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SUMMARY

Ca2+ imaging techniques permit time-lapse record-
ings of neuronal activity from large populations
over weeks. However, without identifying the same
neurons across imaging sessions (cell registration),
longitudinal analysis of the neural code is restricted
to population-level statistics. Accurate cell registra-
tion becomes challenging with increased numbers
of cells, sessions, and inter-session intervals. Cur-
rent cell registration practices, whether manual or
automatic, do not quantitatively evaluate registration
accuracy, possibly leading to data misinterpretation.
We developed a probabilistic method that automati-
cally registers cells across multiple sessions and
estimates the registration confidence for each regis-
tered cell. Using large-scale Ca2+ imaging data
recorded over weeks from the hippocampus and
cortex of freely behaving mice, we show that our
method performs more accurate registration than
previously used routines, yielding estimated error
rates <5%, and that the registration is scalable for
many sessions. Thus, our method allows reliable lon-
gitudinal analysis of the same neurons over long time
periods.
INTRODUCTION

Recent advances in optical imaging techniques and genetically

encoded Ca2+ indicators allow researchers to chronically record

the activity of hundreds to thousands of neurons simultaneously

in behaving animals (Svoboda et al., 1997; Helmchen et al., 2001;

Sawinski et al., 2009; Ghosh et al., 2011; Grienberger and Kon-

nerth, 2012; Chen et al., 2013). This is typically done using

two-photon imaging in head-fixed rodents (Dombeck et al.,

2007, 2010; Kitamura et al., 2015; Burgess et al., 2016) or one-

photon imaging with miniature microscopes in freely behaving

rodents (Ziv et al., 2013; Berdyyeva et al., 2014; Jennings

et al., 2015; Pinto and Dan, 2015; Sun et al., 2015; Cai et al.,

2016). These techniques facilitate within-subject analyses that

quantify changes in neuronal activity under different experi-

mental conditions and over extended periods of time (reviewed

in Ziv and Ghosh, 2015). However, without identifying the same

individual neurons across imaging sessions, the analysis of
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time-lapse imaging data becomes limited to population-level

statistics, thus losing a critical advantage offered by optical

imaging relative to dense electrophysiological recordings.

Following the activity of the same neurons over time can uncover

the changes in the coding properties of individual cells and in the

joint activity patterns that underlie the population-level statistics

(Huber et al., 2012; Ziv et al., 2013; L€utcke et al., 2013; Jennings

et al., 2015; Rubin et al., 2015; Burgess et al., 2016; Cai et al.,

2016; Liberti et al., 2016; Rose et al., 2016; Driscoll et al.,

2017; Grewe et al., 2017). Such accounts of long-term dynamics

are crucially absent in many fields of neuroscience, including the

study of learning and long-term memory, where understanding

how information is represented, stored, and changes with time

is key.

To longitudinally follow the activity of individual neurons, the

same cells need to be reliably identified (registered) across all

time points in the experiment. Registration of the same neurons

becomes challenging as the number of detected cells in a ses-

sion, the number of sessions, and the intervals between them

increase. Cell registration is further complicated in data from

one-photon Ca2+ imaging, in comparison to two-photon imag-

ing, due to light scattering and lack of optical sectioning (Wilt

et al., 2009; Yang and Yuste, 2017), both of which increase

the crosstalk between the signals of neighboring neurons in

the two-dimensional field of view (FOV). Furthermore, since

one-photon microscopy mostly reveals transient and localized

changes in fluorescence that exceed the background noise, a

cell must be active to be detected. Thus, the set of detected

cells can differ between sessions (Ziv et al., 2013; Resendez

et al., 2016; Grewe et al., 2017; Xia et al., 2017), and a one-to-

one mapping of neural identity across sessions is typically not

attainable. Taken together, these factors introduce uncertainty

and, consequently, potential errors to the cell registration

procedure.

While numerous methods for detecting cells and extracting

their activity from Ca2+ imaging data have been developed (Reidl

et al., 2007; Vogelstein et al., 2009, 2010; Mukamel et al., 2009;

Grewe et al., 2010; Smith and Häusser, 2010; Oñativia et al.,

2013; Pachitariu et al., 2013; Maruyama et al., 2014; Pnevmati-

kakis et al., 2016; Theis et al., 2016), relatively little effort has

been devoted to the issue of cell registration across sessions.

Previous studies that registered cells across sessions (Ziv

et al., 2013; Jennings et al., 2015; Rubin et al., 2015; Cai et al.,

2016; Liberti et al., 2016; Kitamura et al., 2017), regardless of

whether using manual or automatic routines, did not provide a

quantitative evaluation of registration accuracy in terms of

false-positive errors (different cells falsely registered as the
or(s).
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same cells) and false-negative errors (the same cells falsely

registered as different cells). The lack of such quantitative evalu-

ation could be detrimental in cases where the acquired data are

inadequate for longitudinal analysis andmay lead tomisinterpre-

tation of the data (Harris et al., 2016). For example, either falsely

identifying two different cells as the same or falsely identifying

the same cell as two different cells can lead to false conclusions

about the dynamics of the neuronal activity. Moreover, previous

work has used fixed registration decision parameters (e.g.,

distance threshold), which were not optimized to the specific

data.

To address these problems, we adopted a probabilistic

approach to devise a method for automated cell registration

across sessions. By modeling the distribution of similarities be-

tween neighboring cells across sessions, our method estimates

the confidence of registration associated with each cell in the

data. Moreover, it estimates the overall rates of false-positive

and false-negative errors for different registration decision pa-

rameters. This approach enables cell registration that is adaptive

and optimized to different datasets. Applying our method to data

recorded from the hippocampus and cortex of behaving mice,

we show that the same cells can be tracked over multiple weeks

with estimated false-positive and false-negative rates <5%,

yielding more accurate registration than the routines utilized in

previous studies. Moreover, we find that registration accuracy

remains high with increased numbers of sessions, demon-

strating the method’s suitability for longitudinal studies. We

provide an open source MATLAB code for cell registration that

implements the approach presented in this paper (see Experi-

mental Procedures).

RESULTS

Cells Maintain Their Spatial Footprints across Multiple
Days of Imaging
We combined miniaturized head-mounted microscopes

(Ghosh et al., 2011) and microendoscopic probes (Barretto

et al., 2011) to chronically image Ca2+ dynamics in GCaMP6-

expressing neurons in the hippocampal CA1 and in the pre-

frontal cortex of freely behaving mice. For each mouse, we

imaged Ca2+ dynamics in multiple recording sessions over

weeks (12 mice, 6–16 sessions per mouse, 269–712 cells per

session). Prior to cell registration, cells that were active in

each imaging session were detected, and their spatial foot-

prints (i.e., weighted regions of interest consisting of each

pixel’s contribution to the cell’s fluorescence) and Ca2+ traces

were extracted (Figure S1) using an established routine based

on principal-component analysis and independent-component

analysis (PCA-ICA; Mukamel et al., 2009). To register cells

across the different sessions, we constructed a cell registra-

tion method that consists of three main steps (Figure 1A): (1)

aligning between the FOVs imaged in different sessions; (2)

modeling the distribution of similarities between pairs of neigh-

boring cells from different sessions to obtain an estimation for

their probability to be the same cell; and (3) registering cells

across multiple sessions via a clustering procedure that uses

the obtained probabilities of neighboring cell-pairs to be the

same cell.
To correct for translation and rotation differences between

sessions, we aligned the FOV of each session with the FOV of

a reference session, yielding the locations of spatial footprints

from different sessions in a single coordinate system (Figures

1B–1E and S2). The cells generally maintained their spatial foot-

prints over long time periods, as indicated by the overlap of

spatial footprints across sessions.

Spatial Footprint Similarities across Sessions Exhibit a
Bimodal Distribution
We considered all pairs of cells that were detected in close

proximity in the FOV across different sessions (neighboring

cell-pairs) to be same cell candidates. For each neighboring

cell-pair, we measured: (1) the distance between the centers

of mass of their spatial footprints (centroid distance) and (2)

the Pearson correlation between their spatial footprints (spatial

correlation). While some of the neighboring cell-pairs had either

large centroid distances and small spatial correlations (sug-

gesting that they are different cells) or small centroid distances

and large spatial correlations (suggesting that they are the

same cells), for other cell-pairs, intermediate values were

observed, indicating that their registration was uncertain (Fig-

ure 2A). Therefore, we sought to register cells across sessions

while obtaining a quantitative estimation of registration confi-

dence. We limited the analysis to cell-pairs with centroid dis-

tances <12 mm, assuming that cell-pairs with larger centroid

distances are different cells. We then calculated the distribu-

tions of centroid distances and spatial correlations between

nearest neighbors and between other (not nearest) neighbors

across sessions (Figures 2B, 2C, and S3). Based on data

from 12 mice, 87% ± 3% of the nearest neighbors had a

centroid distance <7 mm, and 89% ± 4% had a spatial correla-

tion >0.6, while only 5% ± 1% of the other neighbors had a

centroid distance <7 mm, and 6% ± 2% had a spatial correla-

tion >0.6. The differences between the distributions for nearest

neighbors and other neighbors support the notion that nearest

neighbors are mostly the same cells, while other neighbors are,

for the most part, different cells. However, registering all pairs

of nearest neighbors as the same cells would result in false-

positives when a cell is active in only one of the two sessions,

as indicated by the heavy tail in the distributions for nearest

neighbors. Furthermore, since the distributions for nearest

neighbors and other neighbors partially overlap, any registra-

tion threshold, i.e., a value that serves as a cutoff for deciding

whether two cells are the same, would result in false-positive

errors, false-negative errors, or both.

To estimate the attainable accuracy of cell registration, we

calculated the distributions of centroid distances and spatial cor-

relations between all (nearest and other) neighboring cell-pairs

from different sessions (Figures 2D and 2E). Both distributions

were bimodal, reflecting the fact that they comprise two different

subpopulations of cell-pairs corresponding to same cells and

different cells. Therefore, we modeled the data (centroid dis-

tances model and spatial correlations model) as a weighted

sum of the distributions of two subpopulations. For each mouse,

we jointly estimated the parameters of the distributions of the

two subpopulations and their weights to best fit the data (Figures

2D, 2E, and S4A–S4F, showing additional examples for mice
Cell Reports 21, 1102–1115, October 24, 2017 1103



Figure 1. Cells Maintain Their Locations and Shapes over Weeks

(A–E) In (A), the main steps in the cell registration procedure are indicated. (B and D) Top: representative single frames from raw fluorescence data of imaging

sessions recorded on three different days. Bottom: projection of all spatial footprints for the same three sessions, indicated in red, green, and blue.

