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Supplementary note 1. Method for equivalent parameters  

As shown in Fig. 2b, the flexural motion of the entire attachment in the meta-cell can be modeled as a torsional oscil-

lating system. To determine the equivalent parameters J0, Jr and kT, the finite element method (FEM) is used to calculate 

the low-frequency responses of the entire attachment, and the displacement of the terminal points are shown in Supple-

mentary Fig. 1. The first resonant and anti-resonant frequencies of this system are fT1 = 226 Hz and fT2 = 1,424 Hz, re-

spectively. In addition, ωTi = 2πfTi, i = 1, 2.  

 

Supplementary Figure 1 | Frequency responses of the rod with concentrated masses. FEM is used to calculate the frequency 

responses of the entire attachment in Fig. 2b. The parameters of the rod with masses are listed in Table 1. The displacement of the ter-

minal point is shown here. fT1 and fT2 denote the first resonant and the first anti -resonant frequencies, respectively. 

 

The dynamic inertia of the equivalent torsional oscillators is 
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0 T 0T( ) ( ).J J k       (1) 

The properties of the metamaterial tell us T1 T2( ) , ( ) 0J J   and thus we derive 2
T r T1k J   and 

2 2
T 0 T2 T1( )k J    . Another relevant equation is the total inertia Jt relative to the fixed point O, Jt = J0+Jr. For the struc-

ture in practice, we have t ii
J J ,  2 2 2

o4 12i i i i iJ m r d d   , where mi, ri, di and doi are the mass, the radius, the 

length and the distance between the center of gravity and point O, respectively; and the subscript i denotes the corre-

sponding parameters of the magnets, the strut and the bolt. With the three equations, the equivalent parameters can be 

solved:  
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An equivalent system with more Degrees-of-freedoms (DoFs) can describe higher-order motions in the high-frequency 

range. 
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 Supplementary note 2. Dispersion theory based on FEM 

  FEM of the nonlinear oscillators 

The finite elements of the nonlinear oscillators derive from their motion equations. In case N1, that is, neglecting the 

influence of the vibro-impact oscillator, the node vector is v=[w0, θ0, rw , θr]
T
, where rw denotes the transverse dis-

placement relative to w0, r r 0w w w  . Therefore the mass matrix erm , linear stiffness matrix erLk  and the nonlinear 

stiffness matrix erDik  of the i
th
 element are 
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If we take into consideration of the vibro-impact oscillator, as shown in Fig. 2c, the motion equation of the coupled 

torsion-vibro-impact system in the NAM beam is 

 0 0 T r 0 0( ) ( ),J k M t       (8) 
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where r r r ru l   . In this case, by specifying the node vector as v=[w0, θ0, rw , θr, ϕr]
T
, the element matrices are 
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For the NAM plate, a similar expression can be derived. This system is named as NAM-N2. In fact, because the rela-

tive coordinates rw and ϕr are used, the nonlinear stiffness matrix erDik  is decoupled.  

In the dispersion solutions detailed below, we use the cubic term n=3 to approximate the vibro-impact oscillator, on 

which occasion we rewrite erDik  as 
2

erD [ ]i  k n v , where [ ]n is the coefficient matrix consisting of the nonzero ele-

ments 2k  and 
2

c rk l . The power of a vector x  is defined as 1{ }n n n
ix xx . 

  FEM of a periodic cell of the NAM beam 

By a standard FEM process, the motion equation of all the nodes in a cell is  

 
3 ,   Mu Ku N u f   (14) 

where 

 
T T T T T
L I R a[ ] ,u u u u u  (15) 

 
T T T
L R[ ] ,f f 0 f 0   (16) 

in which M , K  and N  denote the mass, the stiffness and the nonlinear stiffness coefficient matrices, respectively; 

u denotes the displacement vector of all the nodes; f  is the vector of the node forces; the subscripts, L, I, R and a, 

symbolize the nodes at the left boundary, inside the primary beam, at the right boundary and of the attachments, respec-

tively; 
T T

L 1 1 0 0[ ] [ ]w w  u , and au depends on if the vibro-impact motion is considered. For NAM-N1, 

T
a r r[ ]w u  and for NAM-N2 

T
a r r r[ ]w  u . In fact, there are only two nonzero elements in N  that are 

corresponding to the relative displacements rw
 
and ϕr.  

