and 

rotation differences between sessions; (2) the distribution of spatial footprint similarities 

between neighboring cells from different sessions was calculated and then modeled as a 

weighted sum of the distributions of two subpopulations representing the same cells and 

different cells. This allowed us to estimate the probability for any pair of neighboring cells 

from two different sessions to be the same cell (Psame) given their spatial correlation and 



centroid distance; (3) an iterative clustering procedure (Bansal, Blum and Chawla, 2004) that 

registers cells based on the Psame obtained from the probabilistic model. 

 

(1) Image alignment 

For each session, we projected the centroid locations of all the cells’ spatial footprints onto a 

single image. We computed the cross-correlations between the projections of each session 

with the projections of a reference session, examining different rotations. We corrected for 

translation and rotation differences between the sessions by applying the translations and 

rotations that resulted in the maximal cross-correlation, yielding each cell’s location in the 

reference coordinate system. We also corrected for sub-pixel translational differences 

between the sessions by applying a Gaussian fit to the cross-correlation in each dimension. 

Sub-pixel translational correction decreased the centroid distances and increased the spatial 

correlations between the nearest neighbors (Figure S3).  

 

(2) Probabilistic modeling of the data 

We calculated the distributions of centroid distances and spatial correlations for neighboring 

cell-pairs across sessions. We defined neighboring cell-pairs as pairs with centroid distances 

<12μm across sessions, and assumed that cell-pairs with larger centroid distances are 

different cells. To obtain reliable registration we sought to model the distributions of centroid 

distances (centroid distances model) and spatial correlations (spatial correlations model) for 

neighboring cell-pairs, as a weighted sum of the distributions of two subpopulations, 

representing same cells and different cells. The specific choice of the functional forms we 

used to model the distributions of same cells and different cells were guided by the 

distributions obtained from the data for nearest neighbors and other neighbors. 

Because there is a certain minimal distance between different cells in the FOV, we 

approximated the density of cells given their distance from any given cell as a sigmoid 

function. Because the area of a ring surrounding each cell linearly increases with the 

distance, we modeled the distribution of centroid distances for different cells as a 

multiplication of a sigmoid function by a linear function. To model the distribution of centroid 

distances for the same cells, we used a lognormal distribution, to match the requirement of a 

non-negative distribution that resembles the distribution for nearest neighbors in the data. 

Similarly, the distribution of spatial correlations for same cells was modeled as a lognormal 

distribution. Since the correlation cannot exceed 1, and the distribution of spatial correlations 

for nearest neighbors peaks close to 1 and decays towards 0, we defined the origin as 1 by 

taking 1 minus the spatial correlation value. Because lognormal distribution is >0 for any 

positive value, whereas correlation is bounded, we multiplied the obtained model for same 



cells by a sigmoid function. The distribution of spatial correlations for other neighbors is 

single peaked and ranges between 0 and 1. We therefore modeled the distribution of spatial 

correlations for different cells using a beta function. For each model, we found the 

parameters of the distributions and weights that best fit the data in terms of the mean 

squared error (performed for each mouse, individually). 

Applying similar principles, we modeled the joint distribution of centroid distances 

and spatial correlations (joint model) for neighboring cell-pairs as a weighted sum of the 

distributions of two subpopulations. We used the previously estimated distributions of 

centroid distances and their weights as the marginal distribution of the joint model. We then 

estimated the distribution of spatial correlations for any given centroid distance (Figure S6). 

We calculated the average spatial correlation for nearest neighbors and other neighbors 

given the centroid distance to approximate the spatial correlation for same cells and different 

cells, respectively. We used the average spatial correlation measured for nearest neighbors 

at small centroid distances (mostly the same cells) to linearly extrapolate the average spatial 

correlation for large centroid distances where we could not be certain that the nearest 

neighbors were indeed the same cells. Assuming that other neighbors correspond to 

different cells, we used the average spatial correlation measured for other neighbors at high 

centroid distances, and extrapolated the data to small centroid distances for which data was 

sparse. For a given centroid distance, the nearest neighbors showed higher spatial 

correlations than other neighbors. We therefore measured the difference between the 

average spatial correlation for nearest neighbors and other neighbors per centroid distance 

and extrapolated the mean spatial correlation for different cells assuming a constant 

difference. In practice, this extrapolation had little impact on the joint model since it was 

calculated mostly for a centroid distances range in which the proportion of different cells was 

< 0.01 (Figure S6C – note the narrow range of the dashed red curve versus the wide range 

of dotted red curve). For simplicity, the variance of the spatial correlations at a given centroid 

distance was assumed to be the same for both subpopulations and was estimated based on 

the standard deviation of all neighboring cell-pairs and the estimated average spatial 

correlations of each subpopulation. To obtain the joint model, for each mouse individually, 

we modeled for any given centroid distance, the distribution of spatial correlations for the 

same cells as a lognormal distribution and for different cells as a beta distribution. 
To obtain the probability for any pair of neighboring cells from different sessions, 

given their spatial correlation and centroid distance, we calculated Psame(dist,corr), according 

to Bayes’ rule: 
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where Wsame and Wdiff are the estimated weights (prior probabilities) for the two 

subpopulations of same cells and different cells, respectively. P(dist,corr|same) and 

P(dist,corr|diff) are the estimated conditional joint distributions of centroid distances and 

spatial correlations for same cells and different cells, respectively. Similar calculations were 

performed for each of the one-dimensional models (spatial correlation and centroid 

distance). This allowed us to obtain Psame for any pair of cells across sessions in the data.  