(B) Hippocampal CA1. (D) Prefrontal cortex. (C and E) Overlays of the aligned spatial footprint maps shown for (C) hippocampal CA1, as shown in (B), and for

(E) prefrontal cortex, as shown in (D). D, dorsal; L, lateral; M, medial; V, ventral. Data were recorded in the hippocampal CA1 of a Thy1-GCaMP6f transgenic

mouse (B and C) and in the prefrontal cortex of a CaMKII-GCaMP6s transgenic mouse (D and E) while freely exploring the same environments.

See also Figures S1 and S2.
imaged in the prefrontal cortex or hippocampus). The obtained

estimated distributions enable an informed choice of the

registration threshold that is optimized to the data of eachmouse

(Figures 2D and 2E, gray dashed lines at the intersection of the

two distributions; Figures S4G and S4H). Similarly, we used

the joint distribution of centroid distances and spatial correla-

tions across sessions to model the data (joint model; Figures

2F–2K, S5, and S6).

A Large Fraction of Cell-Pairs Can Be Reliably
Registered across Sessions
The resulting models allowed us to use a Bayesian framework to

calculate the probability for two cells from two different sessions

to be the same cell (Psame), given their spatial correlation and

centroid distance (Figures 3A and 3B). By applying Psame (calcu-

lated for each mouse individually) to the distribution of cell-pairs

in our data (802,862 neighboring cell-pairs pooled from 12mice),
1104 Cell Reports 21, 1102–1115, October 24, 2017
we obtained the cumulative fraction of cell-pairs as a function of

Psame (Figure 3C).We defined uncertain registrations of cell-pairs

as those with a probability %0.95 to be the same cells and a

probability %0.95 to be different cells (0.05 % Psame % 0.95)

and found that the spatial correlations and joint models result in

less uncertainty than the centroid distances model (inset of Fig-

ure 3C; 19.7% ± 3.3%, 16.6% ± 5.5%, and 15.1% ± 3.4% of

the neighboring cell-pairs are in the uncertain range for the

centroid distances, spatial correlations, and joint models,

respectively; one-way repeated-measures ANOVA, F(1, 16) =

11.6, p = 0.002). Additionally, we used the estimated probability

distributions of same cells and different cells to calculate a

receiver operating characteristic (ROC) curve, providing the esti-

mated false-positive and false-negative rates for various

registration thresholds (Figure 3D). We calculated the Gini coeffi-

cient G1 (a measure for the area under the curve) and found that

the joint model performs slightly better than the centroid



Figure 2. Distributions of Spatial Footprint

Similarities Modeled as a Weighted Sum of

Two Subpopulations

(A) Six examples of candidates to be the same cell,

with their measured centroid distances (Dist.) and

spatial correlations (Corr.). The spatial footprints

are shown in red (session 1) and green (session 2).

(B and C) Distribution of centroid distances (B)

and spatial correlations (C) between pairs of

nearest neighbors (green) and other neighbors

(red) across sessions. Gray dashed lines show the

intersection between the two distributions. The

fraction of nearest neighbors (green) or other

neighbors (red) above and below these in-

tersections are indicated.

(D and E) Distributions of centroid distances (D)

and spatial correlations (E) between all neigh-

boring cell-pairs (blue bars) and the modeled dis-

tributions of same cells (dashed green curves),

different cells (dashed red curves), and their

weighted sum (solid black curves). Gray dashed

lines show the intersection between the two

models. Estimated fractions of same cells (green)

or different cells (red) above and below these in-

tersections are indicated.

(F–H) Joint and marginal distributions of centroid

distances and spatial correlations between pairs

of nearest neighbors (F), other neighbors (G), and

all neighbors (H) across sessions.

(I–K) Modeled joint and marginal distributions of

centroid distances and spatial correlations for

same cells (I), different cells (J), and their weighted

sum (K). In (H) and (K), the color scale was set to

reach 0.25 of the maximal value to enable visual-

ization of both subpopulations. Data and models

in all panels are for 16 sessions recorded on

8 different days in the hippocampal CA1 of a

mouse while freely exploring the same environ-

ments.

See also Figures S3, S4, S5, and S6.
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Figure 3. Modeling the Data Supports Reliable Cell Registration across Pairs of Sessions

(A and B) Shown in (A): distributions of centroid distances (top) and spatial correlations (bottom) between neighboring cell-pairs. The grayscale color code

indicates the probability for two cells from two different sessions to be the same cell (Psame). Red lines show Psame = 0.05, Psame = 0.5, and Psame = 0.95.

(B) Contours of Psame overlaid on the joint distribution of centroid distances and spatial correlations for neighboring cell-pairs. Numbers of cell-pairs are displayed

in a logarithmic scale. The Psame = 0.05, Psame = 0.5, and Psame = 0.95 contours are highlighted by thicker white, gray, and black curves, respectively. Data in

(A) and (B) are the same as in Figure 2.

(C andD) Shown in (C): the cumulative fraction of cell-pairs as a function of the estimated Psame for the centroid distances (red), spatial correlations (blue), and joint

(green) models. Black dashed horizontal lines represent the Psame = 0.05 and Psame = 0.95 levels, while the vertical lines show the joint model’s intersection with

those probabilities, indicating the fraction of uncertain registrations. Inset: the fraction of cell-pairs in the uncertain registration range (mean ±SEM). (D) Estimated

ROC curves for the centroid distances (red), spatial correlations (blue), and joint (green) models. Inset: zoom-in on the near-optimal part of the ROC. Black

asterisks represent the Psame = 0.5 threshold. Data in (C) and (D) were pooled from 12 mice.
distances and spatial correlationsmodels (G1 = 0.983± 0.005,G1

= 0.986 ± 0.008, and G1 = 0.991 ± 0.004 for the centroid dis-

tances, spatial correlations, and joint models, respectively;

one-way repeated-measures ANOVA, F(1, 16) = 13.8,

p = 0.001). For a threshold of Psame = 0.5 (see black asterisks in

the inset of Figure 3D), the false-negative rates were lower for

the joint model (2.7% ± 0.9%) compared to the spatial

correlations and the centroid distances models (3.7% ± 1.1%

and 3.8% ± 1.1%, respectively; one-way repeated-measures

ANOVA, F(1, 14) = 10.9, p = 0.003), while the false-positive rates

were lower for the spatial correlations model (3.6% ± 1.6%)

compared to the centroid distances and joint models

(6.0% ± 2.3% and 4.5% ± 1.9%, respectively; one-way

repeated-measures ANOVA, F(2, 19) = 28.4, p < 0.001). Overall,

these results demonstrate that accurate registration across
1106 Cell Reports 21, 1102–1115, October 24, 2017
sessions can be obtained in >95% of neighboring cell-pairs

based on any of the three models.

Probabilistic Approach for Cell Registration Is
Applicable to Different Types of Data
It has recently been shown that constrained nonnegative matrix

factorization (CNMF) is well suited for extracting cellular spatial

footprints and temporal dynamics from Ca2+ imaging data with

significant spatial overlap between neighboring neural compo-

nents (Pnevmatikakis et al., 2016). Therefore, in addition to the

commonly used PCA-ICA method, we also used CNMF-E

(Zhou et al., 2016), an extension of the CNMF method for one-

photon microendoscopic data (Figures 4A and 4B). Notably,

using CNMF-E, we detected within the same FOVs 60.2% ±

36.5% more cells than with PCA-ICA (five mice, five sessions



Figure 4. The Cell Registration Method Is Applicable to Different Types of Imaging Data

(A–H) Registration is applicable to cells detected using CNMF-E.

(A) Projection of all spatial footprints for three imaging sessions recorded on three different days, indicated in red, green, and blue.

(legend continued on next page)
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per mouse, 348–1,498 cells per session) (Figure 4C). Applying

our registration procedure to the detected cells, we obtained a

probabilistic model of the data without the need for any adapta-

tions to our method (Figures 4D–4F). Although we detected a

higher density of cells with CNMF-E, we could, nonetheless, reg-

ister cells (198,230 neighboring cell-pairs) with certainty levels,

false-negative rates, and false-positive rates comparable to

those obtained with PCA-ICA (Figures 4G and 4H).

In addition, we tested our registration method on data from

two-photon imaging in head-fixed behaving mice (10mice, three

sessions per mouse, 196–375 cells per session, obtained from

the Allen Brain Observatory, 2016). Image alignment of the

different sessions revealed that different subsets of cells were

detected in each of the imaging sessions (Figures 4I and 4J),

demonstrating that there was no one-to-one mapping of cell

identity across sessions, consistent with previous reports

(Driscoll et al., 2017; Wagner et al., 2017). As expected from

the optical sectioning and higher spatial resolution of two-

photon microscopy, cell registration (19,970 neighboring cell-

pairs) yielded lower registration uncertainty (Figures 4K and 4L;

5.8% ± 4.8% of the neighboring cell-pairs are in the uncertain

range), false-negative rates (1.4% ± 0.8%), and false-positive

rates (Figure 4M; 1.3% ± 1.3%) than those obtained with one-

photon microscopy. Overall, our registration method was found

to be applicable to both one-photon and two-photon imaging

techniques, to various cell detection algorithms, and to imaging

data from different brain regions (Figures S4 and S5).

Cell Registration Is Scalable for a Large Number of
Sessions
Consistent with the observed bimodal distributions of cell-pair

similarity (Figure 2), the centroid locations of cells acrossmultiple

sessions seem to be spatially clustered (Figure 5A). Conse-

quently, high Psame values are expected between cell-pairs

within a cluster, whereas low Psame values are expected between

cell-pairs from different clusters. Therefore, to register cells from
(B) Overlay of the aligned spatial footprint maps shown in (A).

(C) Overlay of spatial footprint maps detected using PCA-ICA (red) and CNMF-E

(D and E) Distributions of centroid distances (D) and spatial correlations (E) betwe

cells (dashed green curves), different cells (dashed red curves), and their weighted

two distributions. Estimated fractions of same cells (green) or different cells (red

(F) Contours of Psame overlaid on the joint distribution of centroid distances and sp

in a logarithmic scale. The Psame = 0.05, Psame = 0.5, and Psame = 0.95 contours

(G) The cumulative fraction of cell-pairs as a function of the estimated Psame for th

Black dashed horizontal lines represent the Psame = 0.05 and Psame = 0.95 levels

bilities. Inset: the fraction of cell-pairs in the uncertain registration range (mean ±

(H) Estimated ROC curves for the centroid distances (red), spatial correlations (blu

Black asterisks represent the Psame = 0.5 threshold. Data in (G) and (H) were poo

(I–M) Registration is applicable to two-photon imaging data.

