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Supplementary note 1. Method for equivalent parameters

As shown in Fig. 2b, the flexural motion of the entire attachment in the meta-cell can be modeled as a torsional oscil-
lating system. To determine the equivalent parameters J,, J, and k1, the finite element method (FEM) is used to calculate
the low-frequency responses of the entire attachment, and the displacement of the terminal points are shown in Supple-

mentary Fig. 1. The first resonant and anti-resonant frequencies of this system are f;; = 226 Hz and fr, = 1,424 Hz, re-

spectively. In addition, wy=2xfy, i=1, 2.
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Supplementary Figure 1 | Frequency responses of the rod with concentrated masses. FEM isused to calculate the frequency

responses of the entire attachment in Fig. 2b. The parametersof the rod with massesare listed in Table 1. The displacement of the ter-

minal pointisshown here. fr; and fr, denote the first resonant and the first anti-resonant frequencies, respectively.

The dynamic inertia of the equivalent torsional oscillators is

J(w) = Iy +k; (e — ). 1)

The properties of the metamaterial tell us J(wp)=,J(wr,)=0 and thus we derive k;/J, =w? and
kr = Jo(@?, —?,) . Another relevant equation is the total inertia J, relative to the fixed point O, J,= Jo+J,. For the struc-
ture in practice, we have J, =3 J;, J;=m, (ri2/4+di2/12+d§ ) where m;, r;, d; and d,; are the mass, the radius, the
length and the distance between the center of gravity and point O, respectively; and the subscript i denotes the corre-

sponding parameters of the magnets, the strut and the bolt. With the three equations, the equivalent parameters can be

solved:
iy = % @
T — ]
]/(a)12'2_w12'1)+1/w'|2'1
Jr =kT/w12'1’ ©)
Jo=J:-J,. (4)

An equivalent system with more Degrees-of-freedons (DoFs) can describe higher-order motions in the high-frequency

range.



Supplementary note 2. Dispersion theory based on FEM

FEM of the nonlinear oscillators

The finite elements of the nonlinear oscillators derive from their motion equations. In case N1, that is, neglecting the

influence of the vibro-impact oscillator, the node vector is v=[w,, 6, W,, 6,]", where W, denotes the transverse dis-
placement relative to wy, W, =w, —w,. Therefore the mass matrix m,,, linear stiffness matrix k., and the nonlinear

stiffness matrix k., ofthei” elementare

my+m 0 m O
0 J, 0 0
m, = , 5
er m 0 m o (5)
0 0 0 J
0 0 0 0
0 k 0 -k
Koy = T T 6
erL O O kl 0 ( )
0
0
kerDi = 2 . (7)
|(ZV_Vri
0

If we take into consideration of the vibro-impact oscillator, as shown in Fig. 2c, the motion equation of the coupled

torsion-vibro-impact systemin the NAM beamis

Jofl =k (6~ 66)+ Mo 1), ®
‘Jrér +mr|r2(&r +ér) :_kT(gr _90)1 ©
m, (¢r + gr) = _k3¢r - I(c|r2¢rn’ (10)

where ¢ =u,/l, -6, . In this case, by specifying the node vector as v=[Wo, 6y, W, , 6;, 4,]", the element matrices are

[my+m, 0 m, i
0 Jo O
Mg = m, 0 m J (11)
Jo+mlZ ml?
L my m |
0 0 0 o0 O
0 kr 0 —k; O
ke =[0 0 k 0 0 (12)
0 %k 0 k O
0 0 0 0 Kk



Kepi = k, W3 . (13)

koIf g |
For the NAM plate, a similar expression can be derived. This system is named as NAM-N2. In fact, because the rela-
tive coordinates W, and ¢, are used, the nonlinear stiffness matrix k.p; is decoupled.
In the dispersion solutions detailed below, we use the cubic term n=3 to approximate the vibro-impact oscillator, on
which occasion we rewrite Kop as Kep; =[n]-v?, where [n]is the coefficient matrix consisting of the nonzero ele-

ments k, and k.. Thepowerofavector x isdefinedas x" ={x---x--}.

FEM of a periodic cell of the NAM beam

By astandard FEM process, the motionequation ofallthe nodesinacell is

M +Ka+N-@® =F, (14)

where
d=[ul uf ug ull, (15)
f=[f of2 o, (16)

in which M, K and N denote the mass, the stiffness and the nonlinear stiffness coefficient matrices, respectively;
Gdenotes the displacement vector of all the nodes; f is the vector of the node forces; the subscripts, L, I, R and a,
symbolize the nodes at the left boundary, inside the primary beam, at the right boundary and of the attachments, respec-
tively; u_ =[w 91]T=[W0 HO]T, and u, depends on if the vibro-impact motion is considered. For NAM-N1,
U, =[® 61" and for NAM-N2 u, =[W, 6, ¢1". In fact, there are only two nonzero elements in N that are

corresponding tothe relativedisplacements W, and ¢,.