With Bloch theorem in the one-dimensional (1D) periodic beam, the periodic boundary conditions for a cell are ex-

pressed as 

 R L
i ae u u , (17) 

 R L
i ae  f f ,  (18) 

where [0,2 ]  denotes the wave vector, a is the lattice constant and i
2
 =-1. If 
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in which, 
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With the relationships in (17), we can prove that 

 H R f 0 , (21) 

where the superscript ‘H’ denotes the conjugate transpose. Because the elements in Ν  corresponding to 
T
Lu  and 

T
Iu

are zero, for the nonlinear part, one obtains    
3 3H HR Ν Ru R ΝR u . At last, substitute the old coordinates u  with 

the new vector u , one obtains the new motion equation of a cell. It is 

  
3

0   Mu Ku N u   (22) 

where 
H H H, ,  M R MR K R KR N R ΝR .  

  FEM of a periodic cell of the NAM plate 

For the plate, the displacement vector of every node is T[ ]j j xj yjw  u . With a proper transform and a standard 

FEM procedure, the motion equation of a cell reads 

 3{ } { } { } { }  M q K q Ν q f   (23) 

where the displacement vector of the whole system is  

 
T T T T T T T T T T T
LB B RB L R LT T RT I r{ } { , , , , , , , , , }q q q q q q q q q q q   (24) 

As shown in Supplementary Fig. 2, qj denotes the set of node displacements, for example, qL represents the displace-

ment of all the nodes in the left boundary of a cell. qr=[ rw , θrx, θry]
T
 or qr=[ rw , θrx, θry, ϕrx, ϕry]

T
, which depends on the 

system N1 or N2. Correspondingly, the node vector of the force is  

 
T T T T T T T T T T T
LB B RB L R LT T RT I r{ } { , , , , , , , , , }f f f f f f f f f f f   (25) 
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Supplementary Figure 2 | Displacement v ectors in a cell of the NAM plate. q denotes the displacement vector. The subscripts rep-

resent the different positions of the nodes, as labeled near the corresponding position. L: left; B: bottom; R: right; T: top; I: inner; r: the 

resonator. For example, qRB (qL) means it is the displacement vector of the right bottom corner (the nodes along left boundary apart from 
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the corners); qI means the displacement vector of all the nodes inside the cell, apart from all the boundaries and corners.  

 

The Bloch theorem of a periodic cell is expressed as 

 RB LB ,x xik l
eq q   (26) 

 R L ,x xik l
eq q   (27) 
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where lx and ly are the lattice constants in x and y directions, respectively; k=(kx, ky) is the wave vector of the first Bril-

louin zone (see Fig. 2g). For the nodes inside the cell and on the attached resonator, I r, f 0 f 0 . By defining a new 

vector
T T T T T T

c LB B L I r{ } { , , , , }q q q q q q , one yields 
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in which Ij denotes the identity matrix whose dimension is equal to the corresponding vector qj. With the relationships of 

interaction forces between neighbor cells, we can prove that 

 
H{ } { }.R f 0   (36) 
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At last, the motion equation of a cell is transformed to 

 3
c c c{ } { } { } ,   M q K q N q 0   (37) 

where 
H H H, ,  M R MR K R KR N R ΝR . Equations (22) and (37) have a same form.  

  Methods to calculate the dispersion relations 

The analytical dispersion solutions of the linearized system are obtained with the eigen function 

 2 0 K M   (38) 

However, only approximate dispersion solutions can be found for nonlinear metamaterials.  

 

For the weakly nonlinear metamaterial, perturbation approach (PA) is used to solve the dispersion relations, as elabo-

rated in the Refs. [1, 2]. The nonlinear dispersion solution derives from PA is 

 
H 3

2 20 0

0 1 0 H

0 0 0

3 ( )
( ) ( ),

8
O O     


     

U N U

U MU
  (39) 

where 0U is the generalized eigenvector belonging to the eigenfrequency ω0 of the linearized system, that is,

2
0 0[ ] K M U 0 ; 

2( )O  denotes high-order small quantities.  

In our manuscript, PA can only be used to in the case NAM-N1. For NAM-N2, the nonlinearity in vibro-impact oscil-

lator is so strong that PA would present wrong results.  

 

For the strongly nonlinear acoustic metamaterial, harmonic balance method (HBM) can present the dispersion rela-

tionships more accurately. Here the wave solution is assumed as  ( )= sint tu U . Balancing the coefficient of sin t , we 

obtain the first-order harmonic balance solution 

 2 33
[

4
] ( ) .  K M U N U 0   (40) 

In both PA and HBM, by specifying the initial amplitude 01U  of u1, we can solve the dispersion frequency ω and 

other parameters in U.  

In the FEM process, a cell of the primary beam is meshed by three conformal elements with same length. And a 2D 

NAM plate cell is meshed by 2×2 elements. These meshes are accurate enough for low-frequency studies (lower than 

1500 Hz). For NAM beam-N2, analytical solutions can be found for the 11-dimensional (11D) system of algebraic equa-

tions in Eq. (40). However, for the 2D NAM plate-N2, the system of equations is 16D. It is a high-dimensional system so 

that it becomes difficult to find analytical solutions with HBM. Therefore only the dispersion solutions of the NAM 
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plate-N1 are considered and solved by PA.  

