Table of Contents

General Information	2
Optimization of Conditions	3
Experimental Section	7
General Procedure for the Rhodium Catalyzed Atom Transfer Radical Addition Reacti	ons 7
Derivatization of Secondary Bromide 1a	19
Mechanistic Experiments	21
Synthesis of DIOPs	25
Computational Studies	30
Computational Methods	30
Computational Analysis on Factors that Favor the Radical Mechanism over the Closed-	Shell
Pathways	31
Chain-Transfer versus Bromine Atom Transfer Pathways from (DIOP)Rh(II)ClBr	32
Conformational Search for the Enantioselectivity-Determining Br Atom Abstraction	
Transition State (17-TS)	33
Cartesian Coordinates of Optimized Structures	35
NMR Spectra	88
References	140

General information

Unless otherwise stated, reactions were performed under argon using freshly purified solvents which were purified using solvent purification columns purchased from Glass Contour, Laguna Beach, CA. All reactions were monitored by thin-layer chromatography with E. Merck silica gel 60 F254 pre-coated plates (0.25 mm). Flash chromatography was performed with indicated solvents using silica gel (particle size 0.032-0.063m) purchased from Sorbent Technologies. ¹H and ¹³ C NMR spectra were recorded on Varian MR or Inova 400 MHz spectrometer. Data for ¹H NMR are reported as follows: chemical shift (ppm), integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, bs = broad singlet, and m = multiplet), and coupling constant (Hz). The residual solvent peak was used as an internal reference: proton (chloroform δ 7.26), carbon (chloroform δ 77.0) or tetramethylsilane (TMS δ 0.00) was used as a reference. Mass spectra were acquired on an Agilent technologies 7820A GC-5975 MSD series GC/MS using EI ionization methods. The enantiomeric ratio (**er**) of products were determined by chiral pase HPLC analysis on SHIMAZU HPLC units, including the following instruments: pump, LC-20AD; detector, SPD-20A; column, Chiralcel OJ-H or OD-H. Optical rotations were recorded on an AP IV-6W automatic polarimeter.

Chemicals such as (-)-DIOP and styrenes were purchased from Aldrich, Fisher or Alfa Aesar and used without purification unless otherwise noted. $[Rh(COD)Cl]_2$ was purchased from Acros Organics and used as received. BrCCl₃ was purchased from Aldrich and used as received.

Table S1. Optimization of conditions^a

			$\sqrt{2}$	PPh_2 (15 mol%)		
			0	>Ph ₂		
				Br_{\bullet}	CCI₃	
		/= + BrCCl ₃	3			
	Ph m (ac)	a		Ph	T7 : 11 (0())	T (0())
Entry	Temp (°C)	Concentration	Solvent	Additive (equiv)	Yield $(\%)^{\circ}$	Ee (%) ^c
1	25	0.1	toluene	none	>95	35
2	0	0.1	toluene	none	88	42
3	-10	0.1	toluene	none	80	52
4	-40	0.1	toluene	none	75	71
5	-78	0.1	toluene	none	69	78
6 ^a	-78	0.1	toluene	none	>95	78
7	-78	0.05	toluene	none	87	75
8	-78	0.2	toluene	none	58	77.6
9	-78	1	toluene	none	60	73
10	-78	2	toluene	none	61	62
11	-78	0.1	Hexanes	none	0	NR
12	-78	0.1	THF	none	36	66
13	-78	0.1	DCM	none	24	49
14	-40	0.1	MeCN	none	>95	28
15	-78	0.1	Et ₂ O	none	11	78
16	-78	0.1	Acetone	none	6	44
17	-78	0.1	tBuOMe	none	25	69
18	-78	0.1	EtOH	none	>95	7
19	-78	0.1	EtOAc	none	30	65
20	-25	0.1	PhCF ₃	none	38	30
21	-78	0.1	PhEt	none	0	NR
22	-78	0.1	EtCN	none	11	5
23	-78	0.1	PhCF ₃ /PhMe	none	60	74
			1/4			
24	-78	0.1	toluene	PhSMe (0.1)	51	78
25	-78	0.1	toluene	PhOH (0.1)	83	78
26	-78	0.1	toluene	PhNH ₂ (0.1)	46	78
27	-78	0.1	toluene	$H_2O(1)$	93	75
28	-78	0.1	toluene	^t BuLi (0.1)	>95	71
29	-78	0.1	toluene	AgF (0.1)	44	32
30	-78	0.1	toluene	AgOTf (0.1)	0	NA
31	-78	0.1	toluene	$AgBF_4(0.1)$	20	77
32	-78	0.1	toluene	$AgSbF_{6}(0.1)$	27	67
33	-78	0.1	toluene	AgClO ₄ (0.1)	0	NA

^a reaction time 12 h. ^bYield by ¹H NMR. ^cEr by HPLC.

S4

Other metal catalysts

Bn

F₃C

E₂C

Figure S2. Alternative Rh Sources.

[Rh(Olefin)Cl]₂

ee	78%		65%		75%	78%
yield	>95%	>	•95%	NR	48%	45%
[Rh(CO	D)X] ₂					
X =	CI	ОН	OMe	F		
ee	78%	14%	40%	32%	no reaction	
yield	>95%	>95%	>95%	44%		
Ph	(+)-DIO OLi [Rh(COI	P -77% D)Cl] ₂	ee, 58% yield		(-)-DIOP DLi [Rh(COD)CI] ₂	+75% ee, 40% y

General Procedure for the rhodium catalyzed atom transfer radical addition reactions

(*S*)-(1-bromo-3,3,3-trichloropropyl)benzene (1a) (Literature data of +/- 1a⁻¹): [Rh(COD)Cl]₂ (6.2 mg, 0.0125 mmol), (-)-tol-DIOP (20.8 mg, 0.0375 mmol), toluene (1.0 mL), and hexane (1 mL) were added to a dried vial under an argon atmosphere. The reaction mixture was stirred for 20 min at RT and then cooled to -78 °C. A solution of styrene (0.25 mmol, 26 mg, 0.03 mL, d = 0.926 g/mL) and BrCCl₃ (0.5 mmol, 99.1 mg, 0.05 mL, d = 2.01 g/mL) in toluene/hexane (1:1 ratio total 0.5 mL) was added slowly by a syringe over 10 min. The reaction was vigorously stirred at -78 °C for 1-4 days (monitored by TLC). Cold hexanes (5 mL, cooled in dry ice/acetone bath) were added to dilute the reaction and precipitate the catalyst, and the mixture was filtered quickly through a short pad of silica gel. The filtrate was collected, and concentrated under vacuum to afford pure product (colorless oil, 74 mg, 98%) (The product solidified after standing in the freezer overnight)

TLC $R_f = 0.7$ (Hexanes)

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 – 7.43 (m, 1H), 7.40 – 7.28 (m, 2H), 5.39 (t, *J* = 6.2 Hz, 1H), 3.77 (s, 1H), 3.75 (d, *J* = 0.8 Hz, 1 H).

¹³C NMR (101 MHz, CDCl₃) δ 140.7, 128.9, 128.8, 127.8, 96.5, 62.6, 47.5.

EI MS [C₉H₈BrCl₃, M-Br]⁺: 221.0

Optical Rotation: $[\alpha]_D^{25}$:-98.8 (c = 1.0, CHCl₃)

The absolute configuration was assigned by the X-ray crystallography. Qualified single crystal could be obtained by dissolving the solid in hot hexanes and then allowing the solution to cool in a -20 °C refrigerator. The ee of mother solution was higher than that of the crystals, so we collected the mother solution (ca. **97:3 er**) and added the major enantiomer into the mother liquor as a seed to obtain the final crystals. Two separate crystals were analyzed, and they gave the same result. The crystals were a dimer (*S*,*S*) as shown in the above picture. (**CCDC 1529778**)

93:7 er HPLC condition: Daicel Chiralpak OJ-H column (25 cm *0.46 cm ID: OJH0CE-EL020), conditions: hexanes, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (minor) = 17.1 min and t_R (major) = 21.4 min.

(S)-1-(1-bromo-3,3,3-trichloropropyl)-2-methylbenzene (1b)

bil, 62% yield TLC $R_f = 0.7$ (Hexanes)

¹**H** NMR (400 MHz, CDCl₃) δ 7.54 – 7.47 (m, 1H), 7.30 – 7.11 (m, 3H), 5.66 (dd, *J* = 7.5, 4.6 Hz, 1H), 3.90 – 3.73 (m, 2H), 2.46 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 130.9, 128.7, 127.9, 126.9, 96.7, 62.2, 19.4.

Optical Rotation: $[\alpha]_D^{25}$: -26.8 (c = 0.5, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

EI MS m/z: [M-Br]⁺235.0

92:8 er HPLC condition: Daicel Chiralpak OJ-H column, conditions: hexanes/*i*-PrOH = 95/5, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (minor) = 9.1 min and t_R (major) = 9.5 min.

(S)-1-(1-bromo-3,3,3-trichloropropyl)-3-methylbenzene (1c)

_____colorless oil, 90% yield

TLC $R_f = 0.7$ (Hexanes)

¹**H NMR** (400 MHz, CDCl₃) δ 7.29 – 7.20 (m, 3H), 7.14 – 7.08 (m, 1H), 5.34 (t, *J* = 6.2 Hz, 1H), 3.74 (d, *J* = 6.2 Hz, 2H), 2.36 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 140.7, 138.6, 129.7, 128.7, 128.4, 124.8, 96.5, 62.6, 47. 7, 21.4.

Optical Rotation: $[\alpha]_D^{24}$: -88.6 (c = 1.0, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

EI MS m/z: [M-Br]⁺235.0

90:10 er HPLC condition: Daicel Chiralpak OJ-H column, conditions: hexanes, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (minor) = 14.5 min and t_R (major) = 17.3 min.

(S)-1-(1-bromo-3,3,3-trichloropropyl)-4-methylbenzene (1d) (Literature data of +/- 1d²)

White solid, 64% yield

TLC $R_f = 0.7$ (Hexanes)

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.3 Hz, 1H), 7.16 (d, *J* = 7.8 Hz, 2H), 5.37 (t, *J* = 6.2 Hz, 1H), 3.74 (d, *J* = 6.2 Hz, 2H), 2.35 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.9, 137.8, 129.5, 127.7, 96.5, 62.6, 47.7, 21.2.