With Bloch theorem in the one-dimensional (1D) periodic beam, the periodic boundary conditions for a cell are ex-

pressed as
uL ’ (17)
fr =—e"f,, (19)

where x € [0,27] denotes the wave vector, a is the lattice constant and i2 =-1. If G=[u] ul ulT", f=[f] 0 0]", one

gets
=R, (19)



in which,

| 00
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With the relationshipsin (17), we can prove that
Rf =0, (21)

where the superscript ‘H’ denotes the conjugate transpose. Because the elements in N corresponding to u[ and u,T

are zero, for the nonlinear part, one obtains RHN(RU)3 = RHNR(U)3. At last, substitute the old coordinates o with
the newvector T, one obtainsthe newmotionequation ofacell. It is

Mii+ R+ N-(1)° =0 (22)

where M=R"MR, K=R"KR, N=R"NR.

FEM of a periodic cell of the NAM plate

For the plate, the displacement vector of every node is u; =[w; 6,; 0,; 1" . With a proper transform and a standard

FEM procedure, themotion equationofa cell reads
M+ K{a}+N{q°} = {f} (23)
where the displacementvector of the whole systemis
{c} ={alsG5.Are AL AR Ol7 .07 G701 0 (24)

As shown in Supplementary Fig. 2, g; denotes the set of node displacements, for example, g represents the displace-

ment of all the nodes in the left boundary of a cell. =[ W, , 6, 6,]" or G=[W, , Oy, Oy, dw, ], Which depends on the

systemN21or N2. Correspondingly, the node vector ofthe force is

(B R 0 FLI L FLI LS L LB A A (25)

Supplementary Figure 2 | Displacementvectors ina cell ofthe NAM plate. g denotesthe displacement vector. The subscriptsrep-
resent the different positionsof the nodes, aslabeled near the corresponding position. L: left; B: bottom; R: right; T: top; I: inner; r: the

resonator. For example, gre () meansit is the displacement vector of the right bottom corner (the nodesalong left boundary apart from
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the corners); g, meansthe displacement vector of allthe nodesinsidethe cell, apart from all the boundariesand corners.

The Bloch theoremofa periodic cellis expressedas

dre =€ a1, (26)

dr =€*"qy, 27)

Ort = ei(kXIXJrkyly)QLB' (28)

Qur = eiKVIYQLB: (29)

ar = eiKYIYQBa (30)

and

fp =—e"hf,, (31)

PR (32)

for = —eikxleLT _ eikylyfRB _ ei(kxlx+ky|y)fLB, (33)

where |, and |, are the lattice constants in x and y directions, respectively; k=(k,, k) is the wave vector of the first Bril-

louin zone (see Fig. 2g). For the nodes inside the cell and on the attached resonator, f, =0, f, =0. By defining a new

vector{c}, ={0/s.,dg.a7.a/ A }' ,oneyields
{a}=R{d}. (34)
where
[, 0 0 0 0]
0 g 0 0 0
e g 0 0 0 0
0 0 I, 0 0
0 0 %1 0 0
R ey 0 o o0 o0l (39
0 ey, 0 0 0
glbrby o 0 0 0
0 0 o 1, 0
0 0 0o 0 I

in which I; denotes the identity matrix whose dimension is equal to the corresponding vector ¢. With the relationships of

interaction forces between neighbor cells, we can provethat

R™{f}={0}. (36)
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At last, the motion equation ofa cell is transformed to
M{td, +K{a}, +N-{a} =0, 37

where M=R"MR, K =R"KR, N=R"NR. Equations (22) and (37) haveasame form.

Methods to calculate the dispersion relations

The analytical dispersion solutions of the linearized systemare obtained with the eigen function

K-w?M|=0 (38)
| |

However, only approximate dispersion solutions can be found for nonlinear metamaterials.

For the weakly nonlinear metamaterial, perturbation approach (PA) is used to solve the dispersion relations, as elabo-

rated in the Refs. [1, 2]. The nonlinear dispersionsolutionderives fromPA is
3UgN(U,)*

—0 4+ 0O(?), 39
8a,UTMU, (&) (39)

o=, +ew,+0(e?) = w, +

where U, is the generalized eigenvector belonging to the eigenfrequency w, of the linearized system, that is,
[K-@M]U, =0; O(&?) denotes high-order small quantities.