(I) Projection of all spatial footprints for three imaging sessions recorded on three

(J) Overlay of the aligned spatial footprint maps shown in (I).

(K) Distribution of centroid distances for neighboring cell-pairs (blue bars) and the

red curve), and their weighted sum (solid black curve).

(L) Cumulative fraction of cell-pairs as a function of the estimated Psame for the cen

red area). Black dashed horizontal lines represent the Psame = 0.05 and Psame =

probabilities. Inset: the fraction of cell-pairs in the uncertain registration range (m

(M) Average estimated ROC curve. Inset: zoom-in on the near-optimal part of t

Psame = 0.5 threshold. Two-photon data in (I)–(M) were obtained from the Allen

recorded on three different days in the visual cortex of head-fixed behaving mice
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multiple sessions as single entities, we applied a clustering

procedure (Bansal et al., 2004) based on the estimated Psame.

As expected, clustering of the cells from all the sessions revealed

that each cell tends to have a high Psame with one and only one

cluster (Figure 5B).

The clustering procedure yields a list of entities (cell registers),

each representing a single cell over multiple sessions. To quan-

tify the registration quality for each cell register, we defined a

stringent register score index (range = 0–1), which takes into

account the registration certainty of all cell-pairs within the clus-

ter (Figures 5C and S7). Register scores (10,102 cell registers

pooled from 12 mice) were higher for the joint model relative to

the centroid distances model (average register score of 0.78 ±

0.02, 0.81 ± 0.02, and 0.82 ± 0.02, for the centroid distances,

spatial correlations, and joint models, respectively; repeated-

measures ANOVA, F(1, 5) = 10.8, p = 0.024). To test whether

cell registration accuracy is maintained over a large number of

sessions over weeks, we used data recorded across 16 sessions

spanning 15 days (Rubin et al., 2015) and repeatedly applied our

registration method to various numbers of sessions. We did not

find the average register score (4,242 cell registers pooled from

five mice) to decrease with the number of registered sessions

(repeated-measures ANOVA, F(2, 9) = 2.3, p = 0.129; Figure 5D),

demonstrating that our registration method is scalable for a large

number of sessions, rendering it suitable for longitudinal studies.

Validation of the Cell Registration Method
We applied several independent techniques to validate cell

registration across multiple sessions, both at the cell-pair level

and at the cell-register level. First, we quantified exclusivity and

transitivity, two logical prerequisites for themodel to be internally

consistent with the data. Exclusivity requires that, if a given cell

from session 1 is paired with a cell from session 2, then no other

cell from session 2 be paired with it. Transitivity requires that, if a

cell from session 1 and a cell from session 2 are paired, and

the cell from session 2 is paired with a cell from session 3,
(green) for the same session.

en all neighboring cell-pairs (blue bars) and the modeled distributions of same

sum (solid black curves). Gray dashed lines show the intersection between the

) above and below these intersections are indicated.

atial correlations for neighboring cell-pairs. Numbers of cell-pairs are displayed

are highlighted by thicker white, gray, and black curves, respectively.

e centroid distances (red), spatial correlations (blue), and joint (green) models.

, while the vertical lines show the joint model’s intersection with those proba-

SEM).

e), and joint (green) models. Inset: zoom-in on the near-optimal part of the ROC.

led from five mice.

different days, indicated in red, green, and blue.

modeled distribution of same cells (dashed green curve), different cells (dashed

troid distances model (average ± SD represented by the red curve and shaded

0.95 levels, while the vertical lines show the model’s intersection with those

ean ± SEM).

he ROC obtained for each mouse individually. Black asterisks represent the

Brain Observatory, 2016, based on experiments consisting of three sessions

. Data in (L) and (M) were pooled from 10 mice.



Figure 5. Accurate Cell Registration Is Scal-

able for a Large Number of Sessions

(A) Centroid locations of cells from 16 different

sessions taken from a small part of the FOV. The

inner circle represents a radius of 4 mm, and the

outer (dashed) circle represents a radius of 7 mm.

(B) The number of candidate clusters per cell re-

mains�1 over a wide range of average Psame values

for the centroid distances (red), spatial correlations

(blue), and joint (green) models but not for the

shuffled data (black dashed curve).

(C) Distribution of register scores for the centroid

distances (red), spatial correlations (blue), and joint

(green) models. Inset: cumulative fraction of cell

registers as a function of the register score reversed

from 1 to 0.

(D) Register score as a function of the number of

registered sessions for the centroid distances (red),

spatial correlations (blue), and joint (green) models

(mean ± SEM).

Data in (B) and (C) were pooled from 12 mice. Data

in (D) were pooled from five mice.

See also Figure S7.
then the cells from sessions 1 and 3 also be paired. To measure

exclusivity, we focused on cells that have a pairing candidate

with Psame > 0.5 in another session and calculated for these cells

the distribution of Psame with all additional pairing candidates

(Figure 6A). As expected, the additional pairing candidates had

a low Psame with 93.9% ± 4.5%, 96.1% ± 2.4%, and 94.8% ±

3.6% of them having a Psame < 0.5 for the centroid distances,

spatial correlations, and joint models, respectively, compared

to 69.1% in the shuffled data (inset of Figure 6A). The joint model

resulted in higher exclusivity compared to the centroid distances

model (one-way repeated-measures ANOVA, F(1, 13) = 5.7,

p = 0.03). To measure transitivity, we calculated the distribution

of Psame for pairs of cells from two different sessions where each

had a Psame > 0.5 with the same candidate from a third session

(Figure 6B). Indeed, such pairs showed a high Psame with

94.1% ± 1.7%, 94.9% ± 1.2%, and 94.3% ± 1.5% of them

having a Psame > 0.5 for the centroid distances, spatial correla-

tions, and joint models, respectively, compared to 32.8% in

the shuffled data (inset of Figure 6B). We found no differences

in transitivity between the three different models.

For an independent validation of the probabilistic approach,

we applied our registration method to data recorded from hippo-

campal CA1 cells in mice that explored linear tracks (Rubin et al.,

2015), focusing our analysis on place cells. Place cells, which are

abundant in the hippocampus, selectively fire when an animal

moves through a particular location in space (O’Keefe and Dos-

trovsky, 1971). Previous work has shown that place cells that are

active on different days tend to maintain their coding specificity,

i.e., display stable place fields (Thompson and Best, 1990; Ken-

tros et al., 2004; Ziv et al., 2013). Therefore, cell-pairs with a high
Cell Rep
Psame are presumed to display more

similar place fields across days than

expected by chance (see Movie S1 for ex-

amples of place cells). Cell-pairs (158,488
pairs of place cells pooled from five mice) with high spatial cor-

relations and low centroid distances demonstrated high place-

field correlations (Figure 6C), consistent with the notion that

they are the same cell. We divided cell-pairs into three subsets:

(1) high probability of being the same cell (Psame > 0.95); (2) un-

certain registration range (0.05 % Psame % 0.95); and (3) high

probability of being different cells (Psame < 0.05). We calculated

for each subset the place-field positional shifts and place-field

correlations across days (Figures 6D and 6E) and compared

them to the distribution obtained for shuffled data. As expected,

cell-pairs with a higher Psame had higher probabilities to display

minor positional shifts and high place-field correlations across

days (48.8%, 33.1%, and 21.4% of cell-pairs had a place-field

positional shift %6 cm for Psame > 0.95, 0.05 % Psame % 0.95,

and Psame < 0.05, respectively, compared to 15.9% in shuffled

data). Additionally, to validate our clustering procedure, we

measured the place-field stability of cell registers acrossmultiple

sessions (Figure 6F). Cell registers (3,531 place cell registers

pooled from five mice across eight sessions) had considerably

more stable place fields across days than shuffled data (50.0%

of the pairs within cell registers had a place-field positional

shift %6 cm, compared to 17.0% for shuffled data), consistent

with previous studies (Ziv et al., 2013; Rubin et al., 2015). The

comparable levels of place-field stability observed for cell regis-

ters and for cell-pairs with Psame > 0.95 imply that cells frommul-

tiple imaging sessions that were registered together, indeed,

have a high probability to be the same neuronal entity.

Finally, we sought to use simulated data to validate our cell

registration method across multiple sessions and evaluate its

performance relative to previously used routines. We simulated
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Figure 6. Validation Based on the Exclusiv-

ity and Transitivity Principles and on

Place-Field Stability across Days

(A and B) Internal consistency between the model

and the data. Exclusivity (A) and transitivity

(B) measures for the centroid distances (red),

spatial correlations (blue), and joint (green)

models. (A) Top: illustration of the exclusivity

principle. Bottom: distribution of Psame with addi-

tional pairing candidates, computed for cell-pairs

from different sessions with Psame > 0.5. Insets:

bottom, zoom-in on the lower area of the distri-

bution; top, fraction of non-exclusive cell-pairs,

i.e., Psame > 0.5 (mean ± SEM). (B) Top: illustration

of the transitivity principle. Bottom: distribution of

Psame for cell-pairs from different sessions, where

each had Psame > 0.5 with the same cell from a

third session. Insets: bottom, zoom-in on the lower

area of the distribution; top, fraction of non-tran-

sitive cell-pairs, i.e., Psame < 0.5 (mean ± SEM).

Data in (A) and (B) were pooled from an N of 12

mice.

(C–F) Validation based on place-field stability

across days.

(C) Average place-field correlation between cell-

pairs across days given their centroid distances

and spatial correlations. The black area represents

centroid distances and spatial correlations with no

cell-pairs.

(D) Distribution of place-field positional shifts

across days for cell-pairs with Psame > 0.95 (blue),

0.05 % Psame % 0.95 (red), and Psame < 0.05

(green) and for shuffled data (black). Inset: the

cumulative fraction of cell-pairs as a function of the

absolute value of the positional shift.

(E) Average fraction of neighboring cell-pairs with

positional shifts %6 cm (blue) or place-field cor-

relations >0.5 (purple) increase with Psame (linear

regression: r2 = 0.94, p = 0.0015; and r2 = 0.93,

p = 0.0018, respectively; SD is indicated with a

shaded area).

(F) Distribution of place-field positional shifts for

cell-pairs taken from cell registers (blue) and

shuffled data (black). Inset: the cumulative fraction

of cell-pairs as a function of the absolute value of

the positional shift. Data in (C)–(F) were pooled

from an N of 5 mice.

