
Supplemental Methods 

Flow cytometry and cell selection 

Progenitor populations were defined as follows;  

HSCs (CD45+, EPCR+, CD48-, CD150+) 

Short term-long term-progenitor-HSCs (ST/LTprog/HSC) (Lin-, c-kit+, Sca-1+, Flt3-) 

Multipotent progenitors (MPP) (Lin-, c-kit+, Sca-1+, Flt3+) 

Lymphoid primed multipotent progenitors (LMPP) (Lin-, c-kit+, Sca-1+, Flt3hi) 

Common lymphoid progenitors (CLP) (Lin-, Flt3hi, Il-7r+, c-kitint, Sca-1int)  

Granulocyte-monocyte progenitors (GMP) (Lin-, Il-7r-, c-kit+, Sca-1-, CD34+, CD16/32+) 

Common myeloid progenitors (CMP) (Lin-, Il-7r-, c-kit+, Sca-1-, CD34+, CD16/32-) 

Megakaryocyte-erythroid progenitors (MEP) (Lin-, Il-7r-, c-kit+, Sca-1-, CD34-, CD16/32-) 

Antibodies were obtained from eBiosciences or BioLegend unless stated. Markers for lineage depletion (Lin-) 

included B220 (RA3-6B2), CD3 (145-2C11), Mac-1 (M1/70), Gr-1 (RB6-8C5) and Ter119 (TER-119). E-PCR 

(RMEPCR1560, Stem Cell Technologies), CD45 (30-F11), CD150 (TC15-12F12.2), CD48 (HM48-1), CD34 (RAM34), 

CD16/32 (2.4G2), FLT3 (A2F10), c-kit (2B8), Sca-1 (E13-161.7) and Il7-r (A7R34).  

For MPP gene expression, sorting was defined as: Lin-, c-kit+, Sca-1+, CD34+, CD48+ and CD150-. Samples were 

flow-sorted after removal of lineage positive cells using a magnetic activated cell sorting (MACS) mouse lineage 

depletion kit containing antibodies for CD5, B220, CD11b, Gr-1 (Ly-6G/C), 7-4, and Ter-119 following the 

manufacturers’ instructions (Miltenyi Biotec).  

Analysis of activated ERK1/2 

Selected samples were studied for total ERK1/2 (p44/42 MAPK, clone 137F5, Cell Signalling) and pERK1/2 

(phosphor-p44/42 MAPK, clone 197G2, Cell Signalling). 

Gene expression profiling, microarrays 

Gene expression profiles of lineage negative (lin-) or 1,000 sorted multipotent progenitors (MPPs) from mutant 

and wildtype controls were compared using the Illumina MouseWG-6 v2 Expression BeadChip platform 

(Illumina). Lin- populations were separated from whole bone marrow using magnetic activated cell sorting 

(MACS, Miltenyi Biotec) and RNA isolated using a standard Trizol (Thermofisher) protocol. Flow sorted MPP 

populations were sorted directly into Trizol LS (Thermofisher) using a Mo-FlowTM XDP (Beckman Coulter) and 

RNA extracted according to the manufacturer. Extracted RNA was prepared for array hybridization using the 



TargetAmp™-Nano Labeling Kit (Epicentre). Global profiling was done using Illumina MouseWG-6 v2.0 

Expression BeadChip. Data were quantile normalized  and analyzed using the Bioconductor, lumi and limma 

packages with P values adjusted for multiple testing  (Bioconductor, http://www.bioconductor.org/; lumi, 

http://www.bioconductor.org/packages/2.0/bioc/html/lumi.html; RTCGD, http://rtcgd.ncifcrf.gov/).1,2 

Adjusted P value (<0.05) was used to identify significantly differentially expressed genes. Gene set enrichment 

analysis was carried out using GSEA v2.1.0 (Broad Institute). 3,4 

Comparative gene expression analysis of NPM1+ve and NPM1-ve AML samples from the Cancer Genome Atlas 

(TCGA) , generated using the Affymetrix Human Genome U133 Plus 2.0 Array (Affymetrix) was performed using 

the GCRMA (http://www.bioconductor.org/repository/devel/vignette/gcrma.pdf), limma  and affy packages in 

Bioconductor .2,5,6 (.CEL file sample IDs are listed in Supplemental Table 1.1, datasets and samples are listed in 

Supplemental Table 2, note that samples positive for MLL gene fusions were removed from the control sample 

set.) 

