

Supplementary Figure 1. High resolution ESI[®] MS/MS spectrum of cholesterol sulfate (CHOS).

Supplementary Figure 2. High resolution ESI[®] MS/MS spectrum of dihydro-brassicasterol sulfate (DHBS).

Supplementary Figure 3. High resolution ESI^T MS/MS spectrum of β -sitosterol sulfate (**\betaSITS**).

Supplementary Figure 4. ¹H NMR spectrum (CD₃OD, 600 MHz) of dihydrobrassicasterol sulfate (**DHBS**) from *S.marinoi* extracts.

Supplementary Figure 5. ¹H NMR spectrum (CD₃OD, 600 MHz) of β -sitosterol sulfate (**\betaSITS**) from *S.marinoi* extracts.

Supplementary Figure 6. ¹H NMR spectrum (CD₃OD, 600 MHz) of cholesterol sulfate (CHOS) from *S.marinoi* extracts.

Supplementary Figure 7. ¹H NMR spectrum (CD₃OD, 400 MHz) of an authentic standard of cholesterol sulfate (CHOS).

Supplementary Figure 8. ¹³C-JMOD spectrum (CD₃OD, 600 MHz) of dihydrobrassicasterol sulfate (**DHBS**) from *S.marinoi* extracts.

Supplementary Figure 9. ¹H-¹H COSY spectrum (CD₃OD, 600 MHz) of dihydrobrassicasterol sulfate (**DHBS**) from *S.marinoi* extracts.

Supplementary Figure 10. HSQC spectrum (CD₃OD, 600 MHz) of dihydrobrassicasterol sulfate (**DHBS**) from *S.marinoi* extracts.

Supplementary Figure 11. HMBC spectrum (CD₃OD, 600 MHz) of dihydrobrassicasterol sulfate (**DHBS**) from *S.marinoi* extracts.

Supplementary Figure 12. Results of the screening of SULT inhibitors on *S. marinoi* cells. Data are expressed as cellular concentration (cell mL⁻¹) at day 3,4 and 7 at different concentrations of compound tested, compared to cells growth under standard conditions (control) and cells growth with 10 μ L of DMSO (solvent used to dissolve test compounds). While the other tested compounds have a toxic effect or none effect on *S. marinoi* growth, quercetin showed a proliferative effect in the concentration range 10-20 μ M. For each test we reported only the results for the concentration range that didn't' negatively affect vitality. Clomiphene was also tested, but it resulted toxic in the whole concentration range tested (0.25- 40 μ M) with the 100% of cell mortality already in 24 hours. Data are means ± s.d.

Supplementary Figure 13. Representative images of *S. marinoi* cells treated with extracts from end of log phase (**A**), early (**B**) and late (**C**) declining phase. In the last two microscope pictures (x400) there are clear evidence of cell suffering, lysis and formation of aggregations of cell debris that are also common facets of bloom demise in open waters. Scale bar depicts 5 μ m.

13

Supplementary Figure 14. Representative images of *S. marinoi* cells after treatment with CHOS. Cells are stained by Annexin -FITC for phosphatidylserine (PTS) externalization. (A) clear, (B) FITC fluorescence, (C) chlorophyll autofluorescence, (D)merge.

Supplementary Figure 15. Representative images of *S. marinoi* cells after treatment with CHOS. Cells are stained by TUNEL for DNA fragmentation. (A) clear, (B) chlorophyll autofluorescence and (C) TUNEL fluorescence. Scale bar depicts $10 \mu m$.