Optical Rotation: $[\alpha]_D^{25}$:-97.1 (c = 1.0, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

EI MS m/z: [M-Br]⁺ 235.0

95:5 er HPLC condition: Daicel Chiralpak OJ-H column (25 cm *0.46 cm ID: OJH0CE-EL020), conditions: hexanes, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (minor) = 15.9 min and t_R (major) = 20.0 min.

Me colorless oil, 44% yield

TLC $R_f = 0.3$ (Hexanes)

¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.19 (m, 1H), 7.04 (d, *J* = 7.8 Hz, 1H), 6.98 (s, 1H), 6.91 – 6.77 (m, 1H), 5.33 (t, *J* = 6.2 Hz, 1H), 3.83 (s, 3H), 3.73 (d, *J* = 5.9 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 159.7, 142.2, 129.9, 120.1, 114.2, 113.6, 96.5, 62.6, 55.3, 47.4.

Optical Rotation: $[\alpha]_D^{24}$: -83.0 (c = 1.0, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

EI MS m/z: [M]⁺ 332.0

89:11 er HPLC condition: Daicel Chiralpak OJ-H column, conditions: hexanes/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (minor) = 12.2 min and t_R (major) = 14.0 min.

(S)-1-(1-bromo-3,3,3-trichloropropyl)-3-fluorobenzene (1f)

colorless oil, 80% yield.

TLC $R_f = 0.6$ (Hexanes)

¹H NMR (400 MHz, CDCl₃) δ 7.33 (td, J = 8.0, 5.8 Hz, 1H), 7.27 – 7.21 (m, 1H), 7.17 (dt, J = 9.6, 2.1 Hz, 1H), 7.01 (td, J = 8.3, 1.7 Hz, 1H), 5.33 (dd, J = 7.5, 5.0 Hz, 1H), 3.79 – 3.61 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -111.8.

¹³C NMR (101 MHz, CDCl₃) δ 162.7 (d, J = 247.4 Hz), 143.0 (d, J = 7.4 Hz), 130.4 (d, J = 8.3 Hz), 123.5 (d, J = 3.0 Hz), 116.0 (d, J = 21.2 Hz), 114.9 (d, J = 22.5 Hz), 96.7, 62.5, 46.2 (d, J = 2.1 Hz). **Optical Rotation:** [α]_D ²⁴: -74.0 (c = 1.0, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

EI MS m/z: [M-Br]⁺ 239.0

91:9 er HPLC condition: Daicel Chiralpak OD-H column, conditions: hexanes, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (minor) = 16.1 min and t_R (major) = 15.2 min

(S)-1-(1-bromo-3,3,3-trichloropropyl)-4-tert-butylbenzene (1g)

TLC $R_f = 0.7$ (Hexanes)

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 (s, 4H), 5.37 (dd, J = 7.1, 5.2 Hz, 1H), 3.80 – 3.68 (m, 2H), 1.31 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 152.1, 137.8, 127.3, 125.8, 96.6, 62. 7, 47.6, 34.7, 31.2.

Optical Rotation: $[\alpha]_D^{24}$: -98.6 (c = 1.0, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

EI MS m/z: [M-Br]⁺ 277.1

94:6 er HPLC condition: Daicel Chiralpak OD-H column, conditions: hexanes, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (major) = 10.1 min and t_R (minor) = 12.0 min.

(S)-1-(1-bromo-3,3,3-trichloropropyl)-4-isopropylbenzene (1h)

TLC $R_f = 0.7$ (Hexanes)

¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 8.2 Hz, 2H), 7.21 (d, *J* = 8.2 Hz, 2H), 5.37 (dd, *J* = 7.0, 5.3 Hz, 1H), 3.82 - 3.64 (m, 2H), 2.90 (p, *J* = 6.9 Hz, 1H), 1.24 (d, *J* = 6.9 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 149.8, 138.2, 127.7, 126.9, 96.6, 62.7, 47.7, 33.8, 23.9.

Optical Rotation: $[\alpha]_D^{25}$: -98.0 (c = 1.0, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

EI MS m/z: [M-Br]⁺ 263.0

92:8 er HPLC condition: Daicel Chiralpak OJ-H column, conditions: hexanes, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (minor) = 10.8 min and t_R (major) = 14.2 min

(S)-4-(1-bromo-3,3,3-trichloropropyl)-1,1'-biphenyl (1i)

TLC $R_f = 0.6$ (Hexanes)

To anyone who may be interested, this compound is will racemize on silica gel at room temperature. It is stable on neutral Al_2O_3 or silica gel at lower temperature (below 0 °C).

¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.6 Hz, 4H), 7.52 (d, J = 8.4 Hz, 2H), 7.50 – 7.42 (m, 2H), 7.40 – 7.31 (m, 1H), 5.44 (t, J = 6.3 Hz, 1H), 3.79 (d, J = 6.3 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 141.8, 140.1, 139.7, 128.8, 128.2, 127.7, 127.5, 127.1, 96.5, 62.5, 47.4.

Optical Rotation: $[\alpha]_D^{25}$: -60.4 (c = 1.0, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

EI MS m/z: [M-Br]⁺297.0

87:13 er HPLC condition: Daicel Chiralpak OJ-H column, conditions: hexanes/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (major) = 14.0 min and t_R (minor) = 15.2 min

TLC $R_f = 0.7$ (Hexanes)

¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.7 Hz, 2H), 7.43 (d, *J* = 7.8 Hz, 2H), 5.37 (t, *J* = 6.1 Hz, 1H), 3.82 - 3.70 (m, 2H), 0.28 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 141.8, 141.2, 133.9, 126.9, 96.5, 62.6, 47.6, -1.2.

Optical Rotation: $[\alpha]_D^{25}$: -76.6 (c = 1.0, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

EI MS m/z: [M-Br]⁺ 293.0

88:12 er HPLC condition: Daicel Chiralpak OD-H column, conditions: hexanes, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (major) = 9.7 min and t_R (minor) = 10.8 min

(S)-4-(1-bromo-3,3,3-trichloropropyl)phenyl acetate (1k)

TLC Rf = 0.50 (Hexane/EtOAc = 30:1, v/v)

¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.6 Hz, 2H), 7.09 (d, *J* = 8.6 Hz, 2H), 5.37 (dd, *J* = 7.6, 4.8 Hz, 1H), 3.79 – 3.66 (m, 2H), 2.30 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 150.8, 138.2, 128.9, 122.0, 96.4, 62.7, 46.6, 21.2.

Optical Rotation: $[\alpha]_D^{25}$: -78.0 (c = 1.0, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

EI MS m/z: [M-Br]⁺ 281.0

89:11 er HPLC condition: Daicel Chiralpak OJ-H column, conditions: hexanes/*i*-PrOH = 99.5/0.5, flow rate = 1.0 mL/min, wavelength = 254 nm; t_R (minor) = 21.3 min and t_R (major) = 23.2 min.

colorless oil, 60% yield

TLC $R_f = 0.6$ (Hexanes)

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.36 (m, 2H), 7.11 – 6.98 (m, 2H), 5.37 (dd, *J* = 8.0, 4.8 Hz, 1H), 3.80 – 3.63 (m, 2H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -112.0.

¹³C NMR (101 MHz, CDCl₃) δ 162.7 (d, J = 248.9 Hz), 136.6 (d, J = 3.6 Hz), 129.7 (d, J = 8.4 Hz), 115.9 (d, J = 22.0 Hz), 96.3 , 62.6 , 46.6 .

Optical Rotation: $[\alpha]_D^{25}$: -95.1 (c = 1.0, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

EI MS m/z: [M-Br]⁺ 239.0

92:8 er HPLC condition: Daicel Chiralpak OJ-H column, conditions: hexanes/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (major) = 10.3 min and t_R (minor) = 10.9 min.

TLC $R_f = 0.6$ (Hexanes)

¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.37 (m, 2H), 7.36 – 7.31 (m, 2H), 5.34 (dd, *J* = 7.9, 4.9 Hz, 1H), 3.80 – 3.63 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 139.2, 134.7, 129.2, 129.1, 96.2, 62.5, 46.4.

Optical Rotation: $[\alpha]_D^{25}$: -80.4 (c = 1.0, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

EI MS m/z: [M-Br]⁺ 256.9

89:11 er HPLC condition: Daicel Chiralpak OJ-H column, conditions: hexanes/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (major) = 9.8 min and t_R (minor) = 10.3 min.

(S)-1-(1-bromo-3,3,3-trichloropropyl)-4-bromobenzene (1n) (Literature data of +/- 1n)⁵

TLC $R_f = 0.6$ (Hexanes)

¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.5 Hz, 2H), 7.33 (d, *J* = 8.5 Hz, 2H), 5.33 (dd, *J* = 7.8, 4.9 Hz, 1H), 3.81 – 3.61 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 139.7, 132.0, 129.5, 122.9, 96. 2, 62.4, 46.4.

Optical Rotation: $[\alpha]_D^{24}$: -65.8 (c = 1.0, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

EI MS m/z: [M-Br]⁺ 300.9

86:14 er HPLC condition: Daicel Chiralpak OJ-H column, conditions: hexanes/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (major) = 9.8 min and t_R (minor) = 10.2 min.

(S) -2-(1-bromo-3,3,3-trichloropropyl)naphthalene (10)

white solid, 90% yield

TLC $R_f = 0.5$ (Hexanes)

¹H NMR (400 MHz, CDCl₃) δ 7.94-7.76 (m, 4H), 7.67 – 7.58 (m, 1H), 7.57-7.45 (m, 2H), 5.67 – 5.52 (m, 1H), 3.98-.374(m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 137.8, 133.3, 132.9, 129.1, 128.2, 127.8, 127.0, 126.9, 126.7, 125.0, 96.5, 62.4, 48.2.

Optical Rotation: $[\alpha]_D^{25}$: -47.8 (c = 1.0, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

This compound will decompose quickly after being injected into MS.