In our manuscript, PA can only be used to in the case NAM-N1. For NAM-NZ2, the nonlinearity in vibro-impact oscil-

latoris so strongthat PAwould present wrongresults.

For the strongly nonlinear acoustic metamaterial, harmonic balance method (HBM) can present the dispersion rela-
tionships more accurately. Here the wave solution is assumed as u(t)=Usin «t . Balancing the coefficient of sinat, we
obtain the first-order harmonic balance solution

[R—a)zl\_/l]U+%N(U)3 -0, (40)

In both PA and HBM, by specifying the initial amplitude Ugy; of uy, we can solve the dispersion frequency w and
otherparametersin U.

In the FEM process, a cell of the primary beam is meshed by three conformal elements with same length. And a 2D
NAM plate cell is meshed by 2x2 elements. These meshes are accurate enough for low-frequency studies (lower than
1500 Hz). For NAM beam-N2, analytical solutions can be found for the 11-dimensional (11D) system of algebraic equa-
tions in Eg. (40). However, for the 2D NAM plate-N2, the system of equations is 16D. It is a high-dimensional system so

that it becomes difficult to find analytical solutions with HBM. Therefore only the dispersion solutions of the NAM



plate-N1are considered and solved by PA.

Supplementary note 3. Nonlinear vibration of NAM beam

In this section, based on the nonlinear FEM, we take into account of four nonlinear sources in the NAM beans: the in-
ertial nonlinearity, the geometrical nonlinearity, the Duffing oscillator and the vibro-impact oscillator. HBM and Har-
monic average approach (HAA) are introduced. By studying the influences of different nonlinear sources, we confirm
that the Duffing and the vibro-impact oscillators are the most important nonlinear factors. Moreover, the strong nonline-
arity of the vibro-impact oscillator is analyzed with a comparative way. At last, we show the experimental results on a

LAM beam.

Nonlinear FEM of the NAM beam

1. Nonlinear FEM of a pure beam

The 2D theory for the geometrically exact beam element is based on the assumption of the plane across section. It was

derived by Reissnerand is valid for finite deflections, rotations and strains® *. The associate strain-deflection relations are

&= 1+u,)cosy +w, siny -1, (41)
¥ =W, cosy —(1+u,)siny, (42)
K:l/jx' (43)

where ¢, 7, k are the axial strain, the shear strain and the curvature, respectively; u is the displacement in axial direction,

w is the deflectionand v is the rotation, as shown in Supplementary Fig. 3; (-),=d/dx.
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Supplementary Figure 3 | Deformation of the nonlinear beam. Forthe deformed beam, thenode at x generatesan axial displacement

\
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u, atransverse displacement w anda deflection . The normal vector of the section isn. w’ denotesthe supposed rotation of the middle

face3.

The Eula-Bernoullibeamassumes y=0. By using this shear constrain, ¢ is obtained dependingupon u and w



gzaf(l+ux)2+wf ~1. (44)

By some algebrato solve yand thenusinga derivation, oneyields

e W (14U, ) — U, W (45)

@+u,)? +w,?

Forthe free-end beam, the axial deformation canbe neglect, that is, ¢=0. Using this constrain to Eq. (44) yields

Uy =y1-wZ -1 (46)

Therefore u,<0, which indicates the beam generates shorten inertial effect. Through an integral, we obtain the displace-

ment induced by the shorten effectat point x

u= I OX (,fl—wﬁ —1)dx 47

and
U = —IOX W, Wy / 1-w2dx . (48)
With the Taylor series 1/\/1—_W§zl+%wf +...,0neyields
U = — IOX (W Wy +%vv,3(wxt +..)dx ~ —IOX W, W, dX. (49)
By inserting u, into (45), the curvature is obtained
K= W /L2 (50)
Using that Taylor series, we obtain
K% = W2 +W2wZ, (51)

Based on these displacement and stain expressions, the kinetic energy T and strain energy U of an element within

length sare
2
l S 2 1 S 2 1 S 2 1 S X
T:—J udx+—j de:—j de+—j IWW dx | dx, 52
20/31 20pt 20,01 20p0XXt (52)

1 1 1
U =§L EAgde+§j0 Elx2dx =§L E1 (w2, +w2w2 )dx, (53)

where (-),=d/dx and p is the mass of unit length. The second term in T denotes the inertial nonlinearity and the second
termin U represents the geometrical nonlinearity. In this expression, the geometrical nonlinearity depends both on the
transverse strain and thecurvature.

