
K-mer	clustering	algorithm	using	MapReduce	frame:	

application	to	the	parallelization	of	Inchworm	module	of	

Trinity	

Chang	Sik	Kim1,†,	Martyn	D.	Winn1*,	Vipin	Sachdeva2	and	Kirk	E.	Jordan2	

1The	Hartree	Centre,	STFC	Daresbury	Laboratory,	Warrington,	WA4	4AD,	UK	

2Computational	Science	Center,	IBM	T.J.	Watson	Research,	Cambridge,	MA	USA	

†Cancer	Research	UK	Manchester	Institute,	The	University	of	Manchester,	Manchester,	

M20	4BX,	UK	

§Silicon	Therapeutics,	300	A	Street,	Boston	MA,	USA	
	

	

†,§Present	address	

*Corresponding	author:	martyn.winn@stfc.ac.uk	

	

	

	

	

	

	

	

	

	

	

	



Supplementary	Methods	

	
Algorithm	1:	MR-step1	 for	extracting	all	unique	k-mers	and	 its	abundant	value.	Note	

edge	 represents	 the	 pair	 of	 k-mers	 appearing	 consecutively	 in	 RNA-seq	 read;	 Vi	

represents	the	ith	k-mer	node;	Ei,j	represents	the	pair	of	k-mers	consecutively	appearing	

on	input	reads;	Ci	represents	the	number	of	times	k-meri	found	from	all	input	reads;	CEi,j	

represents	the	number	of	times	Ei,j	found	from	all	input	reads.	

	

Input:	 1. MapReduce	object	V	for	storing	k-mers	
2. RNA-Seq	input	reads	
	

Algorithm:	 1. Map	V:	convert	RNA-seq	reads	to	k-mers	
Input:	Key	=	null,	Value	=	null	

																																	i)	Extract	all	k-mers	from	RNA-Seq	reads	
																																	ii)	Convert	k-mer	into	64	bit	unsigned	integer	as	Vi	

Output:	Key	=	Vi,	Value	=	Vi	
	

2. Collate	V:	k-mer	as	key	
	

3. Reduce	V:	emit	all	unique	k-mers	
Input:	Key	=	Vi,	MultiValue	=	V1,V2,…,VCi	

																																	Ci	=	the	size	of	MultiValue	
Output:	Key	=	Vi,	Value	=	Ci	

	
Output:	 1. MapReduce	object	V:	Key	=	Vi,	Value	=	Ci	

	

	

	

	

	

	

	

	

	

	

	

	

	



Algorithm	 2:	 MR-step2	 for	 extracting	 all	 unique	 edges	 and	 its	 abundant	 value.	 See	

Algorithm	1	for	the	description	of	symbols	in	this	algorithm.	

	

Input:	 1. MapReduce	object	E	for	storing	edges	
2. RNA-Seq	input	reads	
	

Algorithm:	 1. Map	E:	convert	RNA-seq	reads	to	edges	
Input:	Key	=	null,	Value	=	null	

i)	Extract	all	pairs	of	k-mers	as	edges	from	RNA-Seq	reads	
ii)	Convert	pairs	of	k-mers	into	(Vi,	Vj)	

Output:	Key	=	Ei,j=	(Vi,	Vj),	Value	=	Ei,j	
	

2. Collate	E:	edge	as	key	
	

3. Reduce	E:	emit	all	unique	edges	
Input:	Key	=	Ei,j,	MultiValue	=	Ei,j,	Ei,j,…,	Ei,j	
													CEi,j	=	the	size	of	MultiValue	
Output:	Key	=	Ei,j	=	(Vi,	Vj,	CEi,j),	Value	=	null	
	

Output:	 1.	MapReduce	object	E:	Key	=	Ei,j,	Value	=	null	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



Algorithm	3:	MR-step3	for	edge	filtering.	See	Algorithm1	for	the	description	of	symbols	

in	this	algorithm.	