 

Copy number variation, comparative genomic hybridisation (aCGH) 

DNA copy number variation in leukemic samples was assessed using the Mouse Genome Comparative Genomic 

Hybridization 244K Microarray (Agilent Technologies). DNA was labeled with Cy3 or Cy5 according to Agilent 

aCGH genomic labeling protocol (Agilent Technologies). Raw data was extracted using Agilent Feature Extraction 

and normalised using R Package aCGH Spline. Subsequent data analysis was performed in R using aCGH 

Bioconductor packages (http://www.bioconductor.org).6  

 

Mouse AML mutation calling and validation. 

Sequence reads were aligned against the reference mouse genome (GRCm38) using the Burrows-Wheeler 

algorithm (BWA; specifically, aln for HiSeq--paired-end exome sequencing data and mem for MiSeq-250bp-

paired-end sequencing data). For the detection of the Flt3ITD and Npm1flox-cA or Npm1cA alleles, a fasta entry 

containing these sequences was appended to the reference genome. Sam/bam files were sorted and indexed 

using SAMTOOLS.7 Where necessary we also performed PCR duplicate marking using PICARD tools 

(http://picard.sourceforge.net) and local realignment around indels using GATK.8 The in-house software 

RAMSES, was used to detect somatic mutations and indels identified using PINDEL.9 Functional consequences of 

mutations were predicted using an in-house script employing Ensembl Perl API.10 All potential transcript 

annotations were calculated and recorded. The most deleterious of all potential annotations was reported for 

each mutation.  

http://www.bioconductor.org/
http://www.bioconductor.org/packages/2.0/bioc/html/lumi.html
http://rtcgd.ncifcrf.gov/
http://www.bioconductor.org/repository/devel/vignette/gcrma.pdf
http://www.bioconductor.org).7/
http://picard.sourceforge.net/


Further details of the exome sequencing and amplicon specific validation workflow are outlined in Supplemental 

Methods Figure S1. 

Retroviral transduction 

Cloning of mouse Nkx2-3 and Hoxa9 into MSCV-GFP/CFP retroviral backbones. 

mRNA extracted from homozygous wildtype C57BL/6N mouse bone marrow cells was reverse transcribed 

using  SuperScript III (Invitrogen) and the subsequent cDNA was used as template to amplify full length Nkx2-3 

or Hoxa9 cDNA using high fidelity taq polymerase (KAPA HiFi HotStart ReadyMix, Kapa Biosystems) using the 

manufacturer’s instructions and the following primers;  

EcoRI-mNkx2-3-XhoI Fwd:  

gaattcgccaccatgatgttaccaagcccggtcacctccacccctttctc  

EcoRI-mNkx2-3-XhoI Rev: 

tcgagtcacttgtcgtcatcgtctttgtagtcaatgtcatgatccttgtaatcgccgtcgtgccaagccctgatgccctgcaaagtcccctgcgtgcacg  

This fragment was cloned into an EcoRI/XhoI linearized fragment obtained from the MSCV-IRES-GFP (Addgene 

plasmid # 20672) retroviral backbone using standard molecular biology techniques. 

MluI-Hoxa9-XhoI Fwd:  

aattcacgcgtatggccaccaccggggccctgggcaactactatgtggac 

MluI- Hoxa9-XhoI Rev: 

ctcgagttaagcgtaatctggaacatcgtatgggtagccgtcgtgctcgtcttttgctcggtccttgttgattttcttcattttcatcctgcggttctgg 

This fragment was cloned into a MluI/XhoI linearized fragment of MSCV-IRES-CFP, a kind gift from Dr Brian 

Huntley. 

Confirmation of CAS9 activity in Rosa26-EF1-Cas9 AML cell lines and guide RNA (gRNA) cloning. 

Activity of CAS9 in mouse AML cell lines was validated by transducing Rosa26 Cas9/+expressing cells with a 

reporter construct expressing BFP/GFP and a guide RNA targeted to GFP. In the presence of active CAS9 

double positive BFP/GFP cells are reduced to single positive expressing BFP cells through CRISPR-CAS9 

mediated disruption of GFP as previously described.11 

Previously validated gRNA sequences (obtained from a previously published mouse library)11 were annealed 

and cloned into the pKLV-U6gRNA(BbsI)-PGKpuro2ABFP construct as described by Koike-Yusa et al. 12 

Competitive assays were performed over a 21 day period post gRNA transduction by measuring the relative 

number of  transduced (BFP+) and non-transduced (BFP-) cells using FACS. gRNA sequences are presented in 

Supplemental Table S15. 