See also Movie S1.
the centroid locations of cells across multiple sessions based on

the distribution of centroid distances of same cells estimated

from the data. Applying our registration procedure to the simu-

lated data (Figure 7A), we obtained the estimated false-positive

and false-negative rates (Figure 7B), as in Figure 3D. We then

compared the actual false-positive and false-negative rates

obtained with a registration threshold of Psame = 0.5 to those

obtained with previously used centroid distance thresholds of

5 mm (Jennings et al., 2015; Cai et al., 2016) and 6 mm (Ziv

et al., 2013; Rubin et al., 2015).We found that ourmethod yielded

lower false-negative rates than registration routines used in pre-

vious studies (3.7% versus 8.6% and 6.8% for 5 mm and 6 mm,

respectively) while maintaining comparable false-positive rates

(1.9% versus 1.8% and 2.1% for 5 mm and 6 mm, respectively).
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To study the performance of our method on imaging datasets

of different quality levels, we simulated different noise levels

and compared our registration method to registration using

various centroid distance thresholds (Figure 7C). Our method

yielded more accurate registrations across all noise levels and

all registration thresholds. For the range of noise levels typically

observed in one-photon imaging (1.5–3.5 mm; inset of Figure 7C),

using the best of all tested thresholds for each noise level

resulted in 43%–63% more registration errors than with our

method. The decreased fraction of registration errors of our

method yielded a more accurate estimation of neuronal coding

stability (Figure 7D) and decreased the effect size required to

expose coding stability that is significantly higher than chance

levels (Figure 7E). While the effect size in this case (comparable



Figure 7. Validation Based on Simulated Data

(A)Distributionof centroid distances for neighboring cell-pairs (blue bars) and themodeled distribution of samecells (dashedgreencurve), different cells (dashed red

curve), and their weighted sum (solid black curve). Estimated fractions of same cells (green) or different cells (red) above and below the intersection are indicated.

(B) Estimated ROC curve. Inset: zoom-in on the near-optimal part of the ROC. Asterisks represent the actual true-positive and false-positive rates obtained with a

registration threshold of Psame = 0.5 (blue), centroid distance of 5 mm (black), and centroid distance of 6 mm (dark gray).

(C) Error rate (weighted average of false-positive and false-negative rates) as a function of the noise level, for a registration threshold of Psame = 0.5 (blue) and

different centroid distance thresholds (shades of gray). Inset: the error rate obtained with the best centroid distance threshold (red dashed line) relative to the error

rate obtained with a Psame value of 0.5 (black dashed line). Noise level is the mean centroid distance between the spatial footprints of the same cell in different

sessions.

(D)Measured fractions of neuronswith stable coding as a function of the noise level, for a registration threshold of Psame = 0.5 (blue) and different centroid distance

thresholds (shades of gray), compared to the true stability level and the stability fraction for shuffled data (red lines).

(E) The significance of the difference between the measured stability and the shuffled data as a function of the true population effect size, for registration

with a threshold of Psame = 0.5 (blue) and with different centroid distance thresholds (shades of gray), compared to an error-free measurement (magenta).

Inset: zoom-in on the area with a P of 0.05. Effect size is the difference between the mean stability of the population and shuffled data divided by the

stability SD.

For (A), (B), and (E), a noise level of 3.2 mm was used.
to that observed experimentally for hippocampal place cells) is

too large to be obscured by registration errors, other stability

measures with smaller effect sizes may be more significantly

impacted by registration accuracy. Notably, for different noise

levels, different centroid distance thresholds yielded more accu-

rate registration (Figures 7C and 7D). Since the optimal registra-

tion threshold is not known a priori, using a fixed centroid

distance threshold decreases registration accuracy, further

emphasizing the advantage of our method over previously

used ‘‘one-size-fits-all’’ threshold-based registration.

DISCUSSION

We investigated the ability to reliably track the same neurons

across multiple weeks in Ca2+ imaging data and developed a

method for automated cell registration across sessions.

Because not all cells can be registered with certainty as same

cells or as different cells, we used a probabilistic approach that
estimates the confidence of registration associated with each

cell in the data. Using a Bayesian framework, we estimated the

probability of neighboring cell-pairs from different sessions to

be the same cell (Psame), given their spatial correlation and

centroid distance. All three tested models that are based on

our probabilistic approach (centroid distances, spatial correla-

tions, and joint) yielded high confidence levels of registration

for a great majority of the cells (Figures 3C, 3D, and 5C). Impor-

tantly, we did not find registration accuracy to decrease as a

function of the number of registered sessions (Figure 5D), sug-

gesting that our method is scalable for a large number of ses-

sions and demonstrating its utility for longitudinal studies.

We found that registration based on spatial correlations and

on the joint models was slightly superior to that based on

centroid distances. This result is consistent with the fact that

spatial correlations account for the contribution of each pixel

to the cell’s fluorescence, thus carrying additional information

about cell identity that is absent in the previously used centroid
Cell Reports 21, 1102–1115, October 24, 2017 1111



distance measure. Moreover, while optical aberrations (typical

to gradient refractive index [GRIN] lens objectives used with

miniature one-photon microscopes) may affect the measured

centroid distance and result in larger distances in the periphery

of the FOV, the spatial correlation is less sensitive to such

artifacts.

Our method offers several measures to evaluate the suit-

ability of the data for longitudinal studies. The measured distri-

bution of spatial footprint similarities (either centroid distance or

spatial correlation) across sessions constitutes one such mea-

sure: the greater the separation between the distributions for

same cells and for different cells, the higher the accuracy of

cell registration that can be obtained. Although this level of sep-

aration cannot be measured directly from the data, it is never-

theless reflected in the bimodality of the distribution for all

neighboring cell-pairs across sessions (Figures 2D, 2E, and

2H). Our probabilistic approach is based on the quantification

of this bimodality, providing the estimated false-positive and

false-negative rates for different registration thresholds. These

measures were lacking in previous works. This quantification

also allows for adjusting the balance between conservativeness

and permissiveness by controlling the tradeoff between false-

positive and false-negative rates (Figure S7). For example,

when studying the long-term stability of the coding properties

of individual neurons, choosing a conservative registration

threshold (e.g., Psame = 0.95) may be more appropriate (see

the differences in place-field stability in Figure 6D). Additionally,

the method quantifies the registration quality of each cell regis-

ter in the data, which enables the inclusion, in the analysis,

of only cell registers with high confidence levels. Finally, the

method provides quantifications that can be used to evaluate

the stability of the preparation (Figure S2) and detect abnor-

malities (e.g., changes in the focal plane over time). Taken

together, these evaluations provide objective measures of

data quality (Harris et al., 2016) that can help researchers deter-

mine whether their data are adequate for longitudinal analysis

and to adaptively utilize the cell registration procedure to suit

the specific needs of the study.

We validated our cell registration method using three

independent analyses: (1) exclusivity and transitivity, which

demonstrated internal consistency between the model and

the data (Figures 6A and 6B); (2) coding stability of place cells

that provided an unbiased validation of the method, since cod-

ing properties were not used for cell registration (Figures

6D–6F); and (3) registration of simulated data for which the

ground truth is known, which demonstrated superior perfor-

mance of our registration method over previously used routines

that apply a predetermined centroid distance threshold (Figures

7B and 7C). This improved performance stems from two fac-

tors: (1) the probability model allows optimizing the registration

threshold to the imaged dataset, and (2) the clustering proced-

ure uses additional information from all neighboring cells across

all sessions.

The method that we introduce here is particularly tailored for

large-scale, one-photon imaging data, e.g., data collected using

miniature fluorescence microscopes in freely behaving rodents.

Indeed, for two-photon imaging data, there are alternative

methods for cell registration that are based on image alignment
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between a dynamic marker (e.g., GCaMP6) and a structural

reference marker (e.g., a red fluorescent protein that is ex-

pressed in the nucleus; Rose et al., 2016), which enables one-

to-one mapping between sessions. Such a method, however,

cannot be used with one-photon imaging data due to lack of

optical sectioning and light scattering, which preclude the reso-

lution of fine structures (e.g., cell nucleus) from non-dynamic

markers in dense labeling schemes.

We demonstrated the applicability of our registration method

to data recorded from GCaMP6f/s-expressing neurons in the

hippocampus and prefrontal cortex of both virus-injected and

transgenic mice (Figures S4 and S5). We also found our regis-

tration procedure to be robust to various imaging techniques

and cell detection algorithms: PCA-ICA and CNMF-E for one-

photon data (Figures 1 and 4A–4H) and normalized periodical

projection for two-photon data (Figures 4I–4M). While other

types of data may require some adaptations to our method

(e.g., the use of other similarity measures or functional forms

to model the distribution of the data), the probabilistic

approach we used is general and can accommodate such ad-

aptations. The registration procedure is fully automated and

does not require manual inspection of each cell, making it

scalable for very large FOVs (Kim et al., 2016; Pachitariu

et al., 2016; Sofroniew et al., 2016). In this respect, it aligns

with current algorithms for cell detection in large-scale Ca2+

imaging data. Overall, our cell registration method expands

the toolset available for analysis of time-lapse imaging data,

offering the potential to explore coding dynamics within the

same cells and neuronal ensembles over timescales of many

weeks and even months.

EXPERIMENTAL PROCEDURES

Animals and Ca2+ Imaging Procedures

All procedures were approved by the Weizmann Institute’s Institutional Animal

Care and Use Committee. For time-lapse imaging in freely behaving mice

using an integrated miniature fluorescence microscope (nVistaHD, Inscopix),

we followed a previously established protocol (Ziv et al., 2013). We used

data from a total of 12 male mice. Mice were housed in a reverse-light-cycle

facility and were 8–12 weeks old at the beginning of the study. For Ca2+ imag-

ing in the hippocampal CA1, we used five Thy1-GCaMP6f mice (Jackson

Laboratory, #025393) (Dana et al., 2014) and five adeno-associated virus

(AAV)-injected C57BL/6 wild-type mice (data from four out of five wild-type

mice were taken from our previous work; Rubin et al., 2015). For Ca2+ imaging

in the prefrontal cortex, we used two CaMKII-tTA and rtTA-GCaMP6s double-

transgenic mice (CamKII-GCaMP6s, for short) (Tg(tetO-GCaMP6s)2Niell;

Jackson Laboratory, #024742; and B6.Cg-Tg(CaMK2a-tTA)1Mmay/DboJ;

Jackson Laboratory, #007004). Ca2+ imaging of the virus-injected and trans-

genic mice were performed at 20 Hz and 10 Hz, respectively. Additionally,

we obtained published two-photon imaging data from ten different experi-

ments from the Allen Brain Observatory, 2016 (http://observatory.brain-map.

org/visualcoding). For a detailed description of the surgical and Ca2+ imaging

procedures, see the Supplemental Experimental Procedures.