 

  Supplementary note 3. Nonlinear vibration of NAM beam 

In this section, based on the nonlinear FEM, we take into account of four nonlinear sources in the NAM beams: the in-

ertial nonlinearity, the geometrical nonlinearity, the Duffing oscillator and the vibro-impact oscillator. HBM and Har-

monic average approach (HAA) are introduced. By studying the influences of different nonlinear sources, we confirm 

that the Duffing and the vibro-impact oscillators are the most important nonlinear factors. Moreover, the strong nonline-

arity of the vibro-impact oscillator is analyzed with a comparative way. At last, we show the experimental results on a 

LAM beam.  

  Nonlinear FEM of the NAM beam 

1. Nonlinear FEM of a pure beam 

The 2D theory for the geometrically exact beam element is based on the assumption of the plane across section. It was 

derived by Reissner and is valid for finite deflections, rotations and strains
3, 4

. The associate strain-deflection relations are 

 (1 )cos sin 1,x xu w        (41) 

 cos (1 )sin ,x xw u       (42) 

 ,x    (43) 

where ε, γ, κ are the axial strain, the shear strain and the curvature, respectively; u is the displacement in axial direction, 

w is the deflection and ψ is the rotation, as shown in Supplementary Fig. 3; (·)x=d/dx. 

x

u

n w


w

z

 

Supplementary Figure 3 | Deformation of the nonlinear beam. For the deformed beam, the node at x generates an axial displacement 

u, a transverse displacement w and a deflection ψ. The normal vector of the section is n. w ’ denotes the supposed rotation of the middle 

face3.  

 

The Eula-Bernoulli beam assumes γ=0. By using this shear constrain, ε is obtained depending upon u and w 
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 2 2(1 ) 1.x xu w       (44) 

By some algebra to solve ψ and then using a derivation, one yields 

 
2 2

(1 )
.

(1 )

xx x xx x

x x

w u u w

u w


 


 
  (45) 

For the free-end beam, the axial deformation can be neglect, that is, ε=0. Using this constrain to Eq. (44) yields 

 21 1x xu w     (46) 

Therefore ux≤0, which indicates the beam generates shorten inertial effect. Through an integral, we obtain the displace-

ment induced by the shorten effect at point x 

 2

0
( 1 1)

x

xu w dx     (47) 

and 

 2

0
1

x

t x xt xu w w w dx   .  (48) 

With the Taylor series 2 21
1/ 1 1

2
x xw w    , one yields 

 3

0 0

1
( ...) .

2

x x

t x xt x xt x xtu w w w w dx w w dx         (49) 

By inserting ux into (45), the curvature is obtained 

 21 .xx xw w     (50) 

Using that Taylor series, we obtain 

 
2 2 2 2

xx x xxw w w     (51) 

Based on these displacement and stain expressions, the kinetic energy T and strain energy U of an element within 

length s are 

 

2
2 2 2

0 0 0 0 0

1 1 1 1
,

2 2 2 2

s s s s x

t t t x xtT u dx w dx w dx w w dx dx   
 

     
        (52) 

 2 2 2 2 2

0 0 0

1 1 1
( ) ,

2 2 2

s s s

xx x xxU EA dx EI dx EI w w w dx         (53) 

where (·)x=d/dx and ρ is the mass of unit length. The second term in T denotes the inertial nonlinearity and the second 

term in U represents the geometrical nonlinearity. In this expression, the geometrical nonlinearity depends both on the 

transverse strain and the curvature.  

At present, most studies on the nonlinear beams use the Galerkin method by assuming that the motion depends on the 

superposition of several linear modals. This method reduces much DoFs in analyzing for convenience. However, this 
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method is proper for simple cases. For the nonlinear metamaterial beam coupled with many nonlinear oscillators, modal 

superposition is improper for broadband analyses. Here, we adopt the nonlinear FEM. In general, we can use the expres-

sion of the linear FEM to approximate the displacement field in nonlinear FEM, that is,  

 ( , ) ( ) ( )w x t x t N η   (54) 

where ( )tη  is the nodal vector, 
T

1 1 2 2( ) [ ]t w w η , and ( )xN  is the vector of shape functions. If we adopt the 

finite element coordinate x=lξ, and length of an element is 2l, the shape function of the conformal element is  

 1 2 3 4( ) [ ]W W W W N ,  (55) 

where  3
1 2 3 4,W      2 3

2 1 4W l       ,  3
3 2 3 4W      and  2 3

4 1 4W l        .  

By inserting ( , )w x t in the expressions of T and U, the elemental matrices can be set up with the Lagrange equations. 