90:10 er HPLC condition: Daicel Chiralpak OJ-H column, conditions: hexanes/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (minor) = 16.5 min and t_R (major) = 19.4 min.

(S) -1-(1-bromo-3,3,3-trichloropropyl)-2,4-dimethylbenzene (1q) (Literature data of +/- 1q)²

colorless oil, 60% yield

TLC $R_f = 0.7$ (Hexanes)

¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.0 Hz, 1H), 7.06 (d, J = 8.0 Hz, 1H), 6.96 (s, 1H), 5.65 (dd, J = 7.7, 4.4 Hz, 1H), 3.92 – 3.69 (m, 2H), 2.42 (s, 3H), 2.30 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.7, 136.2, 135.0, 131.6, 127.8, 127.6, 96.7, 62.2, 21.1, 19.3.

Optical Rotation: $[\alpha]_D^{25}$: -20.0 (c = 1.0, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

EI MS m/z: [M-Br]⁺ 249.0

92:8 er HPLC condition: Daicel Chiralpak OJ-H column, conditions: hexanes, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (minor) = 10.9 min and t_R (major) = 12.5 min.

(S)-1-(1-bromo-3,3,3-trichloropropyl)-3,5-dimethylbenzene (1r)

____colorless oil, 60% yield.

TLC $R_f = 0.7$ (Hexanes)

¹H NMR (400 MHz, CDCl₃) δ 7.05 (s, 2H), 6.94 (s, 1H), 5.31 (t, *J* = 6.1 Hz, 1H), 3.73 (dd, *J* = 6.1, 1.0 Hz, 2H), 2.32 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 140.8, 138.5, 130.6, 125.4, 96.6, 62.6, 47.8, 21.3.

Optical Rotation: $[\alpha]_D^{25}$: -77.1 (c = 1.0, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

EI MS m/z: [M-Br]⁺ 251.0

89:11 er HPLC condition: Daicel Chiralpak OD-H column, conditions: hexanes, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (minor) = 14.5 min and t_R (major) = 16.4 min

(S)-5-(1-bromo-3,3,3-trichloropropyl)-2,3-dihydro-1*H*-indene (1s)

_____colorless oil, 62% yield.

TLC $R_f = 0.7$ (Hexanes)

¹H NMR (400 MHz, CDCl₃) δ 7.31 (s, 1H), 7.20 (s, 2H), 5.38 (t, *J* = 6.2 Hz, 1H), 3.75 (d, *J* = 6.2 Hz, 2H), 2.90 (q, *J* = 7.3 Hz, 4H), 2.09 (p, *J* = 7.5 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 145.4, 145.1, 138.8, 125.7, 124.6, 123.6, 96.6, 62.7, 48.3, 32.7, 32.6, 25.4.

Optical Rotation: $[\alpha]_D^{25}$: -95.0 (c = 1.0, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

EI MS m/z: [M-Br]⁺261.0

92:8 er HPLC condition: Daicel Chiralpak OJ-H column, conditions: hexanes, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (minor) = 18.7 min and t_R (major) = 22.7 min

(S)-3-(1-bromo-3,3,3-trichloropropyl)pyridine (1t)

TLC $R_f = 0.6$ (Hexanes:EtOAc = 5:1, v/v)

C:\LabSolutions\Data\Data\bochen\cb-5-82-ODH-5%IPA-

¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 8.55 (d, *J* = 4.1 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.32 (dd, *J* = 8.0, 4.8 Hz, 1H), 5.37 (dd, *J* = 8.5, 4.5 Hz, 1H), 3.89 – 3.60 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 150.1, 148.9, 136.5, 135.4, 123.7, 96.0, 62.2, 43.9.

Optical Rotation: $[\alpha]_D^{25}$: -52.0 (c = 1.0, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

EI MS m/z: [M-Br]⁺ 222.0

81:19 er HPLC condition: Daicel Chiralpak OD-H column, conditions: hexanes/*i*-PrOH = 95/5, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (major) = 18.3 min and t_R (major) = 22.9 min

(S)-1-(1,3-dibromo-3,3-dichloropropyl)-4-methylbenzene (1v)

_____colorless oil, 59% yield.

TLC $R_f = 0.7$ (Hexanes)

¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.30 (m, 2H), 7.22 – 7.10 (m, 2H), 5.44 – 5.30 (m, 1H), 3.92 – 3.78 (m, 2H), 2.37 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.9, 137.8, 129.6, 127.8, 78.1, 64.0, 48.5, 21.3.

Optical Rotation: $[\alpha]_D^{25}$: -98.1 (c = 1.0, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

EI MS m/z: [M-Br]⁺ 281.0

94:6 er HPLC condition: Daicel Chiralpak OJ-H column, conditions: hexanes, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (minor) = 18.3 min and t_R (major) = 22.9 min

(S)-1-methyl-4-(1,3,3-tribromo-3-chloropropyl)benzene (1w)

_____colorless oil, 56% yield.

(Note: CBr₃Cl was synthesized from CBr₃H and sodium hypochlorite according Burton's procedures ⁶. The purity of homemade CBr₃Cl is ca. 90%, which contains 10% of CBr₄ based on GC analysis) TLC $R_f = 0.7$ (Hexanes)

¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.1 Hz, 2H), 7.17 (d, *J* = 7.9 Hz, 2H), 5.35 (dd, *J* = 7.5, 4.7 Hz, 1H), 4.08 – 3.86 (m, 2H), 2.35 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 139.0, 137.8, 129.5, 127.9, 65.3, 57.7, 49.4, 21.3.

Optical Rotation: $[\alpha]_D^{25}$: -76.0 (c = 1.0, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

EI MS m/z: [M-Br]⁺ 324.9

94:6 er HPLC condition: Daicel Chiralpak OJ-H column, conditions: hexanes, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (minor) = 20.5 min and t_R (major) = 26.1 min.

(S)-1-methyl-4-(1,3,3,3-tetrabromopropyl)benzene (1x)

_____colorless oil, 60% yield.

TLC $R_f = 0.7$ (Hexanes)

¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.0 Hz, 12H), 7.26 (s, 1H), 7.17 (d, *J* = 7.8 Hz, 10H), 5.33 (dd, *J* = 7.7, 4.1 Hz, 5H), 4.16 – 4.00 (m, 12H), 2.35 (s, 16H).

¹³C NMR (101 MHz, CDCl₃) δ 139.0, 137.8, 129.5, 128.0, 66.4, 50.3, 35.2, 21.3.

Optical Rotation: $[\alpha]_D^{25}$: -68.0 (c = 1.0, CHCl₃) The absolute configuration was assigned by analogy to **1a**.

EI MS m/z: [M-Br]⁺ 370.9

94:6 er HPLC condition: Daicel Chiralpak OJ-H column, conditions: hexanes, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (minor) = 23.1 min and t_R (major) = 29.4 min

(R)-(1-azido-3,3,3-trichloropropyl)benzene (11)

To a vial were added NaN₃ (20.0 mg, 0.3 mmol), **1a** (30.2 mg, 0.1 mmol), EtOH (0.8 mL) and H₂O (0.2 mL). The reaction mixture was stirred for 48 h. Concentration under vacuum afforded the crude product, which was filtered quickly through a short pad of silica gel. Preparative TLC gave pure product (colorless oil, 13 mg, 50%) (eluent: hexanes)

TLC $R_f = 0.4$ (Hexanes)

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.31 (m, 5H), 4.95 (dd, *J* = 7.3, 3.9 Hz, 1H), 3.22 (dd, *J* = 15.2, 7.2 Hz, 1H), 3.11 (dd, *J* = 15.2, 3.9 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 138.6, 129.2, 128.9, 126.9, 96.6, 63.4, 60.0.

EI MS [C₉H₈Cl₃N₃, M]⁺: 263.0 [M-N₃]⁺: 221.0

Optical Rotation: $[\alpha]_D^{25}$: +99.1 (c = 0.5, CHCl₃)

9:91 er HPLC condition: Daicel Chiralpak OD-H column, conditions: hexaness, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (minor) = 18.7 min and t_R (major) = 23.2 min.

(*R*)-*S*-(3,3,3-trichloro-1-phenylpropyl) ethanethioate (12)

To a vial were added KSAc (34.3 mg, 0.3 mmol), **1a** (30.2 mg, 0.1 mmol), and MeCN (0.5 mL) (solvent grade, not anhydrous) under an air atmosphere. The reaction mixture was sealed and stirred for 48 h (monitored by TLC). Concentration under vacuum afforded the crude product, which was filtered quickly through a short pad of silica gel. Flash column chromatography gave pure product (dark oil, 21 mg, 70%) (eluent hexanes/EA = 100/1-20/1)

TLC $R_f = 0.4$ (Hexanes/EA = 10/1)

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.23 (m, 5H), 5.10 (dd, J = 8.4, 4.4 Hz, 1H), 3.51 – 3.31 (m, 2H), 2.31 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 193.4, 139.8, 128.8, 128.1, 127.9, 97.2, 59.4, 45.5, 30.3.

EI MS [C₁₁H₁₁Cl₃OS, M]⁺: 296.0

Optical Rotation: $[\alpha]_D^{25}$: +172.3 (c = 1.0, CHCl₃)

9:91 er HPLC condition: Daicel Chiralpak OD-H column, conditions: hexanes/*i*-PrOH = 90/10, flow rate = 0.5 mL/min, wavelength = 225 nm; t_R (minor) = 8.6 min and t_R (major) = 11.6 min.