 

(3) Cell registration with a clustering procedure 

Following the observation that cells are spatially clustered into clusters representing the 

same cells across imaging sessions, we applied an iterative clustering procedure aimed at 

maximizing within-cluster Psame and minimizing between-cluster Psame. To obtain a clustering 

of cells to serve as initial conditions for the iterative clustering procedure, we registered cells 

according to the spatial correlations model with a registration threshold of Psame=0.5. We 

created an initial list of cells comprising of the cells detected in the first session. Each 

session was then inspected and each cell that had a pairing candidate on the list, with which 

it had a Psame>0.5, was registered to that cell. Cells that did not have such a pairing 

candidate were added to the list as new cells. In cases where more than one candidate 

crossed the threshold, the cell-pair with the highest Psame was registered to be the same cell. 

The iterative clustering procedure was then applied. In each of the iterations, all cells were 

inspected and each cell either: (1) remained in the same cluster; (2) was transferred to a 

more similar cluster; or (3) initiated a new cluster. The decision was made by finding for each 

cell the candidate from all the different sessions with which it had the highest Psame. If the 

Psame was lower than the registration threshold, the cell formed a new cluster. If Psame was 

higher than the registration threshold, the cell joined the cluster of that candidate (if they 

were already in the same cluster, then nothing changed). If there was already a cell from that 

session with a lower Psame in the cluster, the new cell replaced the old one in the cluster, but 

if the existing cell had a higher Psame, then nothing changed. The iterative process continued 

until the clustering procedure converged and no more clustering changes occurred.  

 

Quantification of registration accuracy 
Cell-pairs 

By applying Psame to our data, we obtained the certainty of registration associated with any 

pair of neighboring cells across sessions. We defined uncertain registrations of cell-pairs as 



those with a probability ≤0.95 to be the same cell and ≤0.95 to be different cells 

(0.05≤Psame≤0.95), and calculated the fraction of uncertain cell-pairs out of all neighboring 

cell-pairs. Additionally, we used the estimated probability distributions of same cells and 

different cells to calculate a receiver operating characteristic (ROC) curve obtained from 

1,000 evenly spaced registration thresholds of Psame between 0 and 1. For the centroid 

distances model, the false negative rate was estimated as the fraction of the model of same 

cells that is higher than the registration threshold: 

=
+
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The false positive rate was estimated as the fraction of the model of different cells that is 

lower than the registration threshold: 

=
+
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Similar calculations were performed for the spatial correlations and joint models. We defined 

the overall estimated registration accuracy:  

+
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Additionally, we calculated the Gini coefficient G1 to quantify the separability between the 

distributions of two subpopulations as =1 2 1G AUC , where AUC is the area under the ROC 

curve.  

 

Cell registers 

To evaluate the performance of our registration method for multiple sessions, we defined a 

stringent register score index for each registered cell, which takes into account false 

positives, false negatives, and non-exclusive cell registrations from all the pairwise 

combinations of registered sessions across all sessions. For each session, a cell was either 

active or inactive according to the cell registration, resulting in pairs of sessions where the 

cell was active in both (active-active), active in only one (active-inactive), or active in none 

(inactive-inactive — no evaluation is required in these cases). For each cell register in the 

data, a true positive score was calculated as the total number of reliable active-active cell-

pairs (Psame>0.95) out of the total number of active-active pairwise combinations of all 

sessions. A true negative score was calculated as the total number of reliable active-inactive 

pairs (Psame<0.05 for all candidates) out of the total number of active-inactive pairwise 

combinations of all sessions. An exclusivity score was calculated as the total number of 

exclusive active-active cell-pairs (for all additional candidates Psame<0.05) out of the total 



number of active-active pairwise combinations of all sessions. The register score was 

calculated as the total number of reliable pairs out of the total number of active-active and 

active-inactive pairwise combinations of all sessions, where each pair was considered 

reliable only if it met all three aforementioned criteria. Accordingly, we defined the register 

score as: 

( )
( )

N N
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m≠k

1register score = δ k,m
N N -1 ∑ ∑

	

where N is the total number of sessions,N is the number of active sessions for a given cell 

register, and ( )δ k,m is 1 if a cell-pair in the cluster is reliable, and 0 otherwise. 

 

Scalability for a large number of sessions 

To examine if registration accuracy changes with the number of registered sessions, we 

applied our registration method to data recorded in 16 sessions on eight different days 

spanning two weeks (N=5 mice). Registration was performed simultaneously for multiple 

sessions with the clustering procedure, choosing random subsets of the 16 sessions 

comprising of 4, 8, or 12 sessions, and for the entire set of 16 sessions. The average register 

score was measured as a function of the number of registered sessions. 