At present, most studies on the nonlinear beams use the Galerkin method by assuming that the motion depends on the

superposition of several linear modals. This method reduces much DoFs in analyzing for convenience. However, this



method i proper for simple cases. For the nonlinear metamaterial beam coupled with many nonlinear oscillators, modal
superposition is improper for broadband analyses. Here, we adopt the nonlinear FEM. In general, we can use the expres-
sion of the linear FEM to approximate the displacementfield in nonlinear FEM, that is,

w(x,t) =N(n(t) (54)
where n(t) is the nodal vector, n(t)=[w, 6 w, 6,]",and N(x) is the vector ofshape functions. If we adopt the
finite element coordinate x=1&,and length ofan element is 21, the shape function of the conformal element is

N =W W, W; W,], (55)
where W, :(2_3§+§3)/4, W, :|(1_§_§2+§3)/4, W, :(2+3§_§3)/4 and W, :I<—1—§+§2 +§3)/4.
By inserting w(x,t) in the expressions of T and U, the elemental matrices can be setup with the Lagrange equations.

The linear mass matrixm,, and the nonlinear inertiamatrix m,,; forapure beamelementare

1
Mg, = ol LNTng, (56)
1 ~
mg; =2 [ N Nd, (57)
- g
N = jo N'TN'dE. (58)

And the linear stiffness matrix k, and the geometrical nonlinear stiffness matrix k. foranelementare
1
kel_:% I N"TN"d, (59)
-1

EI 1 ’ 1) ”, "
Kegi :|—5J11N N iNN"d& (60)

in which the subscript ‘i’symbolizes the corresponding matrixof the ith element; ()’=d/d¢; the superscript ‘T’ denotes the
matrix transposition. Theseformulas indicate the nonlinear elemental matrices consis tof quadratic terms and theyare

depends both upon the shape functionandthe nodal coordinates.
2. Nonlinear FEM of the entire NAM beam
With the elemental matrices of the coupled nonlinear oscillators and the nonlinear beam, the motion equation of the
entire systemcan be formulated with a standard FEM procedure®. Itis
[M+M,(@)]g+Cq+K_g+[Kg(@)+K,(a)]a=F(t) =Fsin ot (61)
where M, K, C are the mass, the stiffness and the damping matrices of the system, respectively. The subscripts, L, I, G, 1,

denote the variables corresponding to the linear case, nonlinear inertia, geometry and oscillator. K,(g) can be decou-

pled, but M, (g) and Kg(qg)are coupled.



We adoptthe dynamic proportional damping model,
C=cK, /o (62)
where ¢, is a constant damping coefficient. In the main text and in this document, ¢,=0.001 in the bifurcation analyses

based ondimensional reduction method. In other method, the damping effectis neglect.

Method for frequency responses

1. Harmonic balance method (HBM)

The wave propagation depends on the periodic solutions. A frequency response is ako a periodic solution. If the stabil-

ity of a solution is unnecessary, HBM can be used. A first-order approximation of the solution is q(t) = Qsinwt . Sub-
scribing itinto (61) and balancingthe harmonic, we obtain thesolution for the cubic nonlinear system,
[KL—QZM]Q+§[—QZMI(Q)+KG(Q)+Kr(Q)]Q=F. (63)

When the nonlinear matrices contain higher-order terms, the approach is still valid except for the different coefficients.
However, there is larger round-off error for higher order nonlinear terms. In this case, we need to take into consideration
of high-order harmonic waves, for example, supposing the solutionis q(t) = Q, sin wt + Q5 sin 3at .

The Newton iteration numerical algorithm is used to find the solutions of the vector Q with a specified force F at point
E (see Fig. 2f,g). In this process, each cell of the NAM beam is meshed into two conformal elements, which is accurate
in low-frequency range. Therefore, there are 78 DoFs in total for the NAM beam-N1 and the NAM beam-N2 has 90
DoFs.

However, HBM doesn’t provide a regime to analyze the stability of a solution, so it cannot be directly used for bifur-

cation studies, even for simple cases. To reach this problem, we adopt the harmonic average approach (HAA) °.

2. Harmonic average approach (HAA)

To analyze the stability of periodic solutions, we need to solve [M+M,(q)] " to derive the Jacobian matrix of the
system. However, it is difficult at present to solve a high-dimensional [|\/|,(q)]‘l because it contains many unknown
variables. Therefore we neglect the inertial nonlinearity in this method and our analyses will address that this neglecting

does notintroduce large errors.
We considertheequation

Mg+Cq+K_ q+ky(@)—F(t)=0 (64)

where the vector Ky (Q) = [KG (@)+K, (q)]q . Within this approach, the solutionis assumed to havethe form:
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g =u(t)cos @+ v(t)sin g, (65)
g = —wu(t)sin 8+ wv(t) cos b, (66)

where 9 = ot . The derivatives with respect to time t of the formulas in (65) and (66) are
q=(U+wv)cosd+(V—wu)sinb, (67)
g = (v — w’u) cos @ — (ol + w*V)sin 6 . (68)