RNAseq analysis 

For each of the 2 cell lines, Rosa26-EF1-Cas9;Npm1cA/+;NrasG12D/+; and Rosa26-EF1-Cas9;Npm1cA;Flt3ITD mice and wildtype 

lineage negative hematopoietic progenitors, two RNA-seq data sets were generated and considered as biological replicates. 

75bp paired-end Illumina reads were aligned to the GRCm38 mouse genome using Tophat2. The aligned reads were then 

filtered to retain only those that aligned as a bone fide read pair with an alignment quality score better than 10, using 

SAMtools [ref: https://www.ncbi.nlm.nih.gov/pubmed/19505943 ]. The total number of reads that align to the exons of each 

gene in the mouse genome as defined by Ensembl Genes 84 [ref: 

https://academic.oup.com/database/article/doi/10.1093/database/baw093/2630475/The-Ensembl-gene-annotation-

system] were computed using HTSeq [ref: https://academic.oup.com/bioinformatics/article-

lookup/doi/10.1093/bioinformatics/btu638]. These gene counts were then used to identify differentially regulated genes 

using DESeq2. The FPKM [ref. http://www.nature.com/nprot/journal/v7/n3/full/nprot.2012.016.html] values for each gene 

per condition were computed using DESeq2. A pseudo-count of 0.001 was added to the FPKM values, transformed to base 

2 logarithm and further quartile normalised in order to obtain the gene expression values.  

The correlation between the datasets were obtained as Pearson correlation coefficients and these correlations were then 

hierarchically clustered using Euclidean distances. The clustered heat map of the biological replicates is shown in 

Supplemental Figure S9A. Select gene expression values are also depicted. 

 

Supplemental Table Legends 

Supplemental Table S1. Comparatively altered gene expression in lineage negative bone marrow 

aspirates compared to wildtype (significantly differentially expressed genes, adj. p<0.05). 

Supplemental Table S2. TCGA datasets5 used for comparative gene expression analysis of human AML. 

Supplemental Table S3. Comparatively altered gene expression in human AML based on NPM1 

mutation status (for significantly differentially expressed genes adj.p<0.05). 

Supplemental Table S4a. Comparative gene (probes) expression in multipotent progenitors, NrasG12D/+ 

and Npm1cA/+;NrasG12D/+ compared to wildtype. 

Supplemental Table S4b. Comparative gene (probes) expression in multipotent progenitors, Flt3ITD/+ 

and Npm1cA/+;Flt3ITD/+compared to wildtype. 

Supplemental Table S5a. Kegg Pathways enriched in Npm1cA/+;Flt3ITD/+ multipotent progenitor cells 

(DAVID12). 

Supplemental Table S5a. Functional annotational clustering of gene ontology terms (GO-term) 

enriched in Npm1cA/+;Flt3ITD/+ multipotent progenitor cells (DAVID13). 

Supplemental Table S6. Overlap of differentially expressed genes in Tet2-/-;Flt3ITD/+  LSK cells and 

Npm1cA/+;Flt3ITD/+ MPP cells compared to wildtype. 

https://www.ncbi.nlm.nih.gov/pubmed/19505943
https://academic.oup.com/database/article/doi/10.1093/database/baw093/2630475/The-Ensembl-gene-annotation-system
https://academic.oup.com/database/article/doi/10.1093/database/baw093/2630475/The-Ensembl-gene-annotation-system
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btu638
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btu638
http://www.nature.com/nprot/journal/v7/n3/full/nprot.2012.016.html


Supplemental Table S7a. 1st Round MiSeq amplicon specific primer sequences. 

Supplemental Table S7b. 2nd Round MiSeq iPCR-tag primer sequences. 

Supplemental Table S8. Validation of exome sequencing: MiSeq amplicon sequencing results (mVAF). 

Supplemental Table S9. Combined Single Nucleotide Variant (SNV) and insertions/deletions (Indels) 

detected by the Exome sequencing pipeline (detailed in Methods and outlined in Supplemental 

Methods Figure S1) 

Supplemental Table S10. aCGH results summary. 