Processing of Ca2+ Imaging Data

We processed imaging data using commercial software (Mosaic, v1.1.1b,

Inscopix) and custom MATLAB routines, as previously described (Rubin

et al., 2015). Briefly, the procedure consisted of the following main stages:

(1) spatial down-sampling (final pixel size of 2.3 mm 3 2.3 mm) to increase

computational speed; (2) image registration to correct for lateral displace-

ments of the brain; (3) transformation into relative changes in fluorescence,

DFðtÞ=F0 = ðFðtÞ � F0Þ=F0, where F0 is the value for each pixel averaged over

http://observatory.brain-map.org/visualcoding
http://observatory.brain-map.org/visualcoding


time; (4) detection of cells and extraction of their spatial footprints using

PCA-ICA (Mukamel et al., 2009); (5) extraction of each cell’s fluorescence trace

by applying the spatial footprints to the DFðtÞ=F0 movies; and (6) detection of

Ca2+ events using thresholding of the fluorescence trace. As an independent

technique for cell detection, we also used CNMF-E (Zhou et al., 2016), an

extension of the CNMF method (Pnevmatikakis et al., 2016), for one-photon

microendoscopic data. For a detailed description of the processing routines,

see the Supplemental Experimental Procedures.

Registration of Cells across Sessions

We developed a probabilistic method for registering cells across multiple ses-

sions based on the similarity in their spatial footprints. We used two similarity

measures, the distance between centers of mass of two spatial footprints

(centroid distance) and the Pearson correlation between spatial footprints

(spatial correlation), to decide whether pairs of neighboring cells from two

different sessions are the same entity. We registered cells using three main

stages: (1) image alignment; (2) probabilistic modeling of the data; and (3)

cell registration with a clustering procedure.

(1) Image Alignment

For each session, we projected the centroid locations of all the cells’ spatial

footprints onto a single image. We computed the cross-correlations between

the projections of each session with the projection of a reference session,

examining different rotations. We corrected for translation and rotation differ-

ences between the sessions by applying the translations and rotations that re-

sulted in the maximal cross-correlation, yielding each cell’s location in the

reference coordinate system.

(2) Probabilistic Modeling of the Data

Wemodeled the distributions of centroid distances (centroid distances model)

and spatial correlations (spatial correlations model) as a weighted sum of the

distributions of two subpopulations of cell-pairs, representing same cells and

different cells. Specifically, we modeled the distribution of centroid distances

for different cells as a multiplication of a sigmoid function by a linear function.

To model the distribution of centroid distances for the same cells, we used a

log-normal distribution to match the requirement of a non-negative distribu-

tion. Similarly, the distribution of spatial correlations for same cells was

modeled as a log-normal distribution. Since the distribution of spatial correla-

tions peaks close to 1, we defined the origin as 1 by taking 1 minus the spatial

correlation value. We modeled the distribution of spatial correlations for

different cells using a beta function to obtain a single peaked distribution be-

tween 0 and 1. For each model, we found the parameters of the distributions

and weights that best fit the data in terms of the mean squared error (per-

formed for each mouse individually). Applying similar principles, we modeled

the joint distribution of centroid distances and spatial correlations (joint model)

for neighboring cell-pairs. For a detailed description of the probabilistic

models, see the Supplemental Experimental Procedures and Figure S6. To

obtain the probability for any pair of neighboring cells from different sessions

to be the same cell, given their spatial correlation and centroid distance, we

calculated Psame(dist,corr), according to Bayes’s rule:

Psameðdist; corrÞ= Pðdist;corr j sameÞ,Wsame

Pðdist; corr j sameÞ,Wsame +Pðdist; corr jdiffÞ,Wdiff

where Wsame and Wdiff are the estimated weights (prior probabilities) for

the two subpopulations of same cells and different cells, respectively.

P(dist,corrjsame) and P(dist,corrjdiff) are the estimated joint distributions of

centroid distances and spatial correlations for same cells and different cells,

respectively. Similar calculations were performed for each of the one-dimen-

sional models.

(3) Cell Registration with a Clustering Procedure

We applied an iterative clustering procedure (Bansal et al., 2004) based on the

estimated Psame. First, we created an initial list of cells based on a Psame

threshold. The iterative clustering procedure was then applied, and each cell

was clustered with the candidate from all the different sessions with which it

had the highest Psame. If Psame was lower than the registration threshold, the

cell formed a new cluster. The iterative process continued until the clustering

procedure converged.
Quantification of Registration Accuracy

Cell-Pairs

For the centroid distances model, the false-negative rate was estimated as the

fraction of themodel of same cells that is higher than the registration threshold:

False negative rate=
#false negatives

#false negatives+#true positives
:

The false-positive rate was estimated as the fraction of the model of different

cells that is lower than the registration threshold:

False positive rate=
#false positives

#false positives+#true negatives
:

Additionally, we calculated the Gini coefficient G1 and the overall estimated

registration accuracy (see the Supplemental Experimental Procedures).

Similar calculations were performed for the spatial correlations and joint

models.

Cell Registers

The register score was calculated for each registered cell as the total number

of reliable cell-pairs out of the total number of pairwise combinations of cell-

pairs from all sessions. Each pair was considered reliable if it met three criteria

(see the Supplemental Experimental Procedures). Accordingly, we defined the

register score as:

register score=
1

~NðN� 1Þ
X~N

k = 1

XN

m=1

msk

dðk;mÞ

where N is the total number of sessions, ~N is the number of active sessions

for a given cell register, and dðk;mÞ is 1 if a cell-pair in the cluster is reliable

and 0 otherwise. To examine the scalability of the method for a large number

of sessions, registration was performed simultaneously for multiple sessions

with the clustering procedure, choosing random subsets of the 16 sessions

comprising 4, 8, or 12 sessions, and for the entire set of 16 sessions.
Validation of Cell Registration

Exclusivity and Transitivity Measures

To compare exclusivity and transitivity of the data with those expected by

chance, we obtained shuffled data by measuring the centroid distances

between cell-pairs from different sessions, where each session was taken

from a different mouse (see the Supplemental Experimental Procedures).

Place-Field Stability

We analyzed mouse behavior videos using a custom MATLAB (Mathworks)

routine and considered periods wherein the mouse ran >3 cm/s. We divided

each linear track into 24 bins (4 cm each) and computed the activity map (event

rate per bin) for each neuron by dividing the smoothed (Gaussian kernel:

s = 1.5 bins, size = 5 bins) map of Ca2+ event numbers by the smoothed

map of occupancy (Rubin et al., 2015). We defined the place field as the

peak value of the activity map. For each place field withR5 events for a given

session, we computed the spatial information using the unsmoothed event-

rate map of each cell, as previously described (Markus et al., 1994) (see the

Supplemental Experimental Procedures). Cells with statistically significant

spatial information were considered as place cells. We then calculated the

place-field positional shift and place-field correlation (Pearson correlation)

for cell-pairs from different sessions for which at least one cell in the pair

was considered a place cell. To compare the place-field stability of the data

with the stability expected by chance, we obtained shuffled data by random-

izing the identity of cells across sessions.

Simulated Data

Simulated datawere obtained by using representative spatial footprints of cells

thatweredetected inourdata andplacing them in a random location in theFOV.

The minimal centroid distance between the locations of neighboring cells was

set to 7 mm ± 1 mm (normally distributed) to match the distribution of the

observed data. In each session, a fraction of the cells was simulated as active,

and their locations were set as the original centroid locations with a jitter (see
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the Supplemental Experimental Procedures). The fraction of active cells and

the radius of the jitter were chosen to match those of the observed data. To

obtain simulated data with different noise levels, we systematically increased

the radius of the centroid location jitter. Additionally, we simulated the effects

of registration errors on measurements of the stability of the functional proper-

ties of cells. To test whether registration errors could obscure conclusions

drawn from the data, we systematically changed effect sizes by changing the

percentages of same cells that maintain their coding properties across ses-

sions. Effect size was defined as the difference between the mean stability of

the population and shuffled data, divided by the stability SD.

Statistical Analysis

For related sample analysis, we performed repeated-measures ANOVA.

Greenhouse-Geisser estimates of sphericity were used for adjustment of de-

grees of freedom, and Bonferroni correction was performed when conducting

multiple comparisons.

Code and Data Availability

The cell registration software, including a sample dataset that enables the gen-

eration of most of the figures presented in this paper, is deposited in a GitHub

repository that can be accessed freely: https://github.com/zivlab/CellReg.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and one movie and can be found with this article online at

https://doi.org/10.1016/j.celrep.2017.10.013.
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Supplemental Figures and Legends 
 

Figure S1. The same cells are tracked over three sessions spanning more than a month. 
Related to Figure 1. 
Identification of individual cells and extraction of their Ca2+ dynamics using principal component 
analysis and independent component analysis. (A,C,E) Contours of 10 spatial footprints overlaid on a 
representative single frame from day 1 (A), day 3 (C) and day 33 (E). (B,D,F) Corresponding Ca2+ 
traces for the same cells shown in A. Typical Ca2+ dynamics are observed for individual neurons. Data 
taken from three sessions recorded in the hippocampal CA1 of a Thy1-GCaMP6f transgenic mouse 
while freely exploring the same environment. 
 
 



 
Figure S2. A stable preparation is maintained across all days of the experiment. Related to 
Figure 1. 
(A,B) The translations (A) and rotations (B) that result in maximal correlation between the projection of 
the spatial footprint centroids in each session and that of the reference session. Session ten was 
chosen as a reference. (C) The maximal correlation between the projections of the spatial footprint 
centroids in each session and that of the reference session (blue asterisks), and the average maximal 
correlation across all sessions (red dashed curve). (D) The number of detected cells in each imaging 
session (blue asterisks) and the average number of cells across all sessions (red dashed curve). (E) 
The average cell event rate in each imaging session (SD is shown as shaded blue area), and the 
average cell event rate across all sessions (red dashed curve). (F) The average cell event amplitude in 
each imaging session (SD is shown as shaded blue area), and the average cell event amplitude 
across all sessions (red dashed curve). A-C can potentially point out deviations in the FOV of each 
session compared to the reference session, while significant deviations in the cellular activity detected 
in each session compared to the average cellular activity could potentially be uncovered in D-F. Data 
in all panels was taken from 16 sessions recorded on eight different days in the hippocampal CA1 of a 
mouse while freely exploring the same environments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	
	



 
Figure S3. Image alignment with sub-pixel resolution increases the spatial footprint similarity 
between pairs of nearest neighbor cells. Related to Figure 2. 
(A-D) Distributions of centroid distances and spatial correlations between pairs of nearest neighbor 
cells across days obtained after alignment (rigid-body registration) with single-pixel (A and B) and sub-
pixel (C and D) resolution. We limited the distribution to cell-pairs with centroid distances <12μm. The 
blue dashed lines show centroid distances =2μm and spatial correlation =0.9. Note the higher 
probabilities for nearest neighbors to have centroid distances <2μm and spatial correlation >0.9 for 
alignment with sub-pixel resolution in comparison with their single-pixel counterparts. This fine spatial 
resolution of alignment was attainable because of the large number of centroid locations that were 
used to align each session. The data presented here were pre-processed with a pixel size of 
2.3X2.3μm which is not negligible compared to the typical cell size. The effect of sub-pixel resolution 
on alignment should be less significant for imaging data with higher spatial resolution. Data in all 
panels was taken from 16 sessions recorded on eight different days in the hippocampal CA1 of a 
mouse while freely exploring the same environments.  