	

Input:	 1. MapReduce	object	E:	Key	=	Ei,j	=	(Vi,	Vj),	Value	=	null	
	

Algorithm:	 1. Map	E:	convert	edges	to	k-mer/edge	pairs	
Input:	Key	=	Ei,j	=	(Vi,	Vj),	Value	=	null	
If	direction	=	right:	

Output:	Key	=	Vi,	Value	=	Ei,j	
Else	

Output:	Key	=	Vj,	Value	=	Ei,j	
	

2. Collate	V:	k-mer	node	as	key	
	

3. Reduce	E:	emit	the	filtered	edge	assignment	
	

Input:	Key	=	Vi	or	Vj,	MultiValue	=	Ei,j,	Ei,j,…	
													CEmax	=	max(CE,CE,….)	
If	CEi	=	CEmax	for	each	Ei	in	Multivalue:	

Output:	Key	=	Ei,j	=	(Vi,	Vj),	Value	=	null	
	

Output:	 1.	MapReduce	object	E:	Key	=	Ei,j,	Value	=	null	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



Algorithm	 4:	 MR-step4	 for	 connected	 component	 labelling.	 See	 Algorithm	 1	 for	 the	

description	of	symbols	in	this	algorithm.	

	

Input:	 1. 	MapReduce	object	E:	Key	=	Ei,j	=	(Vi,	Vj),	Value	=	null	
2. 	MapReduce	object	V:	Key	=	Vi,	Value	=	Zi	=	Vi	
3. 	MapReduce	object	W	=	empty	workspace	
	

Algorithm:	 1. 	Map	W	using	E	as	input:	convert	edges	to	k-mer	nodes	
			Input:	Key	=	Ei,j	=	(Vi,	Vj),	Value	=	null	
			Output:	Key	=	Vi,	Value	=	Ei,j	=	(Vi,	Vj)	
			Output:	Key	=	Vj,	Value	=	Ei,j	=	(Vi,	Vj)	
Add	V	to	W	
Collate	W:	V	as	key	
Reduce	W:	emit	edges	with	zone	ID	of	k-mer	node	
			Input:	Key	=	Vi,	Multivalue	=	EEEE…Z	for	each	E	in	MultiValue	
			Output:	Key	=	Ei,j,,	Value	=	Zi	

	
2. Collate	W:	Edge	as	key	
Reduce	W:	emit	zone	ID	reassignment	
					Input:	Key	=	Ei,j,,	Value	=	ZiZj	
																		Zwinner	=	min(Zi,	Zj);	Zloser	=	max(Zi,	Zj)	
				If	Zi	and	Zj	are	different:	
						Output:	Key	=	Zloser,	Value	=	Zwinner	
		Exit:	if	W	is	empty	
	

3. Map	V:	Invert	k-mer	node/zone	ID	pair	
							Input:				Key	=	Vi,	Value	=	Zi	
							Output:	Key	=	Zi,	Value	=	Vi	
	
4. 	Map	V	using	W	as	input:	add	zone	ID	assignments	into	W	to	V	
					Output:	Key	=	Zi,	Value	=	Zwinner	
	Collate	V:	zone	ID	as	key	
	Reduce	V:	emit	new	zone	ID	assignment	of	each	k-mer	node	
		Input:	Key	=	Zi,	MultiValue	=	VVVV…ZZZ…	
		Znew	=	min(Zi,	Zj,	Zk,…)	
		For	each	Vi	in	MultiValue:	
					Output:	Key	=	Vi,	Value	=	Znew	

	
Output:	 1. 	MapReduce	object	V:	Key	=	Vi,	Value	=	Zi	

	

	

	

	

	



Algorithm	5:	MR-step5	 for	construction	of	 inchworm	 contigs.	See	Algorithm	1	 for	 the	

description	of	symbols	in	this	algorithm.	

	

Input:	 1. MapReduce	object	Vi:	Key	=	Vi,	Value	=	Zi	
2. MapReduce	object	Ki:	Key	=	Vi,	Value	=	Ci	
	

Algorithm:	 1. 	Add	V	to	K	
2. Collate	K:	k-mer	node	as	key	
3. Reduce	K:	emit	zone	ID	with	its	k-mers	and	count	values	

Input:	Key	=	Vi,	MultiValue	=	Zi,	Ci	
Create	hash_map	table:	Key	=	Vi,	Value	=	Ci	
Sort	hash_map	table	by	Ci	in	descending	order	
Execute	inchworm	with	hash_map	table	as	input	
	

Output:	 1. inchworm	contigs:	assembled	sequences	in	fasta	format	
	

	

	

	

	