Supplemental Table S11. Mouse-Human synteny of chromosome regions with altered copy number, 

identified by aCGH, in murine AMLs. (Only genes identified as mutated in the TCGA AML data-set or 

hits in our Npm1cA/+ Sleeping Beauty insertional mutagenesis screen are included.) 

Supplemental Table S12. Comparative RNAseq in Rosa26 Cas9/+;Npm1cA/+;Flt3ITD/+ compared to wildtype 

lineage negative cells (n=2, logFC>2, padj <0.01). 

Supplemental Table S13. Comparative RNAseq in Rosa26Cas9/+;Npm1cA/+;NrasG12D/+ compared to 

wildtype lineage negative cells (n=2, logFC>2, padj <0.01). 

Supplemental Table S14. Comparative RNAseq in Rosa26 Cas9/+;Npm1cA/+;Flt3ITD/+ compared to  Rosa26 

Cas9/+;Npm1cA/+;NrasG12D/+  cell lines (n=2, logFC>2, padj <0.01). 

Supplemental Table S15. Guide RNA (gRNA) sequences used in CRISPR-CAS9 mediated loss of function 

studies. 

  



Supplemental Methods Figure S1 
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Supplemental Figure S5
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Supplemental Figure Legends 

Supplemental Figure S1. Pre-leukemic phenotypes of hematopoietic tissues. (A) Mac-1/Gr-1 staining 

of bone marrow and splenocytes from all genotypes shows an increase in myeloid commitment in 

Npm1cA/+; NrasG12D/+ (predominantly Mac-1+/Gr-1+granulocytic) and Npm1cA/+; Flt3ITD/+ (predominantly 

Mac-1+/Gr-1- monocytic) compared to singular mutants. 

Supplemental Figure S2. Representative plots of pre-leukemic progenitor FACS of Npm1cA, 

NrasG12D/+, Flt3ITD/+ and compound Npm1cA/+;NrasG12D/+ or Npm1cA/+;Flt3ITD/+ mice. (A) Lin-, LK, LSK. 

Percentages of parent populations are shown for LK, LSK, GMP, MEP, CMP, LMPP, MPP and ST/LTprog-

HSC populations, mean ± SEM (n=4-8).  Representative plots of (B) CLP and (C) E-SLAM, HSC FACS plots 

and gates. Note an absence of the double positive FLT3/Il7-R in the CLP stain. LK (Lin-/Kit+), LSK (Lin-

/Kit+/Sca-1+), CMP (common myeloid progenitor), MEP (megakaryocyte-erythroid progenitor), GMP 

(granulocyte-monocyte progenitor), MPP (multi-potent progenitor), LMPP (lymphoid primed multi-

potent progenitor), CLP (common lymphoid progenitor) and HSC (hematopoietic stem cell). 

Supplemental Figure S3. Global gene expression analysis of lineage negative and LSK-progenitors. 

(A) Heat map of Hox gene expression in Lin- bone marrow from singular and compound Npm1cA/+, 

NrasG12D/+, Flt3ITD/+ mice (normalised average expression values are used to generate heat map values). 

(B) Venn diagrams of overlapping differentially expressed genes in Npm1cA/+, NrasG12D/+, Flt3ITD/+, 

Npm1cA/+;NrasG12D/+ and Npm1cA/+;Flt3ITD/+ Lin- bone marrow. Select over-expressed (red font) or under-

expressed (blue font) are displayed. GSEA of differentially expressed genes in NrasG12D/+ or Flt3ITD/+ only 

mutants reveal enrichments for NRAS and JAK-STAT signalling pathways respectively.  (C) Box-whisker 

plots of normalised average expression of Nkx2-3, Hoxa7 and Hoxa9, as detected by microarrays in 