Comparing the expressionsof ¢ in Egs. (65) and (67), we obtain
oM(Ucos@+vsind) =0 (69)
The further substitutionof (65) and (67) into (64) gives anotherformofthe equation of motion:

@M [V cos@—usin & —wucosd—wvsind]+wC[vcosd—usinb]

. (70)
+K_ [ucos@+vsind]+k, (u,v,cos8,sin @) —fsind =0
In practice, for the cubic nonlinear system, we can reduce the order of triangle functionsin Kk and rewrite it as
ky (u,v,cos,sin @) =k, (u,v)cos@+K,, (U, v)cos36 + K, (U, v)sin 0+ Kk, (u, v)sin 30 (72)

Then, assuming that u and vare constant, by calculating (70)xsin6-(69)xcosé and integrating the result from 0 to 2z, we

obtain
20MU =[K, —&’M]v-aCu+K, (u,v)-T . (72)
Similarly, calculating (70)xcos8+(69)xsindand integrating over the interval [0, 2] gives:
—20MV =[K, —o’M]Ju+aCv +K,, (u,V) . (73)
The steady solutions correspond tothe condition = v =0 and theirexpressionsare
[K, —o’Mv-aCu+k, (u,v)=f, (74)
[K, —&*M]u+aCv +k, (u,v) =0. (75)
The amplitude of the response isY = m . Generally, we cannot obtain an analytical solution of these algebraic

equations. Newton method and continuationare used to find thesolution.

In fact, HBM can obtain the same result as (74), but with the differential formula, we can analyze the stability of aso-
lution. We rewrite (72) and (73) tobe

2wy =Ay+R(y)+F (76)

e T 77
) .
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A:I\A/I{ oC K “’M}, 79)

K, —o’M wC

~ Ky (U, V)
Ry)=M| ™ : 80
Then the Jacobian matrix of the systemdescribed by (76) is
J=p+ RO (81)
oy

The stability of a solution is determined by the real parts of the eigenvalues of J: if there is an eigenvalue having a posi-
tive real part, the periodic solutionis unstable; otherwise, it is stable.

However, though this stability theory of the periodic solution i rigorous in mathematics, for a high-dimensional sys-
tem, it may provide wrong results because of numerical errors coming from the periodic solutions and the eigenvalues of
J. Moreover, the nonlinear dynamics developed at present is not enough to analyze the high-dimensional systems. To
yield an accurate result, we need to reduce the dimensions of the original system. After the dimension-reduction, we can
use HAA to solve the periodic solutions and implement a bifurcation analysis in frequency domain. The dimen-

sion-reductionis detailed in Supplementary Note 4.

Influences of nonlinear sources

The theoretical influences of different nonlinear sources on the NAM beam-NL1 are illustrated in Supplementary Fig. 4.
The influences of the vibro-impact oscillator are explained in Fig. 3c and not repeated here. As illustrated in Supplemen-
tary Fig. 4a, in the studied force range, the response of the geometrical-nonlinear beam is approximately equal to the
geometrical & inertial-nonlinear beamin 0-760 Hz, which means that the inertial nonlinearity can be neglected if we had
considered the geometrical nonlinearity in this situation. By comparing the linear beam and the geometrical-nonlinear
beam, we find the nonlinear effect is broadband and the geometrical nonlinearity can help to suppress the infinite reso-
nances especially in 0-20 Hz (because the beamgenerates larger deformations near the resonances in 0-20 Hz).

By comparing displacements at point A s, under the three cases in Supplementary Fig. 4b, we find that: in 0-20 Hz (it
is in 0-LR1), the geometrical nonlinearity plays a main effect; however, in the frequency range 20 Hz-LR2, especially
near LR1, the Duffing oscillator plays a main effect to significantly suppress the elastic waves; the nonlinear effect de-
riving from the Duffing oscillator is broadband but it becomes weaker for the frequencies over LR2, meanwhile, the

nonlinear effect from geometrical nonlinearity becomes a little stronger than the Duffing oscillator. Therefore in the
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broadband analyses, the geometrical and inertial nonlinearities can be neglected when we had considered the nonlinear

oscillators.
T ' ' 9
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Supplementary Figure 4 | Influences of different nonlinear factors on NAM beam-N1. The displacementat point Assispresent. The
excitationforce appliedat point Eis10 N. Here a solution issolved by Newton method with a zero initial value. The dispersion properties
are presented in Fig. 3b. 'L, ‘Geo’, ‘Inertial’ and ‘Duff represent linear, geometrical nonlinearity, inertial nonlinearity (shorten effect)and
nonlinear Duffing oscillator cases, respectively. The vibro-impact oscillatorisnot considered here. (a) Three cases: linear;, geometrical
nonlinearity; geometrical & inertial nonlinearities. (b) Three cases: linear; Duffing oscillator; Duffing oscillator & geometrical & inertial

nonlinearities.

