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Supplementary	Methods	

	
Algorithm	1:	MR-step1	 for	extracting	all	unique	k-mers	and	 its	abundant	value.	Note	

edge	 represents	 the	 pair	 of	 k-mers	 appearing	 consecutively	 in	 RNA-seq	 read;	 Vi	

represents	the	ith	k-mer	node;	Ei,j	represents	the	pair	of	k-mers	consecutively	appearing	

on	input	reads;	Ci	represents	the	number	of	times	k-meri	found	from	all	input	reads;	CEi,j	

represents	the	number	of	times	Ei,j	found	from	all	input	reads.	

	

Input:	 1. MapReduce	object	V	for	storing	k-mers	
2. RNA-Seq	input	reads	
	

Algorithm:	 1. Map	V:	convert	RNA-seq	reads	to	k-mers	
Input:	Key	=	null,	Value	=	null	

																																	i)	Extract	all	k-mers	from	RNA-Seq	reads	
																																	ii)	Convert	k-mer	into	64	bit	unsigned	integer	as	Vi	

Output:	Key	=	Vi,	Value	=	Vi	
	

2. Collate	V:	k-mer	as	key	
	

3. Reduce	V:	emit	all	unique	k-mers	
Input:	Key	=	Vi,	MultiValue	=	V1,V2,…,VCi	

																																	Ci	=	the	size	of	MultiValue	
Output:	Key	=	Vi,	Value	=	Ci	

	
Output:	 1. MapReduce	object	V:	Key	=	Vi,	Value	=	Ci	

	

	

	

	

	

	

	

	

	

	

	

	

	



Algorithm	 2:	 MR-step2	 for	 extracting	 all	 unique	 edges	 and	 its	 abundant	 value.	 See	

Algorithm	1	for	the	description	of	symbols	in	this	algorithm.	

	

Input:	 1. MapReduce	object	E	for	storing	edges	
2. RNA-Seq	input	reads	
	

Algorithm:	 1. Map	E:	convert	RNA-seq	reads	to	edges	
Input:	Key	=	null,	Value	=	null	

i)	Extract	all	pairs	of	k-mers	as	edges	from	RNA-Seq	reads	
ii)	Convert	pairs	of	k-mers	into	(Vi,	Vj)	

Output:	Key	=	Ei,j=	(Vi,	Vj),	Value	=	Ei,j	
	

2. Collate	E:	edge	as	key	
	

3. Reduce	E:	emit	all	unique	edges	
Input:	Key	=	Ei,j,	MultiValue	=	Ei,j,	Ei,j,…,	Ei,j	
													CEi,j	=	the	size	of	MultiValue	
Output:	Key	=	Ei,j	=	(Vi,	Vj,	CEi,j),	Value	=	null	
	

Output:	 1.	MapReduce	object	E:	Key	=	Ei,j,	Value	=	null	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



Algorithm	3:	MR-step3	for	edge	filtering.	See	Algorithm1	for	the	description	of	symbols	

in	this	algorithm.	

	

Input:	 1. MapReduce	object	E:	Key	=	Ei,j	=	(Vi,	Vj),	Value	=	null	
	

Algorithm:	 1. Map	E:	convert	edges	to	k-mer/edge	pairs	
Input:	Key	=	Ei,j	=	(Vi,	Vj),	Value	=	null	
If	direction	=	right:	

Output:	Key	=	Vi,	Value	=	Ei,j	
Else	

Output:	Key	=	Vj,	Value	=	Ei,j	
	

2. Collate	V:	k-mer	node	as	key	
	

3. Reduce	E:	emit	the	filtered	edge	assignment	
	

Input:	Key	=	Vi	or	Vj,	MultiValue	=	Ei,j,	Ei,j,…	
													CEmax	=	max(CE,CE,….)	
If	CEi	=	CEmax	for	each	Ei	in	Multivalue:	

Output:	Key	=	Ei,j	=	(Vi,	Vj),	Value	=	null	
	

Output:	 1.	MapReduce	object	E:	Key	=	Ei,j,	Value	=	null	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



Algorithm	 4:	 MR-step4	 for	 connected	 component	 labelling.	 See	 Algorithm	 1	 for	 the	

description	of	symbols	in	this	algorithm.	

	

Input:	 1. 	MapReduce	object	E:	Key	=	Ei,j	=	(Vi,	Vj),	Value	=	null	
2. 	MapReduce	object	V:	Key	=	Vi,	Value	=	Zi	=	Vi	
3. 	MapReduce	object	W	=	empty	workspace	
	

Algorithm:	 1. 	Map	W	using	E	as	input:	convert	edges	to	k-mer	nodes	
			Input:	Key	=	Ei,j	=	(Vi,	Vj),	Value	=	null	
			Output:	Key	=	Vi,	Value	=	Ei,j	=	(Vi,	Vj)	
			Output:	Key	=	Vj,	Value	=	Ei,j	=	(Vi,	Vj)	
Add	V	to	W	
Collate	W:	V	as	key	
Reduce	W:	emit	edges	with	zone	ID	of	k-mer	node	
			Input:	Key	=	Vi,	Multivalue	=	EEEE…Z	for	each	E	in	MultiValue	
			Output:	Key	=	Ei,j,,	Value	=	Zi	

	
2. Collate	W:	Edge	as	key	
Reduce	W:	emit	zone	ID	reassignment	
					Input:	Key	=	Ei,j,,	Value	=	ZiZj	
																		Zwinner	=	min(Zi,	Zj);	Zloser	=	max(Zi,	Zj)	
				If	Zi	and	Zj	are	different:	
						Output:	Key	=	Zloser,	Value	=	Zwinner	
		Exit:	if	W	is	empty	
	

3. Map	V:	Invert	k-mer	node/zone	ID	pair	
							Input:				Key	=	Vi,	Value	=	Zi	
							Output:	Key	=	Zi,	Value	=	Vi	
	
4. 	Map	V	using	W	as	input:	add	zone	ID	assignments	into	W	to	V	
					Output:	Key	=	Zi,	Value	=	Zwinner	
	Collate	V:	zone	ID	as	key	
	Reduce	V:	emit	new	zone	ID	assignment	of	each	k-mer	node	
		Input:	Key	=	Zi,	MultiValue	=	VVVV…ZZZ…	
		Znew	=	min(Zi,	Zj,	Zk,…)	
		For	each	Vi	in	MultiValue:	
					Output:	Key	=	Vi,	Value	=	Znew	

	
Output:	 1. 	MapReduce	object	V:	Key	=	Vi,	Value	=	Zi	

	

	

	

	

	



Algorithm	5:	MR-step5	 for	construction	of	 inchworm	 contigs.	See	Algorithm	1	 for	 the	

description	of	symbols	in	this	algorithm.	

	

Input:	 1. MapReduce	object	Vi:	Key	=	Vi,	Value	=	Zi	
2. MapReduce	object	Ki:	Key	=	Vi,	Value	=	Ci	
	

Algorithm:	 1. 	Add	V	to	K	
2. Collate	K:	k-mer	node	as	key	
3. Reduce	K:	emit	zone	ID	with	its	k-mers	and	count	values	

Input:	Key	=	Vi,	MultiValue	=	Zi,	Ci	
Create	hash_map	table:	Key	=	Vi,	Value	=	Ci	
Sort	hash_map	table	by	Ci	in	descending	order	
Execute	inchworm	with	hash_map	table	as	input	
	

Output:	 1. inchworm	contigs:	assembled	sequences	in	fasta	format	
	

	

	

	

	