MPP and Lin- populations. n=4-10 (Lin-) or n=3-5 (MPP) for all genotypes (Mean ± Min-Max). (D) Venn 

diagram and heat map of overlapping and distinct differentially expressed genes in sorted MPP 

populations from Npm1cA/+, NrasG12D/+, Flt3ITD/+, Npm1cA/+;NrasG12D/+ and Npm1cA/+;Flt3ITD/+ reveals only 

a small sub-set of 12 deregulated genes shared in compound Npm1cA/+;NrasG12D/+ and Npm1cA/+;Flt3ITD/+ 

mice (log fold change, logFC, Adj. p<0.05 was used to identify significantly differentially expressed 

genes). (E) Results of gene-annotation enrichment analysis and functional annotation of differentially 

expressed genes in Npm1cA/+;Flt3ITD/+ compared to wildtype MPPs (using DAVID). Statistically 

significant enriched Kegg pathways and enriched Gene Ontology term (GO-Term) clusters are shown 

(as depicted using Cytoscape 3.3.0).  (F) A number of differentially expressed genes in Npm1cA/+;Flt3ITD/+ 

multipotent progenitors (MPPs) are also deregulated in compound Tet2-/-; Flt3ITD/+ lineage 

negative/Sca-1+/c-Kit+ (LSK) progenitors when compared to wildtype controls. 

Supplemental Figure S4. Npm1cA and oncogenic NrasG12D co-operate to drive AML. (A) Comparative 

survival statistics (Median survival and Mantel-Cox Test p values) of data presented in Figure 3a, 

Kaplan Meier. (B) Spleen and liver weights, blood leukocyte (WCC) and platelet (Plts) counts of 

wildtype (n=13), Npm1cA/+ (n=17), NrasG12D/+ (n=22), Flt3ITD/+ (n=30), Npm1cA/+;NrasG12D/+ (n=15) and 

Npm1cA/+;Flt3ITD/+ (n=29). At time of sacrifice Npm1cA/+;NrasG12D/+ and Npm1cA/+;Flt3ITD/+ display 

increased blood leukocyte (32.6±12, NrasG12D/+ compared to 359±62 x106/L, Npm1cA/+;NrasG12D/+; and 



151±34, Flt3ITD/+ compared to 250±33 x106/L, Npm1cA/+; Flt3ITD/+) and reduced platelet counts 

(1046±227, NrasG12D/+ compared to 504.9±209 x106/L, Npm1cA/+; NrasG12D/+; and 607±99, Flt3ITD/+ 

compared to 225±25.8 x106/L, Npm1cA/+; Flt3ITD/+). Mean ±SEM are plotted. Significant values are 

reported for one-way analysis of variance (ANOVA, Bonferroni adjusted); (* P<0.05 vs wildtype, ** 

P<0.01 vs wildtype, *** P<0.001 vs wildtype), (P<0.05 vs Flt3ITD/+, P<0.01 vs Flt3ITD/+, 

P<0.001 vs Flt3ITD/+), (P<0.05 vs NrasG12D/+, P<0.01 vs NrasG12D/+, P<0.001 vs 

NrasG12D/+). (C) FACS analysis of three of Npm1cA/+;NrasG12D/+ and Npm1cA/+;Flt3ITD/+ AMLs confirms 

myeloid infiltration in secondary lymphoid tissue (splenocytes); lymphoid (CD/B220), myeloid (Mac-

1/Gr-1, Mac-1/Kit) and B220+ myeloid (B220+/Mac-1/Gr-1). 

Supplemental Figure S5. Array comparative hybridisation (aCGH) of Npm1cA/+,Npm1cA/+;NrasG12D/+ 

and Npm1cA;Flt3ITD murine AML. (A) To determine the extent of recombination of the Npm1flox-cA allele 

in FN-AMLs, we quantified the fraction of Npm1flox-cA and Npm1cA allele reads using targeted amplicon 

specific MiSeq (see Materials and methods). As controls we used Mx-1 Cre;Npm1cA/+ and Npm1flox-cA 

gDNA 4 months post pIpC injection, almost complete recombination is observed in the 5 samples 

tested. (B) Normalised Log2 ratio plots show gains (whole chromosome or smaller regions) of chr 3 in 

Npm1cA/+;NrasG12D/+. Green highlighted region denotes minimally mapped region of common 

chromosomal gain or loss (chr3: 102743581-103470550). A commonly amplified region of chr7 (ch7: 

91838150-131492236) is detected in 7/8 Npm1cA/+ and 4/9 Npm1cA/+;NrasG12D/+ (not represented). 31 

of the 312 genes in this region, syntenic to human chr11, are mutated in the TCGA AML data-set and 

include Nup98, Wee1 and Eed. (C) A region of chr2 (chr2: 77889234-171131931) is deleted in Npm1cA/+ 

AML, N4. Of the 741 genes within this region 57 are in the TCGA AML dataset and include genes 

deleted in AML, Asxl1, Wt1 and Dnmt3b. Black smoothed line indicates copy neutral regions. Red or 

blue smoothed line denotes gain or loss, respectively, of a chromosomal region defined on the x-axis 

for a particular sample. For (B) and (C) enrichment of syntenic human-mouse genes are shown 

(enrichment p-values as determined using DAVID12). 