Nonlinearity of the vibro-impact oscillator

In the theoretical description of the metamaterial beam and plate, the nonlinear restoring force of the vibro-impact os-
cillator is P(x) =ksx+k.X", where k. =ad ™", a~1. In Fig. 3, we analyses the nonlinear effect by taking n=3 under
F=5 N as example in bifurcation analyses. In fact, we can obtain stronger nonlinear effect by increasing n. In Supple-
mentary Fig. 5, we compare the broadband responses under F=2 N for two cases n=3 and n=5. Results indicate that the
case n=5 obtains a broader effect that suppresses the elastic wave with asmaller excitation than the case n=3, especially
in the third passband. Moreover, the responses near LR1 are approximately equal for the two cases. Therefore we can
predict that, further increasing n will make the theoretical features in the frequency responses approach to the experi-

mental results.
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Supplementary Figure 5 | Differentapproximate orders of the vibro-impact oscillator. The excitation force Fis2 N. Here the solution

is solved by Newton method with a zero initial value. The geometrical nonlinearity is not considered here. When n=3, k.=1x10"% when n=5,

k.=3x10".

Experiments on the LAM and NAM beams

In this section, an experiment on a LAM beam is introduced firstly. We remove all the magnets in the NAM cell in Fig.

2a to fabricate a cell of the LAM. There s a strut and a bolt left, which can be equivalent to a torsional local resonator

that produces a LR bandgap. Influences of moderate deformation on the broadband frequency responses are measured.

For this LAM beam, under moderate deformations, there would be inertial and geometrical nonlinearities in the pri-

mary beam, but there i not nonlinearity came from the attached oscillators. As illustrated in Supplementary Fig. 6, the

transfer functions under two remarkably different excitations remain nearly constant in 0-2000 Hz, except for fromsome

local small differences. Those local differences are deemed to be introduced by the geometrical nonlinearity and the un-

avoidable system errors. This experiment proves that: the experimental system is robust and the noise-signal ratio is ac-

ceptable; the influences of inertial and geometrical nonlinearities on the acoustic metamaterial beam are not apparent

underthe excitation levels in our experiments, which demonstrates the results in theoretical analyses.
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Supplementary Figure 6 | Transfer functions of the LAM beam under small and moderate deformations. Ha(w) and Hp(w) symbolize

the transfer functionsat points Aand D, respectively. Disthe centerpoint between Aand B on the beam (see Fig. 2f). L1: the excitation

14



voltage of the amplifieris0.3 V and the average driving displacementsin the interval (0, 20 Hz) is5.643x10“*mm; L2: the voltage is5.0 V
(5.065x10 mm). If the averages are made in the interval (0, 2000 Hz), the average driving amplitude also increases 61.9 times from 0.3 V

to 5.0 V.

Secondly, we will directly compare the responses of the LAM beamand the NAM beam. As well established, the fre-
guency response of a linear system increases linearly with the excitation, therefore we can derive its response under a
higher excitation fromthe response under a small excitation, and vice versa. Among the experiments on the NAM beam

shown in Fig. 3a, case i 0.1 Vis a linear case but case iv 5.8 V is a strongly nonlinear case. By comparing the averaged

excitation velocities v, of the two cases, we get V,, =64.2V,; in a broad band. Indeed, as illustrated in Supplementary

Fig. 7, for the spectra of the excitation velocities v, (), we have v,

e,iv

(f)=64.2v,;(f) though there are tiny local differ-
ences, where f denotes the frequency. This result demonstrates further the robustness of the experimental apparatus.
Therefore 64.2v,,; should be the response ofthe linearized systemin case iv (it is a supposed value but not a true value),

that i,v =64.2v, ; , where the subscript ‘L’ symbolizes ‘linearized’. v, is the true response in case iv. By com-

rsp, iv,L

paring v, with v, ;, . we obtain the influences of the nonlinearities in the NAM beam on the wave propagation.

rsp, iv,L
The behaviors shown by the responses are identical as the transfer functions in Fig. 3a: wave propagation in NAM beam

is suppressedin an ultra-lowand ultra-broad band.