The linear mass matrix eLm and the nonlinear inertia matrix eIim  for a pure beam element are 

 
1

T
eL

1
,l d 


 m N N   (56) 

 
1

T T
eI

1
,i i i d

l





 m N η η N   (57) 

 T

0
.d



  N N N   (58) 

And the linear stiffness matrix eLk  and the geometrical nonlinear stiffness matrix eGik  for an element are 

 
1

T
eL 3 1

,
EI

d
l




  k N N   (59) 

 
1

T
eG 5 1

i i i

EI
d

l



    k N N η N η N   (60) 

in which the subscript ‘i’ symbolizes the corresponding matrix of the ith element; ()’=d/dξ; the superscript ‘T’ denotes the 

matrix transposition. These formulas indicate the nonlinear elemental matrices consis t of quadratic terms and they are 

depends both upon the shape function and the nodal coordinates.  

2. Nonlinear FEM of the entire NAM beam 

With the elemental matrices of the coupled nonlinear oscillators and the nonlinear beam, the motion equation of the 

entire system can be formulated with a standard FEM procedure
5
. It is  

    I L G r( ) ( ) ( ) ( ) sint t      M M q q Cq K q K q K q q F F   (61) 

where M, K, C are the mass, the stiffness and the damping matrices of the system, respectively. The subscripts , L, I, G, r, 

denote the variables corresponding to the linear case, nonlinear inertia, geometry and oscillator. r ( )K q  can be decou-

pled, but I ( )M q  and G ( )K q are coupled.  
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We adopt the dynamic proportional damping model,  

 0 Lc C K   (62) 

where c0 is a constant damping coefficient. In the main text and in this document, c0=0.001 in the bifurcation analyses 

based on dimensional reduction method. In other method, the damping effect is neglect.  

  Method for frequency responses 

1. Harmonic balance method (HBM) 

The wave propagation depends on the periodic solutions. A frequency response is also a periodic solution. If the stabil-

ity of a solution is unnecessary, HBM can be used. A first-order approximation of the solution is ( ) sint tq Q . Sub-

scribing it into (61) and balancing the harmonic, we obtain the solution for the cubic nonlinear system, 

 2 2
L I G r

3
( ) ( ) ( ) .

4
         

   
K M Q M Q K Q K Q Q F   (63) 

When the nonlinear matrices contain higher-order terms, the approach is still valid except for the different coefficients. 

However, there is larger round-off error for higher order nonlinear terms. In this case, we need to take into consideration 

of high-order harmonic waves, for example, supposing the solution is 1 3( ) sin sin3t t t  q Q Q .  

The Newton iteration numerical algorithm is used to find the solutions of the vector Q with a specified force F at point 

E (see Fig. 2f,g). In this process, each cell of the NAM beam is meshed into two conformal elements, which is accurate 

in low-frequency range. Therefore, there are 78 DoFs in total for the NAM beam-N1 and the NAM beam-N2 has 90 

DoFs.  

However, HBM doesn’t provide a regime to analyze the stability of a solution, so it cannot be directly used for bifur-

cation studies, even for simple cases. To reach this problem, we adopt the harmonic average approach (HAA) 
6
. 

2. Harmonic average approach (HAA) 

To analyze the stability of periodic solutions, we need to solve  
1

I ( )


M M q to derive the Jacobian matrix of the 

system. However, it is difficult at present to solve a high-dimensional  
1

I ( )


M q  because it contains many unknown 

variables. Therefore we neglect the inertial nonlinearity in this method and our analyses will address that this neglecting 

does not introduce large errors.  

We consider the equation 

 L N ( ) ( ) 0t    Mq Cq K q k q F   (64) 

where the vector N ( )k q =  G r( ) ( )K q K q q . Within this approach, the solution is assumed to have the form: 
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 ( )cos ( )sin ,t t q = u v   (65) 

 ( )sin ( )cos ,t t    q = u v   (66) 

where t  . The derivatives with respect to time t of the formulas in (65) and (66) are 

 ( )cos ( )sin ,     q = u v v u   (67) 

 2 2( )cos ( )sin       q = v u u v .  (68) 

Comparing the expressions of q
 
in Eqs. (65) and (67), we obtain 

 ( cos sin )   M u v 0   (69) 

The further substitution of (65) and (67) into (64) gives another form of the equation of motion:  

 
   

L N

cos sin cos sin cos sin

[ cos sin ] ( , ,cos ,sin ) sin 0

         

    

    

    

M v u u v C v u

K u v k u v f
. (70) 

In practice, for the cubic nonlinear system, we can reduce the order of triangle functions in Nk and rewrite it as 