	Dihydro-br	assicasterol sulfate (DHBS)	β-Sitosterol sulfate (βSITS)	Cholesterol sulfate (CHOS)	
position	δ _{c,} type	δ _H multeplicity (<i>J</i> in Hz)	δ_{H} multeplicity (J in Hz)	δ_{H} multeplicity (J in Hz)	
1	38.5	1.94 <i>,</i> m			
		1.15 <i>,</i> m			
2	29.3	2.09 <i>,</i> m			
		1.67 <i>,</i> m			
3	79.8	4.16 <i>,</i> m	4.16, m	4.16 <i>,</i> m	
4	40.3	2.57, ddd (<i>13.0, 5.1, 2.2</i>)	2.57, ddd (13.0, 4.7, 2.2)	2.57, ddd (<i>13.0, 5.1, 2.2</i>)	
		2.37, bt (<i>13.0, 13.0,</i> 2.2)	2.37, bt (<i>13.0, 13.0,</i> 2.2)	2.37, bt (<i>13.0, 13.0,</i> 2.2)	
5	141.5	-			
6	123.1	5.42, m (W/2 = <i>9.7</i>)	5.42, m (W/2 = <i>9.7</i>)	5.42, m (W/2 = <i>9.7</i>)	
7	33.1	2.04 <i>,</i> m			
		1.60, m			
8	33.4	1.51, m			
9	51.6	1.00, m			
10	35.5				
11	22.2	1.53, m			
12	41.2	2.09 <i>,</i> m			
		1.22, m			
13	42.2	-			
14	58.2ª	1.06 ^⁰ , m			
45	25.2	4.65			
15	25.2	1.65, m			
4.5	20.2	1.16, m			
16	29.2	1.89, m			
47	F7 3 ⁸	1.33, m			
17	57.3	1.18 , m	0.75	0.75	
18	12.3	0.75, \$	0.75, \$	0.75, \$	
19	19.8	1.07, \$	1.07, \$	1.06, 5	
20	37.5	1.41 <i>,</i> m			
21	19.4	0.98, d (<i>6.7</i>)	0.99, d (<i>6.7</i>)	0.98, d (<i>6.7</i>)	
22	34.7 [°]	1.48 ^d . m			
	_	1.02, m			
23	31.8 ^c	1.46 ^d , m			
		1.02, m			
24	40.3	1.25, m			
25	32.4	1.63, m			
26	16.0	0.83, d (<i>6</i> .7)	0.87, d (<i>6.7</i>)	0.91, d (<i>6</i> .7)	
27	20.8	0.91, d (<i>6</i> .7)	0.89, d (<i>6.7</i>)	0.91, d (<i>6</i> .7)	
28	18.0	0.84, d (<i>6.7</i>)		-	
29	-	-	0.91, t (7.2)	-	

Supplementary Table 1. NMR Spectroscopic data (600 MHz, CD₃OD) of sterol sulfates

Supplementary Table 2. Putative sulfotransferase sequence from S. marinoi transcript analysis