Figure S4. Examples of the distributions of spatial correlations and centroid distances modeled 
for each mouse individual. Related to Figure 2. 
(A-F) Distributions of spatial correlations (A-C) and centroid distances (D-F) in three different mice for 
neighboring cell-pairs (blue bars), and the modeled distributions of same cells (dashed green curves), 
different cells (dashed red curves), and their weighted sum (solid black curves). Estimated distributions 
were obtained by assuming that the data consists of a weighted sum of two subpopulations, 
corresponding to same cells and different cells, and finding the parameters that best fit the data. Data 
and models in A and D are for 16 sessions recorded on eight different days in the hippocampal CA1 of 
a GCaMP6f virus injected mouse while freely exploring the same environments. Data and models in B 
and E are for seven sessions recorded on seven different days in the hippocampal CA1of a Thy1-
GCaMP6f transgenic mouse while freely exploring the same environment. Data and models in C and F 
are for six sessions recorded on six different days in the prefrontal cortex of a CaMKII-GCaMP6s 
transgenic mouse while freely exploring the same environments. (G) The intersection between the 
estimated distribution of same cells and different cells (corresponding to a registration threshold of 
Psame=0.5) for the centroid distances model versus the spatial correlations model. Each dot represents 
a different mouse (N=12). Black dashed lines show the minimum and maximum of these values across 
all mice. Note that data from different mice yielded different registration thresholds. (H) The weight of 
the subpopulation of same cells (Wsame) obtained by the centroid distances (dist.) model versus Wsame 
obtained by the spatial correlations (corr.) model. Each dot represents a different mouse (N=12). Black 
dashed line represents the y=x curve. Note that the spatial correlations and centroid distances models 
independently reach similar Wsame values. 



Figure S5. Examples of the joint distribution of spatial correlations and centroid distances 
modeled for each mouse individually. Related to Figure 2. 
Joint distribution of spatial correlations and centroid distances and their corresponding marginal 
distributions for neighboring cell-pairs as observed in the data of three different mice (A-C), and the 
weighted sum of the models for same cells and different cells (D-F). The color scale was set to reach 
0.25 of the maximal value to enable visualization of both subpopulations. Data and models in A and D 
are for 16 sessions recorded on 8 different days in the hippocampal CA1 of a GCaMP6f virus injected 
mouse while freely exploring the same environments. Data and models in B and E are for seven 
sessions recorded on seven different days in the hippocampal CA1 of a Thy1-GCaMP6f transgenic 
mouse while freely exploring the same environment. Data and models in C and F are for six sessions 
recorded on six different days in the prefrontal cortex of a CaMKII-GCaMP6s transgenic mouse while 
freely exploring the same environments. 
 
 
 
 
 
 
  



Figure S6. Obtaining the joint model for the joint distribution of spatial correlations and 
centroid distances based on nearest neighbors and other neighbors. Related to Figure 2. 
(A) An RG overlay of the density of nearest neighbor (green) and other neighbor (red) cell-pairs given 
the centroid distance and spatial correlation. (B) Ratio of the density of nearest neighbor to all neighbor 
cell-pairs given the centroid distance and spatial correlation. Note the high fraction of nearest neighbor 
cell-pairs for high spatial correlations and low centroid distances. (C) The average spatial correlation 
as a function of the centroid distance for nearest neighbors (solid green curve), and other neighbors 
(solid red curve), and extrapolations of the data (dashed and dotted green and red curves), used to 
obtain the models for same cells and different cells, respectively. Dotted green curve represents 
centroid distances for which Psame<0.01, a region for which the extrapolation for the same cells model 
is insignificant, while the dotted red curve represents centroid distances for which Psame>0.99, a region 
for which the extrapolation for the different cells model is insignificant. (D) The probability for two cells 
from two different sessions to be the same cell (Psame) given the centroid distance and spatial 
correlation, as estimated by the model. Psame is presented exclusively for centroid distances and spatial 
correlations where the model’s probability for cell-pairs of either type (same cell or different cells) is 
>10-5. Data and model in all panels are for 16 sessions recorded on eight different days from 
GCaMP6f-expressing CA1 neurons of a mouse while freely exploring the same environments.  
  



Figure S7. False positive and false negative rates can be controlled by the registration 
threshold. Related to Figure 5. 
True positive (A and D), true negative (B and E), and register (C and F) scores for cell registers with 
thresholds of Psame=0.95 (A-C) and Psame=0.05 (D-F), for the centroids distances (red), spatial 
correlations (blue), and joint (green) models. Insets, cumulative fraction of cell registers as a function 
of the score reversed from 1 to 0. (G) Average true positive, true negative and register scores for the 
joint model with thresholds of Psame=0.05 (white bars), Psame=0.5 (gray bars), and Psame=0.95 (black 
bars). Error bars show SEM. The average true positive score increases while the average true 
negative score decreases with the registration threshold. Note, that using a more relaxed registration 
threshold (Psame=0.05) results in a slightly higher average register score than a stringent threshold 
(Psame=0.95). This result is partially explained by the fact that if more than one candidate exceeds the 
registration threshold, only the one with highest Psame will be registered as the same cell, thus 
eliminating a large fraction of false positives. (H) Final number of cell registers obtained by centroid 
distances based registration versus spatial correlations based registration. Dots represent the 
thresholds Psame=0.05 (white circles), Psame=0.5 (gray circles), and Psame=0.95 (black circles) for each 
mouse. Black dashed line represents the y=x curve. Note that the spatial correlations and centroid 
distances models obtain similar numbers of cell registers and that increasing the registration threshold 
increases the final number of cell registers. Data in all panels are pooled from N=12 mice. 



Supplemental Experimental Procedures 

Animals and surgical procedures 
All procedures were approved by the Weizmann’s Institute Institutional Animal Care and Use 

Committee. We used data from a total of 12 male mice. Mice were housed in cages with 

running wheels in a reverse light cycle facility, and were 8-12 weeks old at the beginning of 

the study. For Ca2+ imaging in the hippocampal CA1, we used five Thy1-GCaMP6f mice 

(Jackson Laboratory, #025393) (Dana et al., 2014), and five AAV injected C57BL/6 wild type 

mice (data from four out of five wild type mice were taken from our previous work (Rubin et 

al., 2015)). For Ca2+ imaging in the prefrontal cortex, we used two CaMKII-tTA and rtTA-

GCaMP6s double transgenic mice (CamKII-GCaMP6s, for short) (Tg(tetO-GCaMP6s)2Niell; 

Jackson Laboratory, #024742; B6.Cg-Tg(CaMK2a-tTA)1Mmay/DboJ; Jackson Laboratory, 

#007004; all mice were bred on C57BL/6 background). C57BL/6 wild type and Thy1-

GCaMP6f mice were housed with 1-4 cage-mates. CamKII-GCaMP6s mice were single 

housed. All surgical procedures were conducted under isoflurane anesthesia (1.5-2% 

volume). We used a viral vector to express GCaMP6s or GCaMP6f in the CA1 of wild type 

mice. These mice underwent two surgical procedures. In the first, we injected into the CA1 

400 nL of the viral vector AAV2/5-CaMKIIa-GCaMP6s or AAV2/5-CaMKIIa-GCaMP6f (Chen 

et al., 2013)  (~2 X 1013 particles per ml, packed by University of North Carolina Vector 

Core). Stereotactic coordinates were: -1.9 mm anterio-posterior, -1.4 mm mediolateral, -1.6 

mm dorsoventral from bregma. Mice were allowed to recover in their home-cages for at least 

one week before the next surgical procedure, in which we implanted a glass guide tube 

directly above the CA1, as previously described (Ziv et al., 2013; Rubin et al., 2015). This 

procedure was similar for both virus injected and Thy1-GCaMP6f transgenic mice. CamKII-

GCaMP6s mice were implanted with a micro-prism lens (800µm diameter) in the prefrontal 

cortex. Stereotactic coordinates of the implantation were: 1 mm anterior-posterior, 0 mm 

mediolateral, -1.8 mm dorsoventral from bregma.  

 

Ca2+ imaging and behavioral setup  
Preparatory process 

For time-lapse imaging in freely behaving mice using an integrated miniature fluorescence 

microscope (nVistaHD, Inscopix), we followed a previously established protocol (Ziv et al., 

2013; Rubin et al., 2015). Briefly, at least three weeks after the guide tube or micro-prism 

lens implantation, we examined Ca2+ indicator expression and tissue health by imaging mice 

under isoflurane anesthesia using a two-photon microscope (Ultima IV, Bruker, Germany), 

equipped with a tunable Ti: Sapphire laser (Insight, Spectra Physics, Santa Clara, CA). At 



this stage, we inserted into the guide tube of CA1 implanted mice a ‘microendoscope’ 

consisting of a single gradient refractive index lens (0.44 pitch length, 0.47 NA, GRINtech 

GmbH, Germany). We selected for further imaging only those mice that exhibited 

homogenous GCaMP6 expression and healthy appearance of the tissue. For the selected 

CA1 implanted mice, we affixed the microendoscope within the guide tube using ultraviolet-

curing adhesive (Norland, NOA81, Edmund Optics, Barrington, NJ). Next, we attached the 

microscope’s base plate to the dental acrylic cap using light cured acrylic (Flow-It ALC, 

Pentron, Orange, CA). We used a similar procedure to attach the base plate to the skull of 

the mice that were implanted with a micro-prism lens. All mice were returned to their home 

cages for a few days following the aforementioned procedure.  

 

Ca2+ imaging in freely behaving mice 

We used data from three experiments. In the first, we trained the five wild type mice to run 

back and forth on two elevated 96cm straight or ‘L’ shaped linear tracks (Rubin et al., 2015). 