 N N1 N2 N3 N4( , ,cos ,sin ) ( , )cos ( , )cos3 ( , )sin ( , )sin3        k u v k u v k u v k u v k u v   (71) 

Then, assuming that u and v are constant, by calculating (70)×sinθ-(69)×cosθ and integrating the result from 0 to 2π, we 

obtain 

 
2

L Nc2 [ ] ( , )      Mu K M v Cu k u v f . (72) 

Similarly, calculating (70)×cosθ+(69)×sinθ and integrating over the interval [0, 2π] gives: 

 
2

L Ns2 [ ] ( , )      Mv K M u Cv k u v . (73) 

The steady solutions correspond to the condition  u v 0  and their expressions are 

 
2

L Nc[ ] ( , )    K M v Cu k u v f , (74) 

 
2

L Ns[ ] ( , )    K M u Cv k u v 0 . (75) 

The amplitude of the response is
2 2 Y u v . Generally, we cannot obtain an analytical solution of these algebraic 

equations. Newton method and continuation are used to find the solution.  

In fact, HBM can obtain the same result as (74), but with the differential formula, we can analyze the stability of a so-

lution. We rewrite (72) and (73) to be 

 2 ( )R   y Ay y F   (76) 

in which 

 ˆ, ,
0

   
    
   

u f
y F M

v
  (77) 
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1

ˆ ,



 
  

 

M
M

M
  (78) 

 
2

L

2

L

ˆ  

 

  
  

 

C K M
A M

K M C
,  (79) 

 
Nc

Ns

( , )
ˆ( )

( , )
R

 
  

 

k u v
y M

k u v
.  (80) 

Then the Jacobian matrix of the system described by (76) is 

 
( )R

 


y
J A

y
. (81) 

The stability of a solution is determined by the real parts of the eigenvalues of J: if there is an eigenvalue having a posi-

tive real part, the periodic solution is unstable; otherwise, it is stable.  

However, though this stability theory of the periodic solution is rigorous in mathematics, for a high-dimensional sys-

tem, it may provide wrong results because of numerical errors coming from the periodic solutions and the eigenvalues of 

J. Moreover, the nonlinear dynamics developed at present is not enough to analyze the high-dimensional systems. To 

yield an accurate result, we need to reduce the dimensions of the original system. After the dimension-reduction, we can 

use HAA to solve the periodic solutions and implement a bifurcation analysis in frequency domain. The dimen-

sion-reduction is detailed in Supplementary Note 4.  

  Influences of nonlinear sources 

The theoretical influences of different nonlinear sources on the NAM beam-N1 are illustrated in Supplementary Fig. 4. 

The influences of the vibro-impact oscillator are explained in Fig. 3c and not repeated here. As illustrated in Supplemen-

tary Fig. 4a, in the studied force range, the response of the geometrical-nonlinear beam is approximately equal to the 

geometrical & inertial-nonlinear beam in 0-760 Hz, which means that the inertial nonlinearity can be neglected if we had 

considered the geometrical nonlinearity in this situation. By comparing the linear beam and the geometrical-nonlinear 

beam, we find the nonlinear effect is broadband and the geometrical nonlinearity can help to suppress the infinite reso-

nances especially in 0-20 Hz (because the beam generates larger deformations near the resonances in 0-20 Hz).  

By comparing displacements at point A sA under the three cases in Supplementary Fig. 4b, we find that: in 0-20 Hz (it 

is in 0-LR1), the geometrical nonlinearity plays a main effect; however, in the frequency range 20 Hz-LR2, especially 

near LR1, the Duffing oscillator plays a main effect to significantly suppress the elastic waves; the nonlinear effect de-

riving from the Duffing oscillator is broadband but it becomes weaker for the frequencies over LR2, meanwhile, the 

nonlinear effect from geometrical nonlinearity becomes a little stronger than the Duffing oscillator. Therefore in the 
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broadband analyses, the geometrical and inertial nonlinearities can be neglected when we had considered the nonlinear 

oscillators.  

 

Supplementary Figure 4 | Influences of different nonlinear factors on NAM beam-N1. The displacement at point A sA is present. The 

excitation force applied at point E is 10 N. Here a solution is solved by Newton method with a zero initial value. The dispersion properties 

are presented in Fig. 3b. ‘L’, ‘Geo’, ‘Inertial’ and ‘Duff’ represent l inear, geometrical nonlinearity, inertial nonlinearity (shorten effect) and 

nonlinear Duffing oscil lator cases, respectively. The vibro-impact oscil lator is not considered here. (a) Three cases: l inear; geometrical 

nonlinearity; geometrical & inertial nonlinearities. (b) Three cases: l inear; Duffing oscil lator; Duffing oscil lator & geometrical & inertial 

nonlinearities.  