Transcript ID	Sequence
TR14735i7	GGGTGGATTAGTTAGCAAGGAAGACTTTGCTGCGGCTCTTCGTGGACATCAGGCTGCTGTAGACGCAACGAA
	GAGTCCCCAGAGGGAGGAAGCAGAAATAGCGTTGAGTCAGCTGAGGGAGG
	GATAGAGTAAAATAAACTGCATCTCTGTATCTCAAGCAAG
	CGACGACTTCAATACATATGCTCTTGCTCTCCCGGTGGATATGTATCGCTCACTTCTCCACCACACTCAAAAATA
	CCTCTCTACAATCCTCATAACAATCACCTTTCAACACATTGGAAATCTTGGAACGATATTCCTCTCTCCACCCA
	GTCATTGTATGCAACCATCAATTCCGACGACTCTCCCTCC
	AATAACAACCTCCTCCCATCGCCCGTGACCCCCTTCCTCAAAAACTGAAATCCATTCAGCCACCCAACCGACTTG
	GGCTGAAATTTCTCTATATTATTCTTCATCGAACTGAACCCAAATGATGGTAATATCTCTTGCTCAAGCACACGT
	GATGGGATGTGTGTAAGGTTTAAGAAGGAGATGATTCGAAGTACTTCGGTGCGGAGGTTGGATTTCATCTTTT
	CGTAGGATAGAAGGAGCAGTGGCTGATCTGTAACACTATTGCTATTGCTTTCATCATCACCAATGTCAGCATGG
	CCGCAAGAAGTAGTTGTGTCATACAAATTATCAGCAAACCCACCAGCATAACTAATCAAATGATGCAAATTGCT
	TCCAAATGGAAGCTTGCCATCCAATCTTGAAGAAACTTTCAAATGTATCGGTATAGGTGCCCTTTTTTTA
	TTCGATAAGTGATGGTAGAATGAGGCTACGACATCTATTTTATTTCTTGTAACATAGATGAACTTTCCGCATTGA
	GGAGGACGCTCTTTGTGAATGGTGCTGTCGTTATCAGCTGTTGATATTGTATTGCCATCGCCCCCAACATCGTC
	GTCTTTTTGTTGTGTGCCACTCCTCGCTTCTCTTTGCTTGGGCAACATATCCCAACGTAAATGAGTATTAAACAC
	CCTTCGTCCTAATCGATCATGATTCTCTCGTACCGAATCCGCCAATACCTTCGTGCTATT
TR5935i1	CTTACATTTATAGTTTGTTGGAGCATACTGAATTCTACAAAATGATCCATTCGCGTGGCACACCCAACGGCTGC
	AACTTTTCTTTGTACAACGATTCCAATGCAGCAAGCTGTTCAGTTGAAAACGCAAGTCTACTACCATCAGCACTT
	CCAACCTCTCCCTGACGAACATGTGCTCTTCGAAGAACACCAAGCCATCTCATGAACCGCAGTCCCATTTCTTGT
	TCATCTGCTAATTTCATCCGGTCAAAGCTTGTAACATCCATAACATTTTGAATCTTGGTGGGAGTGACATCATCC
	ATTCCAATAAATGCTGCAATTTGCTCAATCACATAACTTGGATTACGCTTCAGTTCTTCAAATCTCACCAACAAA
	ACATCTGGATCATCCGCCCGCTTAAACCATGACGCCACATGATCAAAGTAGGAGCCATTCTCCACATTCCCATC
	CAACCAATCCTGGACAAAGTCATCCCAACCTCCCTCAAATGTCATATCTTCCGTCCCATATGAAACCCCATTCCA
	AAACATTGATTCCAATGTGAAATCAGTAGATCGGA
TR11343i2	TTTTTTTTGATTACAATAAGCTAGAAGCAACTTTAAGTATGTAAGCTACAATAATTATTGTTTTGCTTCCTCG
	TACATATTTGTTATTCATGCGGAGCCAAGCTTTCCCTTCTCTTACGTAGCGAAGGCATCTGGTCAAGAGTGACG
	CTGGATCTTCGCCTCAAAATGCTCTTACGGACTCCTTGCTCAACAACTTCTACCTCCTCCGTAGCACTTAAGT
	CCGCAATTGCTGCTGCAAATTCGTCATAGCTAGCATGACCAGTCAGAGGAGTCATTCTTTCCAACCATCGATCC
	TCCATCCATTCAATTGTCTTTTCTGTAAGCACAGTATCTTTCTT
	CTCCATAACTCTCAAGGCACGGCCAAGTTCTCTGCCCTTTTCTGTGATGAAGTGATCATCAAATGCGTCCACATG
	CTTTACCATTTGGTCACGAGATATCAAGAACGCCACCTTAGAATATAAAGCTTCATCTGCATCATCTATGCCTAA
	AAACTCGGCAATCATGGGCAAATGGTTGAGATATGCAGGTCCATCTGCCACCAATGCTTCGTAGACAAGAATC
	TTTACAGATGGGTCGTTCCTTGCCGACCAAATCTCTGCGTACATCTCCCAGATATTCATACCAAAGCAACATTCC
	TCGCCGAAAATATCTGCTCCCTTATTTGCAATATACTCATTTGCATCTTCATACTCAGCGTAGCCAGGCCTCCCCT
	TTGCCTTTTGAAATGCAAACCAACTCATCAACGTAGCTTCTGGATCACGAACAATACACAAGTATTTGCCTCCCG
	GATTGACAGGCGATAAAAGTTGATGTGATTTGAAGATACGAGGACGAGCAACTTGATCATCATCTAAATCTTG
	ACCCAGGTCATGAGCAAACTCTATCCACGGCTGCCGGATGGTGATATCGTCAAAGTCATATCCACCAGCCCGA
	GTTCGCAACTGTTCACAGCAATTCTGCGTCCAAGTAGTACCCGTTTTGGGGAAGGAA
	TTGGACGAAGCCGGAATGTCTCGCCGATGCGCTTGGACTCTGGTGAAATATGTGGCATGACCTTGTAGGGCTT
	GGTGCCCCAGTTCGGCCAGCGGTTCACATCGCTGATGTTCCCTTCTTTCT
	TACTTACTGAAGAGTTGCGTGTTGTGTGTGGGAAAGCAAGGTGAGA
TR8670i1	CTTCCATCTGTAGTTGAACTGTGCTTAGGTATGAAGTAGATCGGGACAGCGTATTGTACAGTCGGTGATTTACC
	GGTGAAAGTATAAGAAGTAGATCAAATAACATGCACCAATAATGTTTTGCACAGTAACGAGCCAAGCAGGACT
	GCTACTTCGATTCTATCTGATCATCACTATTTATGATACAGCTCACCAAGAAACTCCAACTCCTCCTTACTAAACA
	CCTCCTCCAGCCTTTCTTGCAACTTGTCGGCCTGATCCACGCTCATCAACTCCCTCC
	TCGAATAAATGGTTGATACCCTGTCCTATCGCTACACCACCGAGTTGGGTCCTTCTTCATACTATCCAATGAGGA