Cross-over experiment

To a dried vial were added $[Rh(COD)CI]_2$ (18.5 mg, 0.0375 mmol), (-)-DIOP (48.0 mg, 0.1125 mmol), and toluene (2 mL) under an argon atmosphere. The reaction mixture was stirred for 20 min at RT and then cooled to -78 °C. A solution of styrene (0.25 mmol, 26 mg, 0.03 mL, d = 1.5867 g/mL), CBr₄ (0.125 mmol, 41.5 mg) and CCl₄ (0.125 mmol, 19.2 mg, 0.012 mL, d = 2.01 g/mL) in toluene (0.5 mL) was added slowly by a syringe over 10 min. The reaction was vigorously stirred at -78 °C for 12 h. Cold hexanes (5 mL, cooled in dry ice/acetone bath) were added to dilute the reaction and precipitate the catalyst, and the mixture was filtered quickly through a short pad of silica gel. The filtrate was collected, and concentrated under vacuum. The crude mixtures were evaluated by ¹H NMR using CH₂Br₂ as the internal standard. Compounds **1a** and **1x** were inseparable through flash column chromatography but assignable by ¹H NMR compared with the authentic sample. Enantiomeric ratio was detected by HPLC.

Compound 1a, 83:17 er

HPLC condition: Daicel Chiralpak OJ-H column, conditions: hexanes/*i*-PrOH = 95/5, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (minor) = 17.4 min and t_R (major) = 19.4 min.

Compound **1x**, 81:19 er

 t_R (major) = 23.9 min and t_R (minor) = 28.0 min.

PDA Ch1 2	54nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.426	2920433	113357	50.104	52.782
2	19.417	2908292	101408	49.896	47.218
Total		5828725	214765	100.000	100.000

1 PDA Multi 1/254nm 4nm

PDA Ch1 25	54nm 4nm		I	PeakTable	
Peak#	Ret, Time	Area	Height	Area %	Height %
1	23.817	11848683	316325	50.162	56.428
2	27.821	11772175	244259	49.838	43.572
Total		23620858	560584	100.000	100.000

1 PDA Multi 1/254nm 4nm

PDA Ch1 254nm 4nm

PeakTable

Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.392	89874	3421	1.965	2.946
2	19.358	427905	14766	9.358	12.714
3	20.505	57657	1703	1.261	1.466
4	23.920	2630061	64923	57.516	55.900
5	25.211	628120	15841	13.736	13.640
6	27.987	739153	15487	16.164	13.334
Total		4572770	116141	100.000	100.000

To a dried vial were added $[Rh(COD)CI]_2$ (6.2 mg, 0.0125 mmol), (-)-DIOP (18.7 mg, 0.0375 mmol), and toluene (2 mL) under an argon atmosphere. The reaction mixture was stirred for 20 min at RT and then cooled to -78 °C. A solution of **18**- d^7 (0.25 mmol, 46 mg, 0.03 mL, d = 0.926 g/mL) and BrCCl₃ (0.5 mmol, 99.1 mg, 0.05 mL, d = 2.01 g/mL) in toluene (0.5 mL) was added slowly by a syringe over 10 min. The reaction was vigorously stirred at -78 °C for 4 h. Cold hexanes (5 mL, cooled in dry ice/acetone bath) were added to dilute the reaction and precipitate the catalyst, and the mixture was filtered quickly through a short pad of silica gel. The filtrate was collected, and concentrated under vacuum to afford pure product (white solid, 50 mg, 52%). Diastereomeric ratio was determined by ¹³C NMR and Er was determined by HPLC.

83.5:16.5 er; conditions: Daicel Chiralpak OJ-H column, conditions: hexane*s/i*-PrOH = 90/10, flow rate = 0.5 mL/min, wavelength = 254 nm; t_R (major) = 10.1 min and t_R (minor) = 10.6 min.

1 PDA Multi 1/254nm 4nm

PDA Ch1 2	54nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.074	835381	71247	83.257	84.463
2	10.570	167990	13105	16.743	15.537
Total		1003371	84352	100.000	100.000

Reverse reaction

To a dried NMR tube were added $[Rh(COD)Cl]_2$ (4.9 mg, 0.01 mmol), (-)-DIOP (15.0 mg, 0.03 mmol), and toluene- d_8 (0.6 mL) under an argon atmosphere. After 20 min at RT, a solution of **1a** (0.02

mmol, 6 mg) in toluene- d_8 (0.6 mL) was added to the Rh catalyst system. The reaction was monitored using *in-situ* using ¹H NMR and GC-MS. Compounds 19-21 were observed by GC-MS.

Non-linear effect

Synthesis of DIOPs

A solution of (R,R)-DIOP (Sigmal Aldrich cat#237655) (100 mg, 0.2 mmol, 1.0 eq) and p-toluenesulfonic acid monohydrate (7.7 mg, 0.04 mmol, 0.2 eq) in a degassed EtOH/H₂O mixture (95:5 v/v, 2 ml) was heated to reflux overnight. The reaction mixture was cooled to RT, the solvent was removed under vacuum and the residue was filtered through a plug of silica gel (5 cm, DCM: EtOAc 9:1 (degassed), 2 ml). After removal of the solvent the ligand was obtained as a colorless solid.

A solution of (R,R)-DIOP-Diol (obtained from above, 1.0 eq), cyclopentanone (2 mL) and p-toluenesulfonic acid monohydrate (7.7 mg, 0.04 mmol, 0.2 eq) in toluene (15 ml) connected with a Dean Stark condenser was heated to reflux overnight. The reaction mixture was cooled to RT, washed with H₂O (50 ml), dried over Na₂SO₄ and the solvent removed under vacuum. After recrystallization from EtOH the ligand was obtained as a white solid (yield: 50%). (Note: directly combination of DIOP with cyclopentanone in the presence of PTSA could not afford pure product because it is difficult to separate the (*R*,*R*)-Cy-DIOP from the unreacted (*R*,*R*)-DIOP)

(R,R)-Cy-DIOP⁸ (10m)

White solid, $R_f = 0.5$ (Hex/EA = 10/1)

 ${}^{1}\text{H NMR (400 MHz, CDCl_{3})} \ \delta \ 7.46 - 7.34 \ (\text{m}, 8\text{H}), \ 7.33 - 7.27 \ (\text{m}, 12\text{H}), \ 3.88 \ (\text{m}_{c}, 2\text{H}), \ 2.46 - 2.24 \ (\text{m}, 4\text{H}), \ 1.80 - 1.65 \ (\text{m}, 4\text{H}), \ 1.60 - 1.50 \ (\text{m}, 4\text{H}).$

³¹P NMR (162 MHz, CDCl₃) δ -23.21.

¹³C NMR (101 MHz, CDCl₃) δ 138.3 (dd, J = 23.4, 12.8 Hz), 132.8 (dd, J = 19.4, 17.3 Hz), 128.6 (d, J = 14.1 Hz), 128.4 (t, J = 7.2 Hz), 118.7 , 79.6 (dd, J = 15.7, 7.3 Hz), 38.3 , 37.4 , 32.6 (dd, J = 15.6, 3.3 Hz), 23.4 , 23.2.

(R,R)-*c*-Hex-DIOP⁸ (**10n**) White solid, R_f = 0.5 (Hex/EA = 10/1) ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.25 (m, 20H), 3.95 (dt, *J* = 6.9, 5.0 Hz, 2H), 2.45 – 2.29 (m, 4H), 1.55 – 1.24 (m, 10H).

³¹P NMR (162 MHz, CDCl₃) δ -22.6.

¹³C NMR (101 MHz, CDCl₃) δ 138.6 (t, J = 12.7 Hz), 132.9 (dd, J = 19.3, 7.3 Hz), 128.6 (d, J = 11.1 Hz), 128.4 (t, J = 7.1 Hz), 109.4 , 79.3 (dd, J = 14.9, 8.1 Hz), 36.8 , 32.4 (dd, J = 15.7, 3.1 Hz), 25.1 , 23.7 .

(R,R)-*c*-Hep-DIOP⁸ (**100**)

White solid, $R_f = 0.5$ (Hex/EA = 10/1) ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.37 (m, 8H), 7.36-7.27 (m, 12H), 3.89 (q, *J* = 5.5 Hz, 2H), 2.38 (qd, *J* = 13.7, 4.8 Hz, 4H), 1.87 – 1.64 (m, 4H), 1.59 (m_c, 2H), 1.43 (t, *J* = 10.5 Hz, 6H). ³¹P NMR (162 MHz, CDCl₃) δ -22.6.

¹³C NMR (101 MHz, Chloroform-*d*) δ 138.5 (dd, J = 15.9, 12.7 Hz), 132.8 (dd, J = 19.3, 10.4 Hz), 128.5 (d, J = 12.1 Hz), 128.3 (t, J = 6.8 Hz), 113.0 , 79.0 (dd, J = 15.0, 7.7 Hz), 39.9 , 32.0 (dd, J = 15.8, 3.4 Hz), 28.9 , 22.2 .

Ph Ph O Ph₂P

(R,R)-diPhenyl-DIOP⁹ (**10p**) White solid, $R_f = 0.5$ (Hex/EA = 10/1) ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.07 (m, 30H), 4.05 (m_c, 2H), 2.52 – 2.28 (m, 4H).

³¹P NMR (162 MHz, CDCl₃) δ -21.8.

¹³C NMR (101 MHz, CDCl₃) δ 143.5 , 138.3 (dd, J = 23.0, 12.8 Hz), 132.9 (dd, J = 24.9, 19.4 Hz), 128.7 , 128.4 (t, J = 6.9 Hz), 127.9 , 127.6 , 125.8 , 81.0 (dd, J = 15.9, 7.7 Hz), 31.9 (dd, J = 16.3, 2.6 Hz).

DIOP analogs were prepared using Kagan's method.¹⁰

To a dried flask was added chlorodi-o-tolylphosphane (*686697 ALDRICH*) (1.000 g, 4 mmol, 1 equiv), sodium (368 mg, 16 mmol, 4 equiv) and dioxane (10 mL). The mixture stirred at reflux under argon atmosphere for 3 hours. After the color became orange, the mixture was cooled to room temperature. A solution of (–)-1,4-di-O-tosyl-2,3-O-isopropylidene-L-threitol (*226297 ALDRICH*) (250 mg, 0.5 mmol) in THF (10 mL) was added dropwise into the system. After stirring overnight, the reaction was quenched with degassed water and filtered through a short pad of silica gel under argon atmosphere. Flash column chromatography under argon afforded the product (yield, 38%) (eluent 5:1 hexanes: EtOAc (degassed)).