 

  Nonlinearity of the vibro-impact oscillator 

In the theoretical description of the metamaterial beam and plate, the nonlinear restoring force of the vibro-impact os-

cillator is 3 c( ) nk xP k xx  , where c , 1nk    . In Fig. 3, we analyses the nonlinear effect by taking n=3 under 

F=5 N as example in bifurcation analyses. In fact, we can obtain stronger nonlinear effect by increasing n. In Supple-

mentary Fig. 5, we compare the broadband responses under F=2 N for two cases n=3 and n=5. Results indicate that the 

case n=5 obtains a broader effect that suppresses the elastic wave with a smaller excitation than the case n=3, especially 

in the third passband. Moreover, the responses near LR1 are approximately equal for the two cases. Therefore we can 

predict that, further increasing n will make the theoretical features in the frequency responses approach to the experi-

mental results.  
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Supplementary Figure 5 | Different approximate orders of the vibro-impact oscillator. The excitation force F is 2 N. Here the solution 

is solved by Newton method with a zero initial value. The geometrical nonlinearity is not considered here. When n=3, kc=1×10
10

; when n=5, 

kc=3×10
16

.  

 

  Experiments on the LAM and NAM beams 

In this section, an experiment on a LAM beam is introduced firstly. We remove all the magnets in the NAM cell in Fig. 

2a to fabricate a cell of the LAM. There is a strut and a bolt left, which can be equivalent to a torsional local resonator 

that produces a LR bandgap. Influences of moderate deformation on the broadband frequency responses are measured.  

For this LAM beam, under moderate deformations, there would be inertial and geometrical nonlinearities in the pri-

mary beam, but there is not nonlinearity came from the attached oscillators. As illustrated in Supplementary Fig. 6, the 

transfer functions under two remarkably different excitations remain nearly constant in 0-2000 Hz, except for from some 

local small differences. Those local differences are deemed to be introduced by the geometrical nonlinearity and the un-

avoidable system errors. This experiment proves that: the experimental system is robust and the noise-signal ratio is ac-

ceptable; the influences of inertial and geometrical nonlinearities on the acoustic metamaterial beam are not apparent 

under the excitation levels in our experiments, which demonstrates the results in theoretical analyses.  

 

Supplementary Figure 6 | Transfer functions of the LAM beam under small and moderate deformations.  HA(ω) and HD(ω) symbolize 

the transfer functions at points A and D, respectively. D is the center point between A and B on the beam (see Fig. 2f). L1: the excitation 
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voltage of the amplifier is 0.3 V and the average driving displacements in the interval (0, 20 Hz) is 5.643×10
-4
 mm; L2: the voltage is 5.0 V 

(5.065×10
-2
 mm). If the averages are made in the interval (0, 2000 Hz), the average driving amplitude also increases 61.9 times from 0.3 V 

to 5.0 V.  

 

Secondly, we will directly compare the responses of the LAM beam and the NAM beam. As well established, the fre-

quency response of a linear system increases linearly with the excitation, therefore we can derive its response under a 

higher excitation from the response under a small excitation, and vice versa. Among the experiments on the NAM beam 

shown in Fig. 3a, case i 0.1 V is a linear case but case iv 5.8 V is a strongly nonlinear case. By comparing the averaged 

excitation velocities ev  of the two cases, we get 
e,iv e,i64.2v v in a broad band. Indeed, as illustrated in Supplementary 

Fig. 7, for the spectra of the excitation velocities e ( )v f , we have 
e,iv e,i( ) 64.2 ( )v f v f though there are tiny local differ-

ences, where f denotes the frequency. This result demonstrates further the robustness of the experimental apparatus. 

Therefore 
rsp,i64.2v should be the response of the linearized system in case iv (it is a supposed value but not a true value), 

that is,
rsp, iv,L rsp, i64.2v v , where the subscript ‘L’ symbolizes ‘linearized’. 

rsp, ivv is the true response in case iv. By com-

paring 
rsp, iv,Lv  with 

rsp, ivv , we obtain the influences of the nonlinearities in the NAM beam on the wave propagation. 

The behaviors shown by the responses are identical as the transfer functions  in Fig. 3a: wave propagation in NAM beam 

is suppressed in an ultra-low and ultra-broad band.  

  

Supplementary Figure 7 | Response v elocities of the NAM beam under two excitations.  Here, vrsp at points A and B are symbolized 

by vA and vB, respectively. N: case iv 5.8 V in Fig. 3; L: the linearized case iv derived from case i  0.1 V in Fig. 3; Different cases are indi-

cated in the legends.  