ATGATCTAGCACTAGGTTTAATAAACGTTCATTGTCTGCGAGGAGTTTGGCAGGGTAAATATCCTCATTTAAGA
ATTTGGCAATTTGTAATACGTATTCTCGTGGGTTGGCACGTCCATTCTCATATCTTAGAAACAAGACATTGGGAT
CATCTTTGTGGTTCAGCGCTTTTCGTGTGAAATCGAAATAGTCACCATGATCGACGTGACCATTGAGAAAGAGA
TTGAAGTAGGTATCGAAGTGTCCATCGGCGAAATTGTAGTGTCGGGGAAATCCAACCGTGTGATGATAGAATG
ATACCACGCAGTCTTTGGGATTGCGCACAACAAAGATGTATTTTCCTTTTTTTT
GGAGATGGGTTTTGATGAGTCGATATCCATCTTTGATTGTTGCATTCGTTTTTACAAATTCTTTCCCCACCTCTTC
TAGATGGGGAAAGACCACGTCGAGGCGTTCATCTGGAGAGAGGGGGCACGCCGTTATTGAGGATTAGATAGA
TATATGTTGGGTCCATGTCGTGCCACACTTTGGATATGTTACGATGAATAAATCTTCATCTTTCGCTTCATATTC
GAGACCGCTGCGAAACCCATCGAGAGGGAACCCCTTTGCCAGCTTATAGCCGTCATGGTCGGTGTAGGTAG
GGTCTTTTCGGAGGCCATGGTCAAAAGAATGATGTCGAAAGATG