Supplemental Figure S6. Combined copy number and somatic variants for Npm1cA/+, 

Npm1cA/+;NrasG12D/+ and Npm1cA/+;Flt3ITD/+ AMLs.  (A) Combined copy number (aCGH) and somatic 

variants (while exome sequencing) in Npm1cA/+ (N-AML) compared to murine Npm1cA/+;NrasG12D/+ (RN-

AML) and Npm1cA;Flt3ITD (FN-AML) AML samples. 

Supplemental Figure S7. Confirmation of CAS9 activity in Rosa26-EF1-Cas9 AML cell lines.  (A) Results 

of PCR genotyping of Rosa26Cas9/+;Npm1cA/+;NrasG12D/+ and Rosa26 Cas9/+;Npm1cA;Flt3ITD AML cell lines. 

(B) Cas9 activity of mouse AML cell lines was validated by transducing Rosa26 Cas9/+expressing cells 

with a reporter construct expressing BFP/GFP and a guide RNA targeted to GFP. In the presence of 

active CAS9 double positive BFP/GFP cells are reduced to single positive expressing BFP cells through 

CRISPR-CAS9 mediated disruption of GFP.  

Supplemental Figure S8. Genetic disruption by CRISPR-Cas9 does not reveal mutation specific 

dependencies in genes of the JAK/STAT signalling pathway in AML cell lines. (A) Rosa26 Cas9/+;Flt3ITD/+ 

lineage negative bone marrow cells were transformed via transduction with MLL-AF9 retrovirus. 



Competitive assays were performed over a 23 day period using a gRNAs-BFP lentivirus targeted to the 

genes indicated.  The BFP-positive fraction was compared with the non-transduced population. 

Results were normalized to day 3 for each gRNA. (B) Results from AML cell lines transduced with gRNAs 

targeting and JAK/STAT related genes.  

 

Supplemental Figure S9. RNA sequencing reveals up-regulation of genes involved in JAK/STAT 

signalling, indicative of IL-3 activation.  (A) (i) Clustered heat maps generated from gene expression 

profiles of Rosa26 Cas9/+ AML cell lines and wildtype lineage negative (Lin-) hematopoietic cells (n=2 

technical replicates for each cell type). Heat maps for Hoxa (ii) and non-Hoxa (iii) genes. (B) Gene Set 

Enrichment Analysis of Rosa26 Cas9/+cell lines reveal enrichment in the JAK/STAT signalling pathway in 

Rosa26 Cas9/+;Npm1cA/+;NrasG12D/+ cell lines, a signature not present in our original analysis of isolated 

mouse progenitors. 

 

Supplemental Methods Figure S1. Exome sequencing and mutant somatic variant validation. (A) 

Exome sequencing and MiSeq validation “pipe-line” for detecting non-synonymous mouse AML 

variants. (B) Representation of MiSeq amplicon sequencing protocol. (1) Genomic PCR was performed 

with genome specific/MiSeq adapter primer sequences, Supplemental Table 2.1. (2) Pooled PCR 

products were then (3) amplified by PCR enrichment using a universal PE1.0 forward and a unique 

iPCRTag reverse primer, Supplemental Table 2.2. Samples were further purified and sequenced on an 

Illumina MiSeq. (C) The percentage of SNVs detected by exome sequencing and validated by MiSeq 

amplicon specific sequencing increases to 83% when using an “exome sequencing score” ≥3. This is 

further increased to 86% upon removal of C>A/G>T trans-version SNVs with mVAF<0.3. Note, the 

exome sequencing score (generated by RAMSES) is a confidence value derived from the following 

criteria for each SNV within a given sample; (i) the presence of mutations in both forward and reverse 

reads, (ii) unique or multiple genomic loci alignment (BLAT) and (iii) read quality and depth. 
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