(R,R)-o-Me-DIOP⁸ (**10k**) Colorless oil, R_f = 0.5 (Hex/EA = 10/1) ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.11 (m, 16H), 3.87 – 3.74 (m, 2H), 2.50 (s, 6H), 2.32 (s, 6H), 2.29 – 2.19 (m, 4H), 1.36 (s, 6H). ³¹P NMR (162 MHz, CDCl₃) δ -44.3. ¹³C NMP (101 MHz, CDCl₃) δ -44.3.

¹³C NMR (101 MHz, CDCl₃) δ 143.1 – 141.1 (m), 136.4 (dd, J = 16.1, 13.3 Hz), 131.7 , 130.7 , 130.0 (dd, J = 16.1, 5.1 Hz), 128.5 (d, J = 25.6 Hz), 126.0 (d, J = 28.0 Hz), 108.8 , 79.7 (dd, J = 14.3, 7.0 Hz), 31.6 , 31.1 (dd, J = 15.7, 3.5 Hz), 27.2 , 22.7 , 21.4 (d, J = 22.2 Hz), 21.1 (d, J = 21.1 Hz).

 $(R,R)-m-\text{Me-DIOP}^{11} (10l)$ Colorless oil, $R_f = 0.5$ (Hex/EA = 10/1) ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.02 (m, 16H), 3.87 (m_c, 2H), 2.31 (m_c, 16H, 4*CH₃+CH₂), 1.36 (s, 6H). ³¹P NMR (162 MHz, CDCl₃) δ -23.7.

¹³C NMR (101 MHz, CDCl₃) δ 138.4 (d, J = 12.4 Hz), 138.1 – 137.7 (m), 133.5 (dd, J = 46.9, 20.8 Hz), 128.3 (dd, J = 9.6, 6.8 Hz), 108.7, 79.7 (dd, J = 14.8, 7.3 Hz), 32.2 (dd, J = 15.6, 3.6 Hz), 27.2, 21.4.

(R,R)-*p*-F-DIOP¹² (**10c**) Colorless solid, R_f = 0.45 (Hex/EA = 10/1) ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.29 (m, 8H), 7.02 (t, *J* = 8.5 Hz, 8H), 3.90 (q, *J* = 5.9 Hz, 2H), 2.43 – 2.17 (m, 5H), 1.34 (s, 7H). ¹³C NMR (101 MHz, CDCl₃) δ 163.3 (dd, *J* = 249.2, 8.3 Hz), 134.6 (ddd, *J* = 26.2, 21.0, 8.0 Hz), 133.5

(dt, J = 13.1, 4.0 Hz), 115.7 (ddd, J = 20.9, 7.6, 5.4 Hz), 109.0, 79.2 (dd, J = 14.5, 8.2 Hz), 32.6 (dd, J = 15.4, 3.3 Hz), 27.2.

¹⁹F NMR (376 MHz, CDCl₃) δ -112.1 (dtt, J = 96.5, 9.4, 4.7 Hz).

³¹P NMR (162 MHz, CDCl₃) δ -25.5.

(R,R)-p-Cl-DIOP (**10b**) White solid, R_f = 0.4 (Hex/EA = 10/1) ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.19 (m, 16H), 3.89 (q, J = 5.4 Hz, 2H), 2.29 (t, J = 5.2 Hz, 4H), 1.33 (s, 6H).

³¹P NMR (162 MHz, CDCl₃) δ -24.8.

(R,R)-p-Me-DIOP¹³ (10d) White solid, R_f = 0.5 (Hex/EA = 10/1) ¹H NMR (400 MHz, CDCl3) δ 7.44 – 7.29 (m, 8H), 7.21-7.10 (m, 8H), 3.90 (m_c, 2H), 2.48 – 2.25 (m, 16H), 1.40 (s, 6H). ³¹P NMR (162 MHz, CDCl₃) δ -25.6. ¹³C NMR (101 MHz, CDCl₃) δ 138.5 (d, J = 26.1 Hz), 135.1 (dd, J = 38.5, 11.7 Hz), 132.8 (dd, J = 40.5, 19.5 Hz), 129.6 – 128.4 (m), 108.7, 79.6 (dd, J = 14.7, 7.3 Hz), 32.4 (dd, J = 15.3, 3.4 Hz), 27.3, 21.3 (d, J = 3.4 Hz).

(R,R)-*p*-Et-DIOP (**10e**) Colorless oil, $R_f = 0.5$ (Hex/EA = 10/1) ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.29 (m, 8H), 7.21 – 7.07 (m, 8H), 3.86 (q, *J* = 5.3 Hz, 2H), 2.63 (qd, *J* = 7.6, 2.8 Hz, 8H), 2.40 (dd, *J* = 14.0, 4.3 Hz, 2H), 2.32 – 2.20 (m, 2H), 1.34 (s, 6H), 1.22 (td, *J* = 7.7, 1.4 Hz, 12H).

³¹P NMR (162 MHz, CDCl₃) δ -25.7.

(*R*,*R*)-*p*-iPr-DIOP (**10f**)

Colorless oil, $R_f = 0.5$ (Hex/EA = 10/1)

¹H NMR (400 MHz, CDCl₃) δ 7.34 (dt, *J* = 18.2, 7.7 Hz, 8H), 7.16 (t, *J* = 6.9 Hz, 8H), 3.86 (dt, *J* = 6.9, 4.9 Hz, 2H), 2.87 (pd, *J* = 6.9, 2.6 Hz, 4H), 2.40 (dd, *J* = 14.0, 4.2 Hz, 2H), 2.33 – 2.22 (m, 2H), 1.33 (s, 6H), 1.22 (d, *J* = 6.9 Hz, 24H).

³¹P NMR (162 MHz, CDCl₃) δ -25.8.

¹³C NMR (101 MHz, CDCl₃) δ 149.3 (d, J = 22.7 Hz), 135.3 (dd, J = 48.1, 11.6 Hz), 132.8 (dd, J = 37.0, 19.5 Hz), 128.6 (d, J = 81.3 Hz), 126.5 (t, J = 7.8 Hz), 108.6, 79.7 (dd, J = 15.0, 7.3 Hz), 33.9 , 32.5 (dd, J = 15.1, 3.3 Hz), 27.2 , 23.8 .

(R,R)-p-tBu-DIOP (**10g**) White solid, R_f = 0.5 (Hex/EA = 10/1)

¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.29 (m, 16H), 3.88 (dt, J = 7.1, 5.0 Hz, 2H), 2.50 – 2.39 (m, 2H), 2.36 – 2.23 (m, 2H), 1.35 (s, 6H), 1.30 (s, 36H). ³¹P NMR (162 MHz, CDCl₃) δ -26.6.

(R,R)-*p*-Ph-DIOP (**10h**) White solid, R_f = 0.4 (Hex/EA = 10/1) ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.29 (m, 36H), 4.02 (q, *J* = 5.4 Hz, 2H), 2.62 – 2.33 (m, 4H), 1.57 (s, 6H). ³¹P NMR (162 MHz, CDCl₃) δ -24.9.

(R,R)-*p*-MeO-DIOP⁸ (**10i**) White solid, R_f = 0.4 (Hex/EA = 5/1) ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.29 (m, 8H), 6.89-6.80 (m, 8H), 3.88-3.76 (m, 14H), 2.35 (dd, *J* = 13.7, 4.2 Hz, 2H), 2.23 (ddd, *J* = 13.8, 6.9, 2.0 Hz, 2H), 1.34 (s, 6H). ³¹P NMR (162 MHz, CDCl₃) δ -27.2.

The analytical data of the compound was in complete agreement with the literature.⁸

Computational Methods

All DFT calculations were performed using the Gaussian 09 software package.¹⁴ The M06L¹⁵ density functional and a mixed basis set of SDD for Rh and 6-31G(d) basis set for other atoms were used in geometry optimizations. After multiple attempts, the radical recombination transition states (R)- and (S)-**26-TS** could not be located using M06L. Thus, the geometries of (R)- and (S)-**26-TS** were optimized with B3LYP¹⁶ and SDD(Rh) and 6-31G(d) basis sets instead. Single-point energies were calculated with M06 and a mixed basis set of SDD for Rh and 6-311+G(d,p) for other atoms. Solvation energy corrections were calculated using the SMD¹⁷ model and toluene as solvent. All open-shell transition state structures (**17-TS**, **23-TS**, and **26-TS**) were optimized with unrestricted DFT methods, while closed-shell transition state structures (**24-TS**, **25-TS**, and **27-TS**) were optimized with restricted DFT methods. Wave function stability tests were performed for all open-shell structures to ensure the lowest-energy wavefunction was obtained.

Computational Analysis on Factors that Favor the Radical Mechanism over the Closed-Shell Pathways

In Figure 6 we compared the activation energies of the radical and closed-shell pathways in the bromination of styrene with [(-)-DIOP]RhCl as the active catalyst. In the initial step of the catalytic cycle that involves reaction of Br-CCl₃ with the Rh(I) catalyst, the open-shell Br atom abstraction transition state (**23-TS**) has much lower activation energy than two closed-shell Br-CCl₃ oxidative addition transition states (**24-TS** and **25-TS**). As shown in Figure S3, the closed-shell **24-TS** and **25-TS** are destabilized due to the unfavorable steric repulsions between the CCl₃ groups and the Rh catalyst as evidenced by the short distances between Cl in the CCl₃ group and nearby H atoms in the catalyst. Similarly, in the enantioselectivity-determining C-Br bond formation step, the open-shell Br atom transition states (**27-TS**) are favored over three-centered closed-shell reductive elimination transition states (**27-TS**) by approximately 7 kcal/mol. The three-centered closed-shell transition states (**27-TS**) are disfavored by close steric contacts between the catalyst and the benzyl group on the substrate (Figure S4).

Figure S3. Radical *versus* closed-shell transition states in the reaction of $CBrCl_3$ with the Rh(I) catalyst. Unfavorable steric repulsions are highlighted using red dashed lines. Gibbs free energies of activation are provided with respect to intermediates **16** and **2a**.