Supplementary Table 3. Predicted SULT sequences of S. marinoi

Transcript	Protein	Predicted sequence
ID		
TR14735i7	SMAR- 1	NSTKVLADSVRENHDRLGRRVFNTHLRWDMLPKQREARSGTQQKDDDVGAMAISTADNDSNVRK
		ERPQCGKFIYVTRNQIDVVASFYHHLSNQIEGTYTDTFETFLRDWMDGKIPVGSSLHHLIGFAGGFAD
		${\tt NLYDTSCDHD} igdden {\tt NSVTDQPLLLLSYEKMKSNLRTevLriisflnlthipsrvleqeilpsfgfssmk}$
		NNIEKFQPKSVGWLNGFQFLRKGVTGDGRRLLLNRSTNDSGGGKEEGESSELMVAYNDWVEREEY
		RSKISNVLKGDCYEDCREVFLSVVEKAIHIHRESKSICIEVVASERNKLDRILFLLEIQRCSLFYSILSSCFCC
		LPQLTQRYFCFLPLGTLRCVYSSLMSTKSRSKVFLANST
TR5935i1	SMAR- 2	RSTDFTLESMFWNGVSYGTEDMTFEGGWDDFVQDWLDGNVENGSYFDHVASWFKRADDPDVLL
		VRFEELKRNPSYVIEQIAAFIGMDDVTPTKIQNVMDVTSFDRMKLADEQEMGLRFMRWLGVLRRA
		HVRQGEVGSADGSRLAFSTEQLAALESLYKEKLQPLGVPREWIIL-NSVCSNKL-M-
TR11343i2	SMAR- 3	LTLLSYTQHATLQVDNSSMESTKKEGNISDVNRWPNWGTKPYKVMPHISPESKRIGETFRLRPTDVV
		VLSFPKTGTTWTQNCCEQLRTRAGGYDFDDITIRQPWIEFAHDLGQDLDDDQVARPRIFKSHQLLSP
		VNPGGKYLCIVRDPEATLMSWFAFQKAKGRPGYAEYEDANEYIANKGADIFGEECCFGMNIWEMY
		AEIWSARNDPSVKILVYEALVADGPAYLNHLPMIAEFLGIDDADEALYSKVAFLISRDQMVKHVDAFD
		DHFITEKGRELGRALRVMEPAAKVRSIDGKKKDTVLTEKTIEWMEDRWLERMTPLTGHASYDEFAA
		AIADLSATEEEVEVVEQGVRKSILRRRSSVTLDQMPSLRKRRESLAPHE-QICTRKQKQ-LL-
		LTYLKLLLAYCNQKK
TR8670i1	SMAR- 4	SFDIILLTMASEKTPTYTDHDGYKLAKGFPLDGFRSGLEYEAKDEDLFIVTYPKCGTTWTQHIIYLILNN
		GVPLSPDERLDVVFPHLEEVGKEFVKTNATIKDGYRLIKTHLPYDMVPQNKKGKYIFVVRNPKDCVVS
		FYHHTVGFPRHYNFADGHFDTYFNLFLNGHVDHGDYFDFTRKALNHKDDPNVLFLRYENGRANPRE
		YVLQIAKFLNEDIYPAKLLADNERLLNLVLDHSSLDSMKKDPTRWCSDRTGYQPFIRRGSTGGWREL
		MSVDQADKLQERLEEVFSKEELEFLGELYHKSDRIEVAVLLGSLLCKTLLVHVI-
		STSYTFTGKSPTVQYAVPIYFIPKHSSTTDG

Supplementary Table 4. Domain characterization of S. marinoi putative SULTs sequences reported in Supplementary

Table 3

Domain fa	milies on selected sequences	H-zoom: 1×	 View 	Full Results	 Show functional sites I
Q#1 - >SMAR	1 ((Local ID))		Redundancy:	Full Results	Show functional sites
Query seq.	1 75 150 	225		300	383
Non-specific hits <mark>Superfanilies</mark>	Sulfotransfer_1 Sulfotransfer_1 superfamily				
∢ Q#2 - >SMAR	-2 ((Local ID))		Redundancy:	Full Results	Show functional sites
Query seq.	1 75 150 18 	5			
Non-specific hits	Sulfotransfer_1 PLN12164				
Superfamilies	Sulfotransfer_1 superfamily				
4 0#2 - >6MAR	2((1 ord ID))				•
Q#3 - >SMAR	4 75 150	225	Redundancy:	Full Results	Show functional sites 375 412
Query seq.					
Non-specific hits	Sulfotransfer_1 PLN02164				
Non-specific hits <mark>Superfanilies</mark>	Sulfebransfar_1 FUR2144 Sulfebransfer_1 super	rfamily			
Non-specific hits Superfamilies Q#4 - >SMAR	Sulfotransfar_1 PLN2164 Sulfotransfer_1 supe 4 ((Local ID))	rfamily	Redundancy:	Full Results	 Show functional sites
Non-specific hits Superfamilies Q#4 - >SMAR Query seq.	Sulfotrensfer_1 FLN2364 Sulfotransfer_1 super 4 ((Local ID))	rfamily , 225	Redundancy:	Full Results	✓ Show functional sites ✓
Non-specific hits Superfamilies Q#4 - >SMAR Query seq.	Sulfotrensfer_1 FLN2364 Sulfotransfer_1 super 4 ((Local ID))	rfamily	Redundancy:	Full Results	✓ Show functional sites ✓
Non-specific hits Superfanilies Q#4 ->SMAR Query seq. Specific hits	Sulfatransfer_1 FLN2364 Sulfotransfer_1 super 4 ((Local ID)) 75 159 Sulfatransfer_1	rfamily , , 2 <u>1</u> 5	Redundancy:	Full Results	▼ Show functional sites ▼ , 058
Non-specific hits Superfanilies Q#4 ->SMAR Query seq. Specific hits Non-specific hits	Sulfetrensfer_1 FLN2364 Sulfotransfer_1 super 4 ((Local ID)) 501fotrensfer_1 super FLN02164	rfamily , , ² 1 ⁵	Redundancy:	Full Results	Show functional sites
Non-specific hits Superfamilies Q#4 - >SMAR Query seq. Specific hits Non-specific hits Superfamilies	Sulfatrensfer_1 FLN2364 Sulfotransfer_1 super -4 ((Local ID)) 75	rfamily , , ² [⁵ nperfamily	Redundancy:	Full Results	Show functional sites , 258
Non-specific hits Superfamilies Q#4 - >SMAR Query seq. Specific hits Non-specific hits Superfamilies <	Sulfotransfer_1 PLN02164 Sulfotransfer_1 supe 4 ((Local ID)) 75 Sulfotransfer_1 supe Sulfotransfer_1 su	rfamily , , ² [⁵ uperfamily	Redundancy:	Full Results	 Show functional sites 336