  

Validation of cell registration  
Exclusivity and transitivity measures 

To validate our probabilistic approach, we defined exclusivity and transitivity measures. 

Exclusivity requires that only one cell from session 1 be paired with a given cell from session 

2. Transitivity requires that if a cell from session 1 and a cell from session 2 are paired and 

the cell from session 2 is paired with a cell from session 3, then the cells from sessions 1 and 

3 be also paired. To measure exclusivity, we calculated the distribution of Psame with all 

additional candidates only for cells that have a pairing candidate with a Psame>0.5 in another 

session. Cells with additional pairing candidates with a Psame>0.5 were considered non-

exclusive. To measure transitivity, we calculated the distribution of Psame for pairs of cells 

from two different sessions where each had a Psame>0.5 with the same candidate from a third 

session. Of such cell-pairs, those with a Psame<0.5 were considered non-transitive. To 

compare exclusivity and transitivity of the data with those expected by chance, we obtained 

shuffled data by measuring the centroid distances between cell-pairs from different sessions, 

where each session was taken from a different mouse. We then performed the same 

analyses on the shuffled data. 



Place field stability 

We also validated our probabilistic approach by applying our registration method to data 

recorded from the CA1 of the hippocampus of N=5 mice while freely exploring linear tracks 

(Rubin et al., 2015). We analyzed mouse behavior videos using a custom MATLAB 

(Mathworks) routine that detected the mouse’s center of mass in each frame, calculated its 

velocity and applied a rectangular smoothing window of 250msec. For place field analysis, 

we considered periods wherein the mouse ran >3cm/sec. We divided each track into 24 bins 

(4cm each) and computed the time spent in each bin and the number of Ca2+ events per bin, 

and smoothed these two maps (‘occupancy’ and ‘Ca2+ event number’) using a truncated 

Gaussian kernel (σ=1.5 bins, size=5 bins) (Ziv et al., 2013; Rubin et al., 2015). We then 

computed the activity map (event rate per bin) for each neuron by dividing the smoothed 

map of Ca2+ event numbers by the smoothed map of occupancy. We separately considered 

place fields for the two running directions on the linear track. We defined each of the place 

field’s position to be the peak value of the activity map. For each place field with ≥5 events 

for a given session, we computed the spatial information (in bits per event) using the 

unsmoothed events-rate map of each cell, as previously described (Markus et al., 1994): 

( ) ( )i i 2 i
i

Spatial information = p r / r log r / r∑  

where pi is the probability of the mouse to be in the ith bin (time spent in ith bin/total session 

time); ri is the Ca2+ event rate in the ith bin;  r̄ is the overall mean Ca2+ event rate; and i is 

running over all the bins. We then performed 1,000 distinct shuffles of animal locations 

during Ca2+ events, accounting for the spatial coverage statistics for the relevant session and 

direction, and calculated the spatial information for each shuffle. This yielded the p value of 

the measured information relative to the shuffles. Cells with spatial information higher than 

that of 95% of their shuffles were considered significant place cells. We then calculated the 

place field positional shift and place field correlation for cell-pairs from different sessions for 

which at least one cell in the pair was considered significant. The place field positional shift 

was calculated as the difference in place field peak positions, and the place field correlation 

was calculated as the Pearson correlation between the place field activity maps. The place 

field maps used for these two measures included both running directions on the running 

track. To compare the place field stability of the data with the stability expected by chance, 

the identity of cells were randomized (shuffled data) across sessions. We then performed the 

same analyses on the shuffled data. 

  



Simulated data 

Simulated data was obtained by using representative spatial footprints of cells that were 

detected in our data. We then placed each representative spatial footprint in a random 

location in the FOV to serve as the original centroid location of the cell. We added a 

constraint that did not allow for two different cells to have very close centroid locations. The 

minimal centroid distance between the original locations of neighboring cells (different cells) 

was set to 7±1µm (normally distributed) to match the distribution of the observed data. In 

each session, a fraction of the cells were simulated as active and their locations were set as 

the original centroid locations with a jitter. The radius of the jitter for each cell in each session 

was drawn from a lognormal distribution and the angle was uniformly distributed. The 

parameters for the active fraction of cells and for the jitter were chosen to match those of the 

observed data. To obtain simulated data with different noise levels, we systematically 

increased the radius of the jitter by increasing the mean of the lognormal distribution. We 

then applied our registration procedure to the simulated data. This allowed us to estimate the 

false positive and false negative rates from the simulated data model and compare them with 

the actual false positive and false negative rates obtained when applying either our cell 

registration method or a centroid distance threshold to the simulated data. Finally, we 

simulated the effects of registration errors on measurements of the stability of the functional 

properties of cells. We defined different cells (shuffled data) as having a certain probability 

(10±1%) to share the same coding properties across sessions. To test whether registration 

errors could obscure conclusions drawn from data with different population effect sizes, we 

systematically changed the percentages of same cells that maintain their coding properties 

across sessions (10-15±1%). Effect size was defined as the difference between the mean 

stability of the population and shuffled data, divided by the stability standard deviation. 
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