L:v_ .x64.2
e

Vg (m 5'1)

0 50 100 150 200 250 300 350 400
Frequency (Hz)

Supplementary Figure 7 | Response velocities of the NAM beam under two excitations. Here, vis, at pointsAand B are symbolized
by va and vg, respectively. N: case iv5.8 Vin Fig. 3; L: the linearized case ivderivedfrom case i 0.1 Vin Fig. 3; Differentcasesare indi-

cated in the legends.

Supplementary note 4. Dimension-reduction method

Bifurcation properties can help to directly demonstrate the chaotic mechanismin theory. For a low-dimensional model,
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HAA can present bifurcations of periodic solutions accurately®. However, for the high-dimensional model of the NAM
beam, HAA would give wrong stability information because of the numerical errors coming from the periodic solutions
and the eigenvalues of the Jacobian matrix (eigenvalues are sensitive to periodic solutions). To analyze the bifurcations of
the periodic solutions of the NAM beam, we need practical dimension-reduction algorithm’ in frequency domain to re-
duce the dimension ofthe finite element model.

Here we adopt the thought of the post-processed Galerkin method® in frequency domain to reduce the dimension of the

NAM beamand then we analyze the periodic solutions and their bifurcations based upon thereduced system.

Dimension-reduction algorithm
The dimension d of a system is the number of the second-order differential equations (64). We adopt a rigorous and

practical dimension-reduction approach based on the orthogonality of linear modals.

The eigenvalues of the matrix B:M’lKL are :wj?, and the corresponding eigenvector is ¢;, that is,
Boj—149; =0. o;is the jth-ordernaturefrequency. Based onthe modal orthogonality, we have
0, i#]j

hy, i=j’

0] [Xlo; = { (82)

in which the matrix [X] represents Mor K, the corresponding h;is named as ‘modal mass’ or ‘modal stiffness’. Gener-
ally, for the damping matrix, (pJTc(pi =0 for i= j.Butifwe adoptthe dynamic proportionaldamping model in Eq. (62),
¢;Co, =0 for i=j.
To reduce the dimension, firstly, let’s sort the eigenvalues as |z4| <|z5| <|u |-+ . And the corresponding eigenvectors
are ¢, ¢,,---. Forasolutionqwe make the ansatz
g=HXx+PRy, (83)
where the columns of the matrix H, =[¢, ¢,,---, ¢] span the k-dimensional sub-space H, =span{ey, ¢,,---, ¢}
formed by the first k eigenvectors. Similarly, P, =span{g,,;, &,2.--- 9.} and B =[o1, @00+ @]
Secondly, subscribing (83) in (64) and specifyingthe nonlinearoperator R(q) =ky (q) yield
M(H, X+Py)+C(H Xx+Py)+K_(H X+Py)+R(X, y) =F(t). (84)
By left multiplying HI and PkT by Eq. (84) respectively, we obtain

M+ Cx + KX+ Hy R(H, X +P,y) = H F(t), (85)
Moy +Cay + Koy +P{R(H X +Py) = PF (D), (86)
where M, =H{MH,, C, =HCH,, K, =H]K,H,, M, =P/MP,, C, =P/CP,,K, =P/K P, .

The first formula in (85) is the reduced system. Then, the problem comes to be how to solve the system. The traditional
16



Galerkin approach neglect theinfluences of high-order modals by specifying y=0, so the reduced systemis
M, %+ C, X+ Ko+ Hy R(H, X) = HEF(t). (87)
Based on the approximate inertial manifold theory, the nonlinear Galerkin method takes into consideration of the ef-
fects of the higher eigenmodes. In this method, we need to formulate a graph (X, @) that makes y =®,, (x) . By

specifying y =0,y =0inthe second formula of (85), one yields

Dy (X) = K3 {-RIR(H -+ Pey) + RUF(). (88)

In practice, Picard iterations are usedto solve @, (x) , forexample,
©,(x) = Ko* {-RIR(Hx) + P{F()}, (89)
D, (X) = K" {~P{ R(H X+ Py (X)) + PLF (D)} (90)

Therefore, the reduced systemin this method is

My + CyX+ KyX+ Hy R(H X+ P @, (X)) = HE F(t) - (91)

However, it is time consuming to solve @, (x) in frequency domain because the nonlinear operator R(x,y) needs
many high-order symbol calculations. For example, if the original nonlinear operator is cubic nonlinearity, ®,(x) be-
comes nine-orderandthenEg. (91) becomes 27-order.

This paperadopts theidea of the post-processed Galerkin thought. Thesteps of this algorithmare listed below.