Before beginning with Ca2+ imaging, we trained the mice for 8–11 days, until the mice ran at 

least 60 times the entire length of each track in two consecutive days. We imaged the mice 

every other day for 15 days, making for eight recording days. Each day of the experiment 

consisted of two 15 minutes long sessions, separated by 4–5 hours. In the second 

experiment, we imaged the five Thy1-GCaMP6f mice while they were freely exploring a 

spatial environment (a total of seven 20-55 minutes long sessions, separated by 1-28 days). 

In the third experiment, we imaged the prefrontal cortex of the two CamKII-GCaMP6s mice 

on six consecutive days, while the mice were freely exploring two different environments (3.5 

minutes per day in each environment). Ca2+ imaging of the virus injected and transgenic 

mice was performed at 20Hz and 10Hz, respectively. To record mouse behavior, we used an 

overhead camera (DFK 33G445, The Imaging Source, Germany), which we synchronized 

with the integrated microscope. 

 

Two-photon imaging data 
We obtained published two-photon imaging data from the Allen Brain Observatory, 2016 

(http://observatory.brain-map.org/visualcoding). We used data from ten different experiments 

in head fixed mice (experiment numbers: 511510945; 511510779; 511510699; 511510670; 

511510911; 511510718; 511510870; 511510836; 511856567; 511498742). The 

experiments measured visual responses from GCaMP6f expressing neurons in different 

cortical areas and layers. Each experiment consisted of three recording sessions from the 

same mouse, separated by at least one day.  

 



Processing of Ca2+ imaging data 
We processed imaging data using commercial software (Mosaic, version 1.1.1b, Inscopix) 

and custom MATLAB routines as previously described (Ziv et al., 2013; Rubin et al., 2015). 

To increase computation speed, we spatially down-sampled the data by a factor of two in 

each dimension (final pixel size of 2.3 X 2.3μm). To correct for non-uniform illumination both 

in space and time, we normalized the images by dividing each pixel by the corresponding 

value of that pixel in a smoothed version. The smoothed version was obtained by applying a 

Gaussian filter with a radius of 100μm on the movies. Normalization also enhanced the 

appearance of the blood vessels, which were later used as stationary fiducial markers for 

image registration. We used a rigid-body registration to correct for lateral displacements of 

the brain. This procedure was performed on a high contrast subregion of the normalized 

movies for which the blood vessels were most prominent. The movies were then transformed 

into relative changes in fluorescence, ( ) ( )( )0 0 0ΔF t F = F t - F / F , where F0 is the value for 

each pixel averaged over time. For the purpose of cell detection, the movies were down-

sampled in time by a factor of five or two for data recorded at 20Hz and 10Hz, respectively. 

We detected spatial footprints (i.e., weighted regions of interest consisting of each pixel’s 

contribution to the cell’s fluorescence) corresponding to individual cells using an established 

cell detection algorithm that applies principal and independent component analyses (PCA 

and ICA; (Mukamel, Nimmerjahn and Schnitzer, 2009). For each spatial footprint, we used a 

threshold of 50% of the footprint’s maximum intensity, and each pixel that did not cross the 

threshold was set to zero. Once the cells were detected, further cell sorting was performed to 

find the spatial footprints that follow a typical cellular structure. This was done by measuring 

the footprints’ area and circularity and discarding those whose radius was smaller than 5μm 

or larger than 15μm, or which had a circularity smaller than 0.8. In some cases, the output of 

the PCA-ICA algorithm included more than one component that corresponded to a single 

cell. To eliminate such occurrences, we examined all pairs of cells with centroid distances 

<18μm, and whenever their traces had a correlation >0.9, the cell with the lower average 

event peak amplitude was discarded. As an independent technique for cell detection, we 

also used CNMF-E (Zhou et al., 2016), an extension of the constrained nonnegative matrix 

factorization method (Pnevmatikakis et al., 2016) for one-photon microendoscopic data. 

 

Detection of Ca2+ events 
Ca2+ activity was extracted by applying the thresholded spatial footprints to the full temporal 

resolution (20Hz or 10Hz) ( ) 0ΔF t F movies. Baseline fluctuations were removed by 

subtracting the median trace (20sec sliding window). The Ca2+ traces were smoothed with a 



low-pass filter with a cutoff frequency of 2Hz. Ca2+ candidate events were detected 

whenever the amplitude crossed a threshold of 4 or 5 median absolute deviations (MAD), for 

GCaMP6s or GCaMP6f, respectively. We considered for further analysis only candidate Ca2+ 

events with decay time equal or longer than 600msec or 200msec for GCaMP6s or 

GCaMP6f, respectively, consistent with typically observed indicator decay times (Chen et al., 

2013). To avoid the detection of several peaks for a single Ca2+ event, only peaks that were 

4 or 5 MAD higher than the previous peak (within the same candidate event) and 2 or 2.5 

MAD higher than the next peak for GCaMP6s or GCaMP6f, respectively, were regarded as 

true events. We set the Ca2+ event occurrence to the time of the peak fluorescence. To 

mitigate the effects of crosstalk (i.e., spillover of Ca2+ fluorescence from neighboring cells), 

we adopted a conservative approach, allowing only one cell from a group of neighbors 

(<18μm apart) to register a Ca2+ event in a 200msec time window (the event with highest 

peak ( ) 0ΔF t F value). If two neighboring cells had a correlation >0.9 in their events, the cell 

with the lower average peak amplitude was discarded. Once the events were identified, 

further event sorting was performed to find the cells with sufficient signal-to-noise ratios. This 

was accomplished by measuring the event rate and the average event peak amplitude for 

each cell and discarding those whose event rate was smaller than 0.01Hz or which had an 

average event amplitude smaller than 1% ( ) 0ΔF t F . 

 
Registration of cells across sessions 
We developed a probabilistic method for registering cells across multiple sessions based on 

the similarity in the spatial footprint of their cellular activity. We used two similarity measures, 

the distance between centers of mass of two spatial footprints (centroid distance) and the 

Pearson correlation between spatial footprints (spatial correlation), to decide whether or not 

pairs of neighboring cells from two different sessions are the same entity. Note, that the 

spatial correlation is not merely a measure of shape similarity (as in spatial cross-

correlation), but also accounts for differences in the cells’ locations within the FOV. We 

registered cells using three main stages: (1) image alignment: rigid-body transformation was 

applied to all sessions according to a single reference session to correct for translation and 

rotation differences between sessions; (2) the distribution of spatial footprint similarities 

between neighboring cells from different sessions was calculated and then modeled as a 

weighted sum of the distributions of two subpopulations representing the same cells and 

different cells. This allowed us to estimate the probability for any pair of neighboring cells 

from two different sessions to be the same cell (Psame) given their spatial correlation and 



centroid distance; (3) an iterative clustering procedure (Bansal, Blum and Chawla, 2004) that 

registers cells based on the Psame obtained from the probabilistic model. 

 

(1) Image alignment 

For each session, we projected the centroid locations of all the cells’ spatial footprints onto a 

single image. We computed the cross-correlations between the projections of each session 

with the projections of a reference session, examining different rotations. We corrected for 

translation and rotation differences between the sessions by applying the translations and 

rotations that resulted in the maximal cross-correlation, yielding each cell’s location in the 

reference coordinate system. We also corrected for sub-pixel translational differences 

between the sessions by applying a Gaussian fit to the cross-correlation in each dimension. 

Sub-pixel translational correction decreased the centroid distances and increased the spatial 

correlations between the nearest neighbors (Figure S3).  

 

(2) Probabilistic modeling of the data 

We calculated the distributions of centroid distances and spatial correlations for neighboring 

cell-pairs across sessions. We defined neighboring cell-pairs as pairs with centroid distances 

<12μm across sessions, and assumed that cell-pairs with larger centroid distances are 

different cells. To obtain reliable registration we sought to model the distributions of centroid 

distances (centroid distances model) and spatial correlations (spatial correlations model) for 

neighboring cell-pairs, as a weighted sum of the distributions of two subpopulations, 

representing same cells and different cells. The specific choice of the functional forms we 

used to model the distributions of same cells and different cells were guided by the 

distributions obtained from the data for nearest neighbors and other neighbors. 

Because there is a certain minimal distance between different cells in the FOV, we 

approximated the density of cells given their distance from any given cell as a sigmoid 

function. Because the area of a ring surrounding each cell linearly increases with the 

distance, we modeled the distribution of centroid distances for different cells as a 

multiplication of a sigmoid function by a linear function. To model the distribution of centroid 

distances for the same cells, we used a lognormal distribution, to match the requirement of a 

non-negative distribution that resembles the distribution for nearest neighbors in the data. 

Similarly, the distribution of spatial correlations for same cells was modeled as a lognormal 

distribution. Since the correlation cannot exceed 1, and the distribution of spatial correlations 

for nearest neighbors peaks close to 1 and decays towards 0, we defined the origin as 1 by 

taking 1 minus the spatial correlation value. Because lognormal distribution is >0 for any 

positive value, whereas correlation is bounded, we multiplied the obtained model for same 



cells by a sigmoid function. The distribution of spatial correlations for other neighbors is 

single peaked and ranges between 0 and 1. We therefore modeled the distribution of spatial 

correlations for different cells using a beta function. For each model, we found the 

parameters of the distributions and weights that best fit the data in terms of the mean 

squared error (performed for each mouse, individually). 

Applying similar principles, we modeled the joint distribution of centroid distances 

and spatial correlations (joint model) for neighboring cell-pairs as a weighted sum of the 

distributions of two subpopulations. We used the previously estimated distributions of 

centroid distances and their weights as the marginal distribution of the joint model. We then 

estimated the distribution of spatial correlations for any given centroid distance (Figure S6). 

We calculated the average spatial correlation for nearest neighbors and other neighbors 

given the centroid distance to approximate the spatial correlation for same cells and different 

cells, respectively. We used the average spatial correlation measured for nearest neighbors 

at small centroid distances (mostly the same cells) to linearly extrapolate the average spatial 

correlation for large centroid distances where we could not be certain that the nearest 

neighbors were indeed the same cells. Assuming that other neighbors correspond to 

different cells, we used the average spatial correlation measured for other neighbors at high 

centroid distances, and extrapolated the data to small centroid distances for which data was 

sparse. For a given centroid distance, the nearest neighbors showed higher spatial 

correlations than other neighbors. We therefore measured the difference between the 

average spatial correlation for nearest neighbors and other neighbors per centroid distance 

and extrapolated the mean spatial correlation for different cells assuming a constant 

difference. In practice, this extrapolation had little impact on the joint model since it was 

calculated mostly for a centroid distances range in which the proportion of different cells was 

< 0.01 (Figure S6C – note the narrow range of the dashed red curve versus the wide range 

of dotted red curve). For simplicity, the variance of the spatial correlations at a given centroid 

distance was assumed to be the same for both subpopulations and was estimated based on 

the standard deviation of all neighboring cell-pairs and the estimated average spatial 

correlations of each subpopulation. To obtain the joint model, for each mouse individually, 

we modeled for any given centroid distance, the distribution of spatial correlations for the 

same cells as a lognormal distribution and for different cells as a beta distribution. 
To obtain the probability for any pair of neighboring cells from different sessions, 

given their spatial correlation and centroid distance, we calculated Psame(dist,corr), according 

to Bayes’ rule: 
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where Wsame and Wdiff are the estimated weights (prior probabilities) for the two 

subpopulations of same cells and different cells, respectively. P(dist,corr|same) and 

P(dist,corr|diff) are the estimated conditional joint distributions of centroid distances and 

spatial correlations for same cells and different cells, respectively. Similar calculations were 

performed for each of the one-dimensional models (spatial correlation and centroid 

distance). This allowed us to obtain Psame for any pair of cells across sessions in the data.  