Figure S4. Radical *versus* closed-shell transition states in the C–Br bond formation step. Unfavorable steric repulsions are highlighted using red dashed lines. Gibbs free energies of activation are provided with respect to intermediates **16** and **2a**.

Chain-Transfer versus Bromine Atom Transfer Pathways from (DIOP)Rh(II)ClBr

In the classical Kharash reaction, the C–Br bond formation step involves Br atom abstraction from Br–CX₃ via a chain-transfer transition state (**TS-A**) that leads to racemic benzyl bromide products as shown in Figure 1 in the main text. In the Rh-catalyzed enantioselective Br–CX₃ radical addition reaction, the chain-transfer pathway via **TS-A** is an undesired side reaction that would decrease the *ee*. Our DFT calculations indicate that the chain-transfer transition state **TS-A** requires > 12 kcal/mol higher activation energy than the Br atom transfer from LRh(II)ClBr (**17-TS**). It is interesting to note that the chain transfer TS (**TS-A**) has an almost linear geometry along the two breaking/forming bonds. On the other hand, **17-TS** is bent and allows much stronger substrate-catalyst interaction that induces enantioselectivity.

Figure S5. Competing pathways in the C–Br bond formation step.

Conformational Search for the Enantioselectivity-Determining Br Atom Abstraction Transition State (17-TS)

According to the computed reaction pathway depicted in Figure 6, the Br atom abstraction from the Rh(II) complex (17-TS) is the enantioselectivity-determining step. Careful conformational search was performed for the diastereomeric transition states 17-TS-R and 17-TS-S that lead to the (R)- and (S)-products, respectively. Rotamers about the breaking Rh–Br bond (φ_1) and the forming Br–C bond (ϕ_2) were systematically considered. Figures S6 and S7 show representative isomers of 17-TS. First of all, the Br atom that attacks the benzylic radical may be placed either below the plane of Rh-P-P-Cl (referred to as "Br-down" attack) or above the plane (referred to as "Br-up" attack). In general, the "Br-down" transition states have lower activation energies than "Br-up" ones (e.g. 17-TS-S vs 17-TS-S4 and 17-TS-R vs 17-TS-R4). In the "Br-down" attack, the Br atom and the benzylic radical substrate are placed in the unoccupied bottom-right quadrant that avoids unfavorable steric repulsions with the catalyst (Figure S8). In the "Br-up" transition states, the Br atom is placed in the occupied top-right quadrant. Among "Br-down" transition states, T-shaped π/π interaction between Ph on the benzylic radical and one of the Ph groups on the DIOP ligand contributes to the stability of 17-TS-S compared to 17-TS-R. T-shaped π/π interaction is also observed in 17-TS-R2. However, 17-TS-R2 is destabilized due to repulsion between the CH₂CCl₃ group on benzylic radical and the catalyst. Interestingly, transition state isomers with parallel π/π interaction are typically less favored than those with T-shaped π/π interaction (17-TS-S3 vs 17-TS-S and 17-TS-R3 vs 17-TS-R2). Additionally, the most stable *R*-isomer **17-TS-***R* is stabilized by the C–H--- π interaction between the CH₂ group on benzylic radical and one of the Ph groups on the DIOP ligand. The partial positive charge induced by the adjacent electron-withdrawing CCl₃ group promotes such C-H--- π interaction. This favored C-H-- π interaction can also explain the relatively low activation energy of **17-TS-S2**.

Figure S6. Isomers of the enantioselectivity-determining Br-atom abstraction transition state **17-TS-***S*. Gibbs free energies of activation are provided with respect to intermediates **16** and **2a**.

Figure S7. Isomers of the enantioselectivity-determining Br-atom abstraction transition state **17-TS-***R*. Gibbs free energies of activation are provided with respect to intermediates **16** and **2a**.

Figure S8. Quadrant diagram of Br atom abstraction TS (17-TS) with (-)-DIOP ligand.

Cartesian Coordinates of Optimized Structures

BrCC13

M06L SCF energy:	-3989.82022237 a.u.
M06L enthalpy:	-3989.804668 a.u.
M06L free energy:	-3989.842483 a.u.
M06 SCF energy in solution:	-3992.65794300 a.u.
M06 enthalpy in solution:	-3992.642389 a.u.
M06 free energy in solution:	-3992.680204 a.u.

Cartesian coordinates

ATOM	Х	Y	Z
С	0.000000	0.000000	-0.421745
Cl	0.00000	1.676362	-1.006384
Cl	-1.451772	-0.838181	-1.006384
Cl	1.451772	-0.838181	-1.006384
Br	0.00000	0.000000	1.538744

CC13_radical

M06L SCF energy:	-1418.55492070 a.u.
M06L enthalpy:	-1418.542301 a.u.
M06L free energy:	-1418.576427 a.u.
M06 SCF energy in solution:	-1418.59280895 a.u.
M06 enthalpy in solution:	-1418.580189 a.u.
M06 free energy in solution:	-1418.614315 a.u.

Cartesian coordinates

ATOM	Х	Y	Z	
С	0.000000	0.000000	0.284053	
Cl	0.000000	1.688926	-0.033418	
Cl	-1.462653	-0.844463	-0.033418	
Cl	1.462653	-0.844463	-0.033418	

Styrene

M06L SCF energy:	-309.59449453 a.u.
M06L enthalpy:	-309.453158 a.u.
M06L free energy:	-309.491700 a.u.
M06 SCF energy in solution:	-309.47750708 a.u.
M06 enthalpy in solution:	-309.336171 a.u.
M06 free energy in solution:	-309.374713 a.u.

Cartesian coordinates

ATOM X Y Z

С	-1.778891	-1.039474	0.000010
С	-0.409417	-1.280868	-0.000001
С	0.514943	-0.226309	-0.000009
С	0.016112	1.086023	-0.000013
С	-1.349865	1.329010	-0.000003
С	-2.255275	0.267741	0.000009
Н	-2.475626	-1.876283	0.000016
Н	-0.038244	-2.306373	-0.000001
Н	0.709299	1.926222	-0.000028
Н	-1.714387	2.355148	-0.000007
Н	-3.326479	0.461767	0.000016
С	1.944267	-0.533604	-0.000019
С	2.961392	0.335909	0.000023
Н	2.179840	-1.600959	-0.000061
Н	3.993151	-0.004699	0.000011
Н	2.812855	1.414609	0.000074

1a-*R*

M06L SCF energy:	-4299.47356972 a.u.
M06L enthalpy:	-4299.311908 a.u.
M06L free energy:	-4299.368377 a.u.
M06 SCF energy in solution:	-4302.19506785 a.u.
M06 enthalpy in solution:	-4302.033406 a.u.
M06 free energy in solution:	-4302.089875 a.u.

Cartesian coordinates

ATOM	Х	Y	Z
Br	-1.403141	2.458637	-0.033622
С	-0.431836	0.775603	0.408360
С	-1.323177	-0.403911	0.192996
С	0.849599	0.813159	-0.421079
Н	-0.194017	0.888575	1.469746
С	-1.624984	-1.245178	1.264743
С	-1.819381	-0.712082	-1.077603
Н	0.621149	0.705266	-1.488660
Н	1.327538	1.790300	-0.291594
С	1.912301	-0.229702	-0.079160
С	-2.389686	-2.391529	1.067164
Н	-1.239410	-1.008542	2.256884
С	-2.581227	-1.854446	-1.275522
Н	-1.611725	-0.042357	-1.912829
Cl	1.410389	-1.890355	-0.491259
Cl	2.316308	-0.158903	1.670741
Cl	3.383890	0.169049	-1.026484
С	-2.864778	-2.700816	-0.203000
---	-----------	-----------	-----------
Н	-2.613540	-3.043381	1.909426
Н	-2.959505	-2.087654	-2.269097
Н	-3.461535	-3.597511	-0.359452

1a-*S*

M06L SCF energy:	-4299.47356957 a.u.
M06L enthalpy:	-4299.311908 a.u.
M06L free energy:	-4299.368371 a.u.
M06 SCF energy in solution:	-4302.19506696 a.u.
M06 enthalpy in solution:	-4302.033405 a.u.
M06 free energy in solution:	-4302.089868 a.u.

Cartesian coordinates

ATOM	Х	Y	Z
Br	1.403625	2.458342	-0.033528
С	0.431798	0.775600	0.408299
Н	0.193882	0.888606	1.469655
С	-0.849544	0.813326	-0.421292
Н	-0.621074	0.705174	-1.488842
Н	-1.327371	1.790527	-0.292061
С	-1.912418	-0.229281	-0.079148
Cl	-3.383780	0.168834	-1.027145
Cl	-1.410343	-1.890288	-0.490318
Cl	-2.316737	-0.157899	1.670470
С	1.322986	-0.404029	0.192987
С	1.624371	-1.245574	1.264631
С	1.819471	-0.712045	-1.077545
С	2.389030	-2.391956	1.067064
Н	1.238460	-1.009087	2.256688
С	2.581242	-1.854449	-1.275481
Н	1.612129	-0.042177	-1.912742
С	2.864446	-2.701040	-0.203031
Н	2.612595	-3.043997	1.909258
Н	2.959724	-2.087554	-2.269004
Н	3.461120	-3.597795	-0.359504

2a

M06L SCF energy:	-1728.20129231 a.u.
M06L enthalpy:	-1728.044682 a.u.
M06L free energy:	-1728.097635 a.u.
M06 SCF energy in solution:	-1728.12867374 a.u.
M06 enthalpy in solution:	-1727.972063 a.u.