 

  Supplementary note 4. Dimension-reduction method 

Bifurcation properties can help to directly demonstrate the chaotic mechanism in theory. For a low-dimensional model, 
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HAA can present bifurcations of periodic solutions accurately
6
. However, for the high-dimensional model of the NAM 

beam, HAA would give wrong stability information because of the numerical errors coming from the periodic solutions 

and the eigenvalues of the Jacobian matrix (eigenvalues are sensitive to periodic solutions). To analyze the bifurcations of 

the periodic solutions of the NAM beam, we need practical dimension-reduction algorithm
7
 in frequency domain to re-

duce the dimension of the finite element model.  

Here we adopt the thought of the post-processed Galerkin method
8
 in frequency domain to reduce the dimension of the 

NAM beam and then we analyze the periodic solutions and their bifurcations based upon the reduced system. 

  Dimension-reduction algorithm 

The dimension d of a system is the number of the second-order differential equations (64). We adopt a rigorous and 

practical dimension-reduction approach based on the orthogonality of linear modals.  

The eigenvalues of the matrix B
1

L
 M K  are 2

j j  , and the corresponding eigenvector is jφ , that is, 

j j j Bφ φ 0 . j is the jth-order nature frequency. Based on the modal orthogonality, we have 

 T
0,

[ ]
,j i

j

i j

h i j


 


φ X φ , (82) 

in which the matrix [X] represents M or KL, the corresponding hj is named as ‘modal mass’ or ‘modal stiffness’. Gener-

ally, for the damping matrix, T 0j i φ Cφ  for i j . But if we adopt the dynamic proportional damping model in Eq. (62),  

T 0j i φ Cφ  for i j .  

To reduce the dimension, firstly, let’s sort the eigenvalues as 1 2 3    . And the corresponding eigenvectors 

are 1 2, ,  . For a solution q we make the ansatz 

 k k q H x P y , (83) 

where the columns of the matrix 1 2[ , , , ]k k  H  span the k-dimensional sub-space 1 2span{ , , , }k k  H

formed by the first k  eigenvectors. Similarly, 1 2span{ , , , }k k k n   P  and 1 2[ , , , ]k k k n   P .  

Secondly, subscribing (83) in (64) and specifying the nonlinear operator N( ) ( )R q k q yield 

 L( ) ( ) ( ) ( , ) ( ).k k k k k k R t      M H x P y C H x P y K H x P y x y F   (84) 

By left multiplying 
T
kH and 

T
kP  by Eq. (84) respectively, we obtain 

 
T T

1 1 1 ( ) ( ),k k k kR t    M x C x K x H H x P y H F   (85) 

 
T T

2 2 2 ( ) ( ),k k k kR t    M y C y K y P H x P y P F   (86) 

where 
T T

1 1, ,k k k k M H MH C H CH
T T

1 L 2, ,k k k k K H K H M P MP
T T

2 2 L,k k k k C P CP K P K P .  

The first formula in (85) is the reduced system. Then, the problem comes to be how to solve the system. The traditional 
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Galerkin approach neglect the influences of high-order modals by specifying y=0, so the reduced system is  

 T T
1 1 1 ( ) ( ).k k kR t   M x C x K x H H x H F   (87) 

Based on the approximate inertial manifold theory, the nonlinear Galerkin method takes into consideration of the ef-

fects of the higher eigenmodes. In this method, we need to formulate a graph (x, app ) that makes app ( ) y x . By 

specifying 0, 0 y y in the second formula of (85), one yields 

  1 T T
app 2( ) ( ) ( ) .k k k kR t    x K P H x P y P F   (88) 

In practice, Picard iterations are used to solve app ( ) x , for example,  

  1 T T
1 2( ) ( ) ( ) ,k k kR t   x K P H x P F   (89) 

  1 T T
2 2 1( ) ( ( )) ( ) .k k k kR t     x K P H x P x P F   (90) 

Therefore, the reduced system in this method is  

 T T
1 1 1 app( ( )) ( )k k k kR t     M x C x K x H H x P x H F . (91) 

However, it is time consuming to solve app ( ) x  in frequency domain because the nonlinear operator ( , )R x y  needs 

many high-order symbol calculations. For example, if the original nonlinear operator is cubic nonlinearity, 2( ) x  be-

comes nine-order and then Eq. (91) becomes 27-order.  

This paper adopts the idea of the post-processed Galerkin thought. The steps of this algorithm are listed below.  

Step 1: Solve Eq. (87) with HAA by the ansatz cos sint t  x a b , it is 

 
2

1 1 1 s( ) ( , ) 0,k R    K M b C a H a b   (92) 

 
2

1 1 1 c( ) ( , ) ,k kR    K M a C b H a b H f   (93) 

where s c( ) ( , )sin ( , )cos (sin3 , cos3 )kR R t R t o t t     H x a b a b , in which ( )o  denotes the third-order 

value.  