Query	Hit type	PSSM-ID	From	То	E-Value	Bitscore	Accession	Short name	Incomplete	Superfamily
Q#1 - >SMAR-1	superfamily	304426	5	230	2.69325e-15	73.5338	cl21551	Sulfotransfer_1 superfamily	N	-
Q#2 - >SMAR-2	superfamily	304426	25	165	3.02443e-18	78.1562	cl21551	Sulfotransfer_1 superfamily	N	-
Q#3 - >SMAR-3	superfamily	304426	64	247	2.97374e-16	76.6154	cl21551	Sulfotransfer_1 superfamily	С	-
Q#4 - >SMAR-4	specific	279075	44	290	5.34283e-52	171.76	pfam00685	Sulfotransfer_1	-	cl21551

Supplementary Table 5. Reference sequence number of proteins used for phylogenetic analysis

Organism	Protein reference number		
Arabidopsis lyrata	XP_002890763.1		
Arabidopsis thaliana	OAP14364.1 SOT7		
Brassica rapa	XP_013723193.1		
Camelina sativa	XP_010425175.1		
Capsella rubella	XP_006293532.1		
Chrysochromulina_sp.	KOO25185.1		
Crocosphaera watsonii	WP_007308169.1		
Cyanothece sp. ATCC51142	ACB53617.1		
Cyanothece sp.CCY0110	WP_008278423.1		
Cyanothece sp. PCC7424	WP_012598684.1		
Cyanothece sp.PCC8801	ACK66184.1		
Daucus carota	XP_017233697.1		
Emiliana hyxley	XP_005757376.1		
Fragilariopsis cylindrus	OEU18550.1		
Homo sapience 1C	AAC95519.1		
Homo sapiens 1E	AAH27956.1		
Homo sapiens 2B1A	1Q1Z_A		
Homo sapiens 2B1B	NP_004596.2		
Micromonas commoda	XP_002509199.1		
Nannochloropsis gaditana	EWM21324.1		
Phaeodactylum tricornutum	XP_002179849.1		
Skeletonema marinoi Fe7-1	MMETSP1039-20121108 3029_1		
Skeletonema marinoi Fe7-2	MMETSP1039-20121108 3249		
Skeletonema marinoi Fe7-3	MMETSP1039-20121108 14798		
Thalassiosira oceanica	EJK47508.1		
Thalassiosira pseudonana-1	XP_002290864.1		
Thalassiosira pseudonana-2	XP_002292441.1		
Trichodesmium_erythraeum	WP_011609991.1		

Supplementary Table 6. Multiple ClustalW alignment of protein sequences containing the four SULT conserved regions and the acceptor site (AC). Protein sequences are the same of Supplementary Table 3.

Supplementary Table 7. Analysis report of *Skeletonema marinoi de novo* transcriptome assembly: number and quality of paired-end reads obtained for each sequenced sample.