ATOM	Х	Y	Z
С	-4.039858	0.857464	0.201986
С	-2.775441	1.315718	-0.116027
С	-1.720756	0.416626	-0.433588
С	-2.018593	-0.972376	-0.401565
С	-3.287916	-1.420688	-0.082893
С	-4.309114	-0.514663	0.218596
Н	-4.827988	1.569595	0.440682
Н	-2.566623	2.385446	-0.128181
Н	-1.232391	-1.696415	-0.610203
Н	-3.489619	-2.490362	-0.063086
Н	-5.304854	-0.875176	0.469482
С	-0.449701	0.935850	-0.764843
С	0.740462	0.142534	-1.161439
Н	-0.319496	2.017402	-0.719621
Н	0.476927	-0.868039	-1.496311
Н	1.270563	0.626671	-1.993409
С	1.780968	-0.028379	-0.049320
Cl	1.076850	-0.918885	1.331410
Cl	2.355203	1.574171	0.513024
Cl	3.184016	-0.953029	-0.689421

14-R

M06L SCF energy:	-6903.93827992 a.u.
M06L enthalpy:	-6903.180472 a.u.
M06L free energy:	-6903.316179 a.u.
M06 SCF energy in solution:	-6906.15953070 a.u.
M06 enthalpy in solution:	-6905.401723 a.u.
M06 free energy in solution:	-6905.537430 a.u.

Cartesian coordinates				
ATOM	Х	Y	Z	
Н	1.766828	-2.300857	1.189842	
С	0.928608	-2.626918	0.560509	
Н	0.598116	-3.604451	0.935296	
С	1.391259	-2.788729	-0.880700	
Н	0.701515	-2.289055	-1.578566	
С	2.816774	-2.312393	-1.184110	
С	2.938636	-0.880506	-1.674734	
Н	2.333211	-0.772520	-2.581912	
Н	3.985432	-0.670376	-1.933666	

P	-0.464221	-1.437938	0.788533
P	2.369087	0.393535	-0.460528
С	-0.705041	-1.413348	2.594648
С	-1.128224	-1.253277	5.359258
С	0.157204	-2.062278	3.482930
С	-1.786269	-0.685742	3.111265
С	-2.002666	-0.615641	4.479802
С	-0.050884	-1.974524	4.858516
Н	1.002013	-2.642704	3.117972
Н	-2.463519	-0.170258	2.429461
Н	-2.847778	-0.046825	4.862302
Н	0.633546	-2.480213	5.537496
Н	-1.288848	-1.186098	6.433657
С	-1.899892	-2.407992	0.180567
С	-4.037828	-3.961563	-0.768857
С	-2.794543	-3.017257	1.073378
С	-2.085751	-2.606337	-1.196735
С	-3.149421	-3.372153	-1.663204
С	-3.850889	-3.788099	0.599021
Н	-2.670383	-2.892673	2.146191
Н	-1.419233	-2.129064	-1.911646
Н	-3.285371	-3.495978	-2.735872
Н	-4.536839	-4.247389	1.308525
Н	-4.874734	-4.552902	-1.135829
С	2.933890	1.947836	-1.224872
С	3.658205	4.401485	-2.360090
С	2.951705	2.106091	-2.616363
С	3.253421	3.040672	-0.407292
С	3.618664	4.256646	-0.974626
С	3.317570	3.326428	-3.178035
Н	2.671027	1.278209	-3.265750
Н	3.212528	2.933963	0.676859
Н	3.871227	5.096580	-0.329487
Н	3.338406	3.434526	-4.261146
Н	3.949315	5.353044	-2.802010
С	3.576080	0.123168	0.894990
С	5.471349	-0.465036	2.873341
С	4.942297	0.326553	0.656291
С	3.175265	-0.373793	2.138998
С	4.117276	-0.669703	3.120704
С	5.882245	0.036765	1.639548
Н	5.271803	0.724878	-0.304024
Н	2.114513	-0.489662	2.354623
Н	3.783449	-1.047224	4.086579

Н	6.939636	0.204259	1.441959
Н	6.208377	-0.688299	3.642854
Н	3.453042	-2.468407	-0.291714
0	3.244159	-3.188913	-2.216731
0	1.475523	-4.174823	-1.176560
С	2.295813	-4.265736	-2.330466
С	1.481262	-4.071749	-3.599798
Н	2.139718	-4.060431	-4.474721
Н	0.755213	-4.884130	-3.717804
H	0.937866	-3.119642	-3.576939
С	3.030683	-5.584288	-2.288996
Н	2.324174	-6.419468	-2.339470
Н	3.719812	-5.659039	-3.136036
Н	3.603422	-5.660688	-1.360319
Rh	-0.035667	0.601878	-0.124935
Cl	-0.211635	-0.094509	-2.482842
Br	0.462744	1.646345	2.116674
С	-2.069602	1.326864	-0.106715
Н	-2.516794	1.206490	0.886725
С	-2.952389	0.764074	-1.197250
H	-2.753484	1.253432	-2.158358
Н	-2.784286	-0.306299	-1.362116
С	-4.440881	0.904117	-0.912319
С	-1.504421	2.674110	-0.269196
С	-1.649421	3.648750	0.742752
С	-0.646616	2.974444	-1.356226
С	-0.963679	4.844690	0.684486
Н	-2.309325	3.430643	1.581321
С	0.075957	4.172741	-1.383220
Н	-0.582528	2.293403	-2.202550
С	-0.070453	5.100542	-0.366122
Н	-1.103204	5.585884	1.469804
Н	0.749942	4.368835	-2.215812
Н	0.492843	6.032480	-0.389448
Cl	-5.374507	0.270616	-2.310603
Cl	-4.899828	2.612142	-0.626935
Cl	-4.890140	-0.065668	0.541674

14-*S*

M06L SCF energy:	-6903.94112544 a.u.
M06L enthalpy:	-6903.183780 a.u.
M06L free energy:	-6903.319963 a.u.
M06 SCF energy in solution:	-6906.16067929 a.u.
M06 enthalpy in solution:	-6905.403334 a.u.

ATOM	Х	Y	Z
Н	1.698395	-1.697043	1.696331
С	1.337921	-2.321206	0.867326
Н	1.244107	-3.342295	1.259914
С	2.327488	-2.322833	-0.295193
Н	1.808980	-2.108863	-1.248088
С	3.549771	-1.414345	-0.200204
С	3.366356	-0.003337	-0.722609
Н	2.975998	-0.046217	-1.746870
Н	4.339641	0.504192	-0.748697
P	-0.320021	-1.690874	0.378520
P	2.200540	1.000978	0.308805
С	-1.416647	-2.227419	1.730933
С	-3.160654	-2.916372	3.807477
С	-0.970082	-2.234530	3.058534
С	-2.747047	-2.569549	1.458551
С	-3.615724	-2.904940	2.492295
С	-1.835179	-2.588988	4.086657
Н	0.053819	-1.948609	3.293288
Н	-3.109880	-2.570932	0.431767
Н	-4.650138	-3.154824	2.263208
Н	-1.475951	-2.594212	5.113920
Н	-3.838487	-3.178472	4.617849
С	-0.818411	-2.778801	-1.003504
С	-1.706468	-4.479107	-3.044564
С	-0.177483	-4.001653	-1.235348
С	-1.903208	-2.419507	-1.810429
С	-2.354618	-3.267907	-2.812871
С	-0.615881	-4.838472	-2.259216
Н	0.681706	-4.307224	-0.642622
Н	-2.388775	-1.459054	-1.659674
Н	-3.204644	-2.970913	-3.424550
Н	-0.097741	-5.779401	-2.437339
Н	-2.047972	-5.138524	-3.840597
С	2.490254	2.689161	-0.330924
С	2.888263	5.280083	-1.320070
С	2.567388	2.917809	-1.710699
С	2.573790	3.779579	0.544901
С	2.778070	5.064735	0.051711
С	2.769805	4.206244	-2.198033
Н	2.451514	2.088117	-2.407178

Н	2.494588	3.617435	1.619918
Н	2.855228	5.900544	0.745622
Н	2.834924	4.367377	-3.273002
Н	3.055457	6.285045	-1.704598
С	3.158879	1.013761	1.881331
С	4.770903	0.909729	4.174722
С	4.460340	1.539477	1.868523
С	2.679422	0.436420	3.060919
С	3.482973	0.386860	4.199806
С	5.259129	1.488750	3.004317
Н	4.846795	2.004388	0.961100
Н	1.657934	0.063606	3.097504
Н	3.090579	-0.055963	5.113666
Н	6.265637	1.902770	2.975714
Н	5.394584	0.872615	5.066159
Н	3.912232	-1.396847	0.846132
0	4.497672	-2.083831	-1.021681
0	2.939696	-3.606597	-0.353023
С	4.076706	-3.446942	-1.194650
С	3.705082	-3.658969	-2.652492
Н	4.559056	-3.431850	-3.299188
Н	3.400896	-4.697844	-2.825434
Н	2.877027	-3.001716	-2.942916
С	5.158002	-4.382479	-0.707023
Н	4.831653	-5.424830	-0.788878
Н	6.065797	-4.254228	-1.304988
Н	5.391859	-4.167219	0.339736
Rh	-0.211634	0.543876	0.025361
Cl	-0.577841	0.938168	2.395568
Br	0.300532	0.082186	-2.420641
С	-2.265657	0.947654	-0.435054
Н	-2.596647	0.379151	-1.309759
С	-1.782245	2.277265	-0.838756
С	-1.733695	2.634310	-2.207855
С	-1.256263	3.195030	0.099217
С	-1.192571	3.836705	-2.613049
Н	-2.136712	1.937443	-2.940566
С	-0.700676	4.406376	-0.322173
Н	-1.315531	2.973327	1.162564
С	-0.660048	4.726301	-1.669796
Н	-1.177662	4.093310	-3.670966
Н	-0.302687	5.097152	0.418370
Н	-0.218921	5.666784	-1.996154
С	-3.223436	0.820235	0.725639

Н	-3.046034	-0.093353	1.307662
Н	-3.103797	1.648049	1.434051
С	-4.691792	0.790656	0.326695
Cl	-5.041820	-0.641374	-0.726217
Cl	-5.162010	2.271241	-0.557321
Cl	-5.701574	0.639104	1.804813

15

M06L SCF energy:	-2604.39901051 a.u.
M06L enthalpy:	-2603.805788 a.u.
M06L free energy:	-2603.911955 a.u.
M06 SCF energy in solution:	-2603.92864742 a.u.
M06 enthalpy in solution:	-2603.335425 a.u.
M06 free energy in solution:	-2603.441592 a.u.