 

(3) Cell registration with a clustering procedure 

Following the observation that cells are spatially clustered into clusters representing the 

same cells across imaging sessions, we applied an iterative clustering procedure aimed at 

maximizing within-cluster Psame and minimizing between-cluster Psame. To obtain a clustering 

of cells to serve as initial conditions for the iterative clustering procedure, we registered cells 

according to the spatial correlations model with a registration threshold of Psame=0.5. We 

created an initial list of cells comprising of the cells detected in the first session. Each 

session was then inspected and each cell that had a pairing candidate on the list, with which 

it had a Psame>0.5, was registered to that cell. Cells that did not have such a pairing 

candidate were added to the list as new cells. In cases where more than one candidate 

crossed the threshold, the cell-pair with the highest Psame was registered to be the same cell. 

The iterative clustering procedure was then applied. In each of the iterations, all cells were 

inspected and each cell either: (1) remained in the same cluster; (2) was transferred to a 

more similar cluster; or (3) initiated a new cluster. The decision was made by finding for each 

cell the candidate from all the different sessions with which it had the highest Psame. If the 

Psame was lower than the registration threshold, the cell formed a new cluster. If Psame was 

higher than the registration threshold, the cell joined the cluster of that candidate (if they 

were already in the same cluster, then nothing changed). If there was already a cell from that 

session with a lower Psame in the cluster, the new cell replaced the old one in the cluster, but 

if the existing cell had a higher Psame, then nothing changed. The iterative process continued 

until the clustering procedure converged and no more clustering changes occurred.  

 

Quantification of registration accuracy 
Cell-pairs 

By applying Psame to our data, we obtained the certainty of registration associated with any 

pair of neighboring cells across sessions. We defined uncertain registrations of cell-pairs as 



those with a probability ≤0.95 to be the same cell and ≤0.95 to be different cells 

(0.05≤Psame≤0.95), and calculated the fraction of uncertain cell-pairs out of all neighboring 

cell-pairs. Additionally, we used the estimated probability distributions of same cells and 

different cells to calculate a receiver operating characteristic (ROC) curve obtained from 

1,000 evenly spaced registration thresholds of Psame between 0 and 1. For the centroid 

distances model, the false negative rate was estimated as the fraction of the model of same 

cells that is higher than the registration threshold: 

=
+
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The false positive rate was estimated as the fraction of the model of different cells that is 

lower than the registration threshold: 

=
+
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Similar calculations were performed for the spatial correlations and joint models. We defined 

the overall estimated registration accuracy:  
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Additionally, we calculated the Gini coefficient G1 to quantify the separability between the 

distributions of two subpopulations as =1 2 1G AUC , where AUC is the area under the ROC 

curve.  

 

Cell registers 

To evaluate the performance of our registration method for multiple sessions, we defined a 

stringent register score index for each registered cell, which takes into account false 

positives, false negatives, and non-exclusive cell registrations from all the pairwise 

combinations of registered sessions across all sessions. For each session, a cell was either 

active or inactive according to the cell registration, resulting in pairs of sessions where the 

cell was active in both (active-active), active in only one (active-inactive), or active in none 

(inactive-inactive — no evaluation is required in these cases). For each cell register in the 

data, a true positive score was calculated as the total number of reliable active-active cell-

pairs (Psame>0.95) out of the total number of active-active pairwise combinations of all 

sessions. A true negative score was calculated as the total number of reliable active-inactive 

pairs (Psame<0.05 for all candidates) out of the total number of active-inactive pairwise 

combinations of all sessions. An exclusivity score was calculated as the total number of 

exclusive active-active cell-pairs (for all additional candidates Psame<0.05) out of the total 



number of active-active pairwise combinations of all sessions. The register score was 

calculated as the total number of reliable pairs out of the total number of active-active and 

active-inactive pairwise combinations of all sessions, where each pair was considered 

reliable only if it met all three aforementioned criteria. Accordingly, we defined the register 

score as: 

( )
( )

N N

m=1k=1
m≠k

1register score = δ k,m
N N -1 ∑ ∑

	

where N is the total number of sessions,N is the number of active sessions for a given cell 

register, and ( )δ k,m is 1 if a cell-pair in the cluster is reliable, and 0 otherwise. 

 

Scalability for a large number of sessions 

To examine if registration accuracy changes with the number of registered sessions, we 

applied our registration method to data recorded in 16 sessions on eight different days 

spanning two weeks (N=5 mice). Registration was performed simultaneously for multiple 

sessions with the clustering procedure, choosing random subsets of the 16 sessions 

comprising of 4, 8, or 12 sessions, and for the entire set of 16 sessions. The average register 

score was measured as a function of the number of registered sessions. 

  

Validation of cell registration  
Exclusivity and transitivity measures 

To validate our probabilistic approach, we defined exclusivity and transitivity measures. 

Exclusivity requires that only one cell from session 1 be paired with a given cell from session 

2. Transitivity requires that if a cell from session 1 and a cell from session 2 are paired and 

the cell from session 2 is paired with a cell from session 3, then the cells from sessions 1 and 

3 be also paired. To measure exclusivity, we calculated the distribution of Psame with all 

additional candidates only for cells that have a pairing candidate with a Psame>0.5 in another 

session. Cells with additional pairing candidates with a Psame>0.5 were considered non-

exclusive. To measure transitivity, we calculated the distribution of Psame for pairs of cells 

from two different sessions where each had a Psame>0.5 with the same candidate from a third 

session. Of such cell-pairs, those with a Psame<0.5 were considered non-transitive. To 

compare exclusivity and transitivity of the data with those expected by chance, we obtained 

shuffled data by measuring the centroid distances between cell-pairs from different sessions, 

where each session was taken from a different mouse. We then performed the same 

analyses on the shuffled data. 



Place field stability 

We also validated our probabilistic approach by applying our registration method to data 

recorded from the CA1 of the hippocampus of N=5 mice while freely exploring linear tracks 

(Rubin et al., 2015). We analyzed mouse behavior videos using a custom MATLAB 

(Mathworks) routine that detected the mouse’s center of mass in each frame, calculated its 

velocity and applied a rectangular smoothing window of 250msec. For place field analysis, 

we considered periods wherein the mouse ran >3cm/sec. We divided each track into 24 bins 

(4cm each) and computed the time spent in each bin and the number of Ca2+ events per bin, 

and smoothed these two maps (‘occupancy’ and ‘Ca2+ event number’) using a truncated 

Gaussian kernel (σ=1.5 bins, size=5 bins) (Ziv et al., 2013; Rubin et al., 2015). We then 

computed the activity map (event rate per bin) for each neuron by dividing the smoothed 

map of Ca2+ event numbers by the smoothed map of occupancy. We separately considered 

place fields for the two running directions on the linear track. We defined each of the place 

field’s position to be the peak value of the activity map. For each place field with ≥5 events 

for a given session, we computed the spatial information (in bits per event) using the 

unsmoothed events-rate map of each cell, as previously described (Markus et al., 1994): 

( ) ( )i i 2 i
i

Spatial information = p r / r log r / r∑  

where pi is the probability of the mouse to be in the ith bin (time spent in ith bin/total session 

time); ri is the Ca2+ event rate in the ith bin;  r̄ is the overall mean Ca2+ event rate; and i is 

running over all the bins. We then performed 1,000 distinct shuffles of animal locations 

during Ca2+ events, accounting for the spatial coverage statistics for the relevant session and 

direction, and calculated the spatial information for each shuffle. This yielded the p value of 

the measured information relative to the shuffles. Cells with spatial information higher than 

that of 95% of their shuffles were considered significant place cells. We then calculated the 

place field positional shift and place field correlation for cell-pairs from different sessions for 

which at least one cell in the pair was considered significant. The place field positional shift 

was calculated as the difference in place field peak positions, and the place field correlation 

was calculated as the Pearson correlation between the place field activity maps. The place 

field maps used for these two measures included both running directions on the running 

track. To compare the place field stability of the data with the stability expected by chance, 

the identity of cells were randomized (shuffled data) across sessions. We then performed the 

same analyses on the shuffled data. 

  



Simulated data 

Simulated data was obtained by using representative spatial footprints of cells that were 

detected in our data. We then placed each representative spatial footprint in a random 

location in the FOV to serve as the original centroid location of the cell. We added a 

constraint that did not allow for two different cells to have very close centroid locations. The 

minimal centroid distance between the original locations of neighboring cells (different cells) 

was set to 7±1µm (normally distributed) to match the distribution of the observed data. In 

each session, a fraction of the cells were simulated as active and their locations were set as 

the original centroid locations with a jitter. The radius of the jitter for each cell in each session 

was drawn from a lognormal distribution and the angle was uniformly distributed. The 

parameters for the active fraction of cells and for the jitter were chosen to match those of the 

observed data. To obtain simulated data with different noise levels, we systematically 

increased the radius of the jitter by increasing the mean of the lognormal distribution. We 

then applied our registration procedure to the simulated data. This allowed us to estimate the 

false positive and false negative rates from the simulated data model and compare them with 

the actual false positive and false negative rates obtained when applying either our cell 

registration method or a centroid distance threshold to the simulated data. Finally, we 

simulated the effects of registration errors on measurements of the stability of the functional 

properties of cells. We defined different cells (shuffled data) as having a certain probability 

(10±1%) to share the same coding properties across sessions. To test whether registration 

errors could obscure conclusions drawn from data with different population effect sizes, we 

systematically changed the percentages of same cells that maintain their coding properties 

across sessions (10-15±1%). Effect size was defined as the difference between the mean 

stability of the population and shuffled data, divided by the stability standard deviation. 
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