Step 1: Solve Eq. (87) with HAADby the ansatz x =acosat +bsinat , it is

(K, -@’M,)b-aCa+H,R (ab) =0, (92)
(K, -—o*M,)a+aCb+H,R (a,b) = H,f, (93)

where R(H,X) = R;(a,b)sin ot + R; (a,b) cos et +o(sin 3wt, cos3wt) , in which o(-) denotes the third-order

value.

Step 2: Determine the stability ofthe reduced systemby Jacobian matrix

oR(a,b)

J=A+ X (94)
where X=[a" b']"and
.M, *
M, = e (95)
1
N K, —o'M
A=t TS 1T @ (96)

K,—-o’M,  aC,



~ | H.R(a, b)}. (@7)

R(a’b):M{HkRAa,b)

The stabilities ofthe periodic solutions of the original systemare same with that of the reduced system.
Step 3: With the solved x, we post-process that y = ®,(x) = ®,(acosat +bsinat) and adopt the first-order harmonic

approximation.

Step 4: The periodic solution of the original systemis solved with Eq. (83).

Bifurcations in the NAM beam-N1

To demonstrate the validity of the dimension-reduction algorithm, we reduce the dimension of the finite element model
of NAM beam-N1 from 78 to 20 to study the bifurcations of periodic solutions, as illustrated in Supplementary Fig. 8.
Geometrical nonlinearity is considered here. In the dimension-reduction procedure, we consider the first 20 linear
eigenmodes to approximate the responses in 0-120 Hz. In the next section, we will introduce how to expand this fre-
quency range. Moreover, perturbation continuation methom® is used to find different branches of solutions. Considering
the numerical errors, we used a tiny eigenvalue 4=1x10® of the Jacobian matrix as the critical value to determine the
stability of asolution. In fact, for unstable solutions, the positive real parts of the eigenvalues of Jacobian matrix can be
very large; in contrast, they are negative or just in the magnitude 10" for stable solutions. In Fig. 3, we also use this
threshold value for NAM beam-N2.

As suggested in Supplementary Fig. 8, near 16 Hz, because the existence of cubic geometrical nonlinearity, the non-
linear resonance consists of 3 branches bending right, among which two branches are stable and another branch is unsta-
ble, which is like the nonlinear resonance of a 1DoF nonlinear system. This nonlinear resonance demonstrates the accu-
racy of the dimension-reduction algorithm. In contrast, near 60 Hz and 85 Hz, nonlinear resonances consist of unstable
branches or unstable peaks whose amplitudes are much lower than the linearized responses. Those unstable branches

provide high possibilities of chaotic responses, as well established in Ref. [6].
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Supplementary Figure 8 | Bifurcations of the periodic solutions of the reduced system NAM beam-N1. The constant force F=20N.

Thin blacklines: solutionsof LAM; solid blue (dashed green): stable (unstable) periodic solutionsof the NAM.
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Validity of the dimension-reduced method for NAM beam-N2
There are 90 dimensions for the NAM beam-N2. Here, the geometrical nonlinearity can be neglected because of the
strongly nonlinearity coming from the vibro-impact oscillators. However, because the NAM beam consists of periodic
nonlinear local resonators, there are dense LR eigenmodes whose frequencies are approximately equal. For example, the
first 37 eigen-frequencies of the linearized NAM beam-N2are (in descending order):
202601, 199.27, 191.445, 174.784, 147.76, 116.412, 86.3573, 60.5525, 42.9743, 38.1879, 37.6735, 36.4054,

36.3972, 33.6655, 33.6534, 33.6279, 33.5766, 33.467, 33.1973, 32.3269, 28.0274, 16.3884, 10.671, 10.6602

10.6579, 10.6579, 10.6578, 10.6577, 10.6576, 10.6574, 10.6571, 10.6564, 10.6547, 10.6453, 6.10696,

0.000073698i,0.000015911

As shown in this list, the two teams of underlined frequencies are approximately equal. If we want to cover the re-
sponses in 0-175 Hz in the reduced system, the original dimension-reduction approach has to consider 34 eignenmodes,
which is so high that the calculation needs a very long time. To reduce the dimension more but still keep the accuracy in
0-175 Hz, actually we can pick the 23 eigenmodes whose frequencies are thickened in the list. We name this procedure as
picking dimension-reduction approach. The picking method can filter the approximately equal local-resonant
eigenmodes.

As shown in Supplementary Fig. 9, the response of the reduced system is nearly equal to the original un-reduced sys-

tem in this frequency range except for asmall difference near 85 Hz, which demonstrate the dimension-reduction algo-

rithmis valid.
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Supplementary Figure 9 | Comparison of the dimension-reduced system and the original system. In the nonlinear FEM, the original

system has 90 dimensions. Thereduced system has23 dimensionswhich coverthe responsesin 0-175 Hz. F=5 N.
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