Sample	Reads	% of ≥Q30 Bases (PF)	Mean Quality Score
1	62,156,844	90.57	35.35
2	57,766,124	92.35	35.82
3	55,414,624	90.34	35.28

Analysis was carried out by a paired-end sequencing. Short reads are obtained from ends of DNA fragments for ultra high-throughput sequencing. Prior to further analysis, a quality check was performed on the sequencing data. The high quality reads from all the samples were joined and then used as input to perform transcriptome assembly by Trinity. The raw assembled transcriptome included about 51 Mbp in 56931 transcripts grouped in 43376 genes. The mean GC content was 45.24%. The average and median contig length were 911 bp and 546 bp, respectively. The N50 was 1467 bp.

Supplementary Table 8. Analysis report of *Skeletonema marinoi de novo* transcriptome assembly: gene number expressed at least with 2 FPKM (Fragments Per Kilobase of exon per Million fragments mapped) in each sequenced sample.

Sample	Num_features with at least 2 FPKM
1	18205
2	17958
3	17809

Supplementary methods

Bioassay-guided fractionation

Biomass was recovered at the first point of declining phase, extracted and fractionated on polystyrene–divinyl benzene solid phase columns (CHROMABOND[®] HR-X). Organic constituents were separated on the basis of polarity and molecular weight in 5 fractions with decreasing polarity from water to dichloromethane (H₂O, CH₃OH:H₂O, CH₃CN:H₂O, CH₃CN, CH₂Cl₂:CH₃OH). These fractions were tested in 24-wells assay on *S. marinoi* cells. The activity was found to be conserved in the fraction eluted with CH₃CN:H₂O at concentration of 20 µg mL⁻¹. The bioactive mixture was then fractionated by HPLC on a reversed phase semipreparative column and the fractions were collected every two minutes. All the fractions were tested again and we obtained a single bioactive sample at a concentration slightly above 10 µg mL⁻¹. These fraction was further purified in the last HPLC step to yield cholesterol sulfate (CHOS), dihydrobrassicasterol sulfate (DHBS) and β-sitosterol sulfate (β SITS).

Supplementary Figure 16. Scheme of protocol of isolation of sterols sulfates. (a) Bioassay-guided fractionation. The toxic doses (100% mortality in 48 hours) for each step of purification are reported in red. Below each step is reported the average quantity of material from 1g of *S. marinoi*. (b) and (c) chromatographic profiles of the first and second HPLC steps.

Complete TUNEL assay protocol

The complete protocol consists of three phases that can be described as follows:

1) Fixation of cells: 10 mL of *S. marinoi* cultures at a concentration of about $1 \cdot 10^6$ cells mL⁻¹ for each sample were centrifuged and resuspended in 1 mL of filtered sea water with 2% formaldehyde. The cells were left at 4 ° C for 20 min.

2) Permeabilization of external cell membranes: cells are centrifuged (each sample now has the concentration of $1 \cdot 10^7$ cell mL⁻¹) and washed with PBS at pH 7.5 containing 5 mM MgCl₂, which corresponds to the concentration required for maximum activity of Tdt enzyme and DNase enzyme used as a positive control. Then each sample is suspended in 200 µL of permeabilizing solution: 3% Triton X-100 in 0.1% sodium citrate on ice for 15 min. Cells were again washed with PBS. Positive controls are incubated 10 min with 10 µg mL⁻¹ DNAse I (Roche) solution in PBS containing 1 mg mL⁻¹ of BSA at room temperature. Subsequently cells were pelleted and washed with PBS.

3) Incubation with the reaction mix (enzyme + labeled nucleotides in reaction buffer): the free 3'-OH of DNA strand breaks produced during the process of apoptosis were labeled with green- fluorescing fluorescein labels incorporated in modified nucleotide polymers in an enzymatic reaction. Cells were labeled according to the manufacturer's instructions (Roche Diagnostics GmbH) and analyzed by epifluorescence microscopy (Carl Zeiss) using a 515/565 BP (for only green fluorescence), a 525/50 BP (for green and red fluorescence) and a LP615 (for only red fluorescence) emission filter and a coupled-device camera interfaced with Axio Vision acquisition/image analysis software (version 4.8). All assays were repeated in triplicate.