Step 2: Determine the stability of the reduced system by Jacobian matrix 

 
1 1

ˆ( , )R
J


 



a b
A

X
  (94) 

where T T T[ ]X a b and 

 

1

1

1

1

ˆ ,



 
  

 

M
M

M
  (95) 

 
2

1 1 1

1 1 2

1 1 1

ˆ ,
 

 

  
  

 

C K M
A M

K M C
  (96) 
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s

c

( , )
ˆ ˆ( , ) .

( , )

k

k

R
R

R

 
  

 

H a b
a b M

H a b
  (97) 

The stabilities of the periodic solutions of the original system are same with that of the reduced system.  

Step 3: With the solved x, we post-process that 1 1( ) ( cos sin )t t   y x a b  and adopt the first-order harmonic 

approximation.  

Step 4: The periodic solution of the original system is solved with Eq. (83).  

  Bifurcations in the NAM beam-N1 

To demonstrate the validity of the dimension-reduction algorithm, we reduce the dimension of the finite element model 

of NAM beam-N1 from 78 to 20 to study the bifurcations of periodic solutions , as illustrated in Supplementary Fig. 8. 

Geometrical nonlinearity is considered here. In the dimension-reduction procedure, we consider the first 20 linear 

eigenmodes to approximate the responses in 0-120 Hz. In the next section, we will introduce how to expand this fre-

quency range. Moreover, perturbation continuation methom
6
 is used to find different branches of solutions. Considering 

the numerical errors, we used a tiny eigenvalue μc=1×10
-8

 of the Jacobian matrix as the critical value to determine the 

stability of a solution. In fact, for unstable solutions, the positive real parts of the eigenvalues of Jacobian matrix can be 

very large; in contrast, they are negative or just in the magnitude 10
-12

 for stable solutions. In Fig. 3, we also use this 

threshold value for NAM beam-N2.  

As suggested in Supplementary Fig. 8, near 16 Hz, because the existence of cubic geometrical nonlinearity, the non-

linear resonance consists of 3 branches bending right, among which two branches are stable and another branch is unsta-

ble, which is like the nonlinear resonance of a 1DoF nonlinear system. This nonlinear resonance demonstrates the accu-

racy of the dimension-reduction algorithm. In contrast, near 60 Hz and 85 Hz, nonlinear resonances consist of unstable 

branches or unstable peaks whose amplitudes are much lower than the linearized responses. Those unstable branches 

provide high possibilities of chaotic responses, as well established in Ref. [6].  

 

Supplementary Figure 8 | Bifurcations of the periodic solutions of the reduced system NAM beam-N1. The constant force F=20N. 

Thin black lines: solutions of LAM; solid blue (dashed green): stable (unstable) periodic solutions of the NAM. 
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  Validity of the dimension-reduced method for NAM beam-N2 

There are 90 dimensions for the NAM beam-N2. Here, the geometrical nonlinearity can be neglected because of the 

strongly nonlinearity coming from the vibro-impact oscillators. However, because the NAM beam consists of periodic 

nonlinear local resonators, there are dense LR eigenmodes whose frequencies are approximately equal. For example, the 

first 37 eigen-frequencies of the linearized NAM beam-N2 are (in descending order):  

202.601, 199.27, 191.445, 174.784, 147.76, 116.412, 86.3573, 60.5525, 42.9743, 38.1879, 37.6735, 36.4054, 

36.3972, 33.6655, 33.6534, 33.6279, 33.5766, 33.467, 33.1973, 32.3269, 28.0274, 16.3884, 10.671, 10.6602, 

10.6579, 10.6579, 10.6578, 10.6577, 10.6576, 10.6574, 10.6571, 10.6564, 10.6547, 10.6453, 6.10696, 

0.000073698i, 0.000015911 

As shown in this list, the two teams of underlined frequencies are approximately equal. If we want to cover the re-

sponses in 0-175 Hz in the reduced system, the original dimension-reduction approach has to consider 34 eignenmodes , 

which is so high that the calculation needs a very long time. To reduce the dimension more but still keep the accuracy in 

0-175 Hz, actually we can pick the 23 eigenmodes whose frequencies are thickened in the list. We name this procedure as 

picking dimension-reduction approach. The picking method can filter the approximately equal local-resonant 

eigenmodes.  

As shown in Supplementary Fig. 9, the response of the reduced system is nearly equal to the original un-reduced sys-

tem in this frequency range except for a small difference near 85 Hz, which demonstrate the dimension -reduction algo-

rithm is valid.  

  

Supplementary Figure 9 | Comparison of the dimension-reduced system and the original system. In the nonlinear FEM, the original 

system has 90 dimensions. The reduced system has 23 dimensions which cover the responses in 0 -175 Hz. F=5 N.  
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