A'I'OM	Х	Y	Z
Rh	-0.248905	-1.049159	-1.218345
Cl	0.790507	-2.524029	-2.726901
Ρ	1.375560	-0.463227	0.091677
Ρ	-1.768570	0.164306	-0.193829
0	-0.639982	4.059843	0.248661
0	1.449712	3.385789	0.890573
С	-1.729286	2.014149	-0.306494
С	-0.686521	2.679145	0.566618
С	0.766439	2.248009	0.385443
С	1.202703	1.021039	1.173905
С	0.696581	4.528946	0.494254
С	0.702731	5.511156	1.644438
С	1.233940	5.110260	-0.799461
С	2.923546	-0.054652	-0.800409
С	4.135728	0.034270	-0.104601
С	5.300343	0.398294	-0.771312
С	5.263338	0.678232	-2.136482
С	4.062092	0.589457	-2.833241
С	2.894162	0.222261	-2.169662
С	1.861609	-1.794364	1.243481
С	1.949517	-1.626564	2.630337
С	2.281461	-2.705424	3.448192
С	2.534967	-3.954666	2.890168
С	2.454480	-4.126994	1.508398
С	2.111818	-3.059006	0.689044
С	-2.147223	-0.135778	1.572183
С	-1.636681	-1.299821	2.159268

С	-1.865147	-1.572082	3.505511
С	-2.609086	-0.684628	4.278678
С	-3.126029	0.475662	3.704323
С	-2.895167	0.750107	2.359619
С	-3.306262	-0.230016	-1.102296
С	-4.537007	-0.483259	-0.487578
С	-5.647008	-0.818187	-1.257932
С	-5.539323	-0.911384	-2.643913
С	-4.316268	-0.668638	-3.264543
С	-3.205022	-0.331077	-2.498794
Н	-1.522021	2.249659	-1.358641
Н	-2.720832	2.430478	-0.080077
Н	-0.949648	2.544708	1.635194
Н	0.978774	2.118656	-0.695819
Н	0.492150	0.812834	1.987048
Н	2.176310	1.229254	1.637059
Н	1.727128	5.817401	1.881856
Н	0.262663	5.048027	2.533120
Н	0.122733	6.403286	1.387071
Н	2.242282	5.511399	-0.651324
Н	0.584189	5.916936	-1.155361
Н	1.276141	4.338360	-1.575228
Н	4.170558	-0.195165	0.961840
Н	6.240397	0.458583	-0.225363
Н	6.176874	0.959294	-2.658128
Н	4.032355	0.795654	-3.901526
Н	1.952926	0.119074	-2.710300
Н	1.758880	-0.655602	3.085128
Н	2.343835	-2.564245	4.526199
Н	2.793031	-4.795888	3.531274
Н	2.647160	-5.102740	1.066362
Н	2.014353	-3.199284	-0.389446
Н	-1.044784	-1.980688	1.543268
Н	-1.455112	-2.477826	3.949452
Н	-2.786149	-0.893861	5.332343
Н	-3.707868	1.171112	4.306826
Н	-3.300815	1.662830	1.921143
Н	-4.626113	-0.424546	0.596668
Н	-6.601745	-1.011572	-0.771542
Н	-6.409231	-1.179409	-3.240487
Н	-4.223141	-0.748635	-4.345701
Н	-2.242392	-0.145364	-2.984485

M06L SCF energy:	-5175.66846063 a.u.
M06L enthalpy:	-5175.071689 a.u.
M06L free energy:	-5175.184475 a.u.
M06 SCF energy in solution:	-5177.98007521 a.u.
M06 enthalpy in solution:	-5177.383304 a.u.
M06 free energy in solution:	-5177.496090 a.u.

ATOM	Х	Y	Z
Н	0.973157	1.069138	1.869300
С	1.679894	1.078388	1.027610
Н	2.692424	1.136279	1.448571
С	1.454871	2.303818	0.158821
Н	1.705590	2.096288	-0.902188
С	0.071396	2.935758	0.231255
С	-1.020242	2.368277	-0.646366
Н	-0.684624	2.367018	-1.692229
Н	-1.891766	3.034864	-0.598365
P	1.563543	-0.503157	0.089589
P	-1.576962	0.646334	-0.233931
С	1.858793	-1.776615	1.357484
С	2.232655	-3.799829	3.251549
С	2.085812	-1.455198	2.702545
С	1.814854	-3.124383	0.970712
С	2.009090	-4.125475	1.915230
С	2.269505	-2.464890	3.643544
Н	2.116947	-0.417970	3.030758
Н	1.608587	-3.380584	-0.069409
Н	1.970871	-5.167398	1.604554
Н	2.444297	-2.203613	4.685945
Н	2.372569	-4.587551	3.989713
С	3.094333	-0.408316	-0.902748
С	5.430272	-0.085809	-2.394792
С	4.344830	-0.574110	-0.296944
С	3.022898	-0.085944	-2.261192
С	4.188553	0.079419	-3.002382
С	5.508150	-0.414763	-1.043125
Н	4.407172	-0.839512	0.759446
Н	2.047775	0.002554	-2.740644
Н	4.124875	0.322289	-4.061209
Н	6.477919	-0.552848	-0.568494
Н	6.342001	0.033912	-2.977570
С	-3.214084	0.629159	-1.033905
С	-5.677059	0.504061	-2.345489

С	-3.316305	0.989012	-2.383625
С	-4.352705	0.188465	-0.352163
С	-5.578469	0.133276	-1.006488
С	-4.543890	0.929161	-3.034324
Н	-2.430679	1.305049	-2.935816
Н	-4.272740	-0.124306	0.687643
Н	-6.459984	-0.210119	-0.468396
Н	-4.612585	1.209762	-4.083594
Н	-6.637122	0.453026	-2.855858
С	-1.913677	0.733851	1.557310
С	-2.328695	0.896138	4.317373
С	-2.657242	1.790452	2.101352
С	-1.391358	-0.244820	2.409137
С	-1.594085	-0.159157	3.784465
С	-2.864605	1.868975	3.474063
Н	-3.083754	2.551900	1.446621
Н	-0.843178	-1.086600	1.984669
Н	-1.182932	-0.927777	4.436854
Н	-3.444967	2.691859	3.887536
Н	-2.490686	0.960807	5.391950
Cl	0.808200	-2.614945	-2.421260
Н	-0.256056	2.933277	1.289955
0	0.339843	4.261286	-0.195818
0	2.264798	3.358393	0.652797
С	1.659398	4.593341	0.253139
С	2.406534	5.203709	-0.913531
Н	1.885889	6.096692	-1.275586
Н	3.420324	5.487588	-0.612628
Н	2.473466	4.484759	-1.736358
С	1.599961	5.492748	1.470119
Н	2.605937	5.665902	1.867202
Н	1.155007	6.459262	1.211383
Н	0.995774	5.025861	2.254711
Rh	-0.301966	-1.030155	-1.040185
Br	-2.056930	-2.633602	-0.166893

M06L SCF energy:	-6903.89205186 a.u.
M06L enthalpy:	-6903.136637 a.u.
MO6L free energy:	-6903.275961 a.u.
M06 SCF energy in solution:	-6906.12420453 a.u.
M06 enthalpy in solution:	-6905.368790 a.u.
M06 free energy in solution:	-6905.508114 a.u.
Imaginary frequency:	-37.5957 cm-1

ATOM	Х	Y	Ζ
Н	1.236602	0.933735	-2.493871
С	1.460419	1.788416	-1.839058
Н	1.138743	2.690281	-2.376785
С	2.954064	1.877145	-1.621227
Н	3.184949	2.655881	-0.868377
С	3.693312	0.604659	-1.240763
С	3.698554	0.237720	0.229344
Н	3.609504	1.142054	0.847364
Н	4.661554	-0.229274	0.475419
P	0.409521	1.630612	-0.315768
Р	2.375412	-0.970719	0.672136
С	-1.166808	2.297010	-0.957281
С	-3.644994	3.178666	-1.913131
С	-1.601109	1.942261	-2.240390
С	-1.991933	3.094763	-0.154394
С	-3.219990	3.536484	-0.634766
С	-2.835833	2.377157	-2.714755
Н	-0.983845	1.309371	-2.875095
Н	-1.673376	3.358436	0.852335
Н	-3.855422	4.151534	-0.000125
Н	-3.164435	2.080083	-3.709304
Н	-4.611951	3.518267	-2.282047
С	1.048635	2.945687	0.779831
С	2.119611	4.893950	2.474174
С	1.227768	4.258487	0.323891
С	1.398428	2.623852	2.095482
С	1.934861	3.594968	2.937869
С	1.761977	5.226489	1.167427
Н	0.943257	4.524363	-0.695230
Н	1.226495	1.608620	2.458065
Н	2.199091	3.334445	3.961544
Н	1.899320	6.243763	0.805116
Н	2.537841	5.653582	3.132254
С	2.802781	-1.395004	2.390499
С	3.344039	-2.051893	5.055097
С	3.319043	-0.432122	3.267972
С	2.550542	-2.688753	2.865604
С	2.826210	-3.012466	4.189010
С	3.588950	-0.761943	4.593084
Н	3.513652	0.583352	2.923048
Н	2.120686	-3.432553	2.197330

Н	2.626586	-4.020582	4.546947
Н	3.993734	-0.006900	5.264787
Н	3.554448	-2.307646	6.091994
С	2.877022	-2.412270	-0.328419
С	3.682408	-4.526422	-1.963713
С	4.089607	-3.068286	-0.086358
С	2.071823	-2.824177	-1.395181
С	2.476867	-3.875187	-2.212262
С	4.487129	-4.124813	-0.899296
Н	4.716149	-2.762943	0.752724
Н	1.109964	-2.336702	-1.560974
Н	1.838815	-4.194875	-3.033964
Н	5.426427	-4.637538	-0.699336
Н	3.993152	-5.356358	-2.596042
Н	3.313384	-0.235739	-1.855853
0	5.016004	0.931390	-1.639444
0	3.559925	2.206139	-2.861950
С	4.900659	1.687350	-2.845475
С	5.901775	2.819221	-2.783092
Н	6.919435	2.425541	-2.688765
Н	5.846042	3.428152	-3.691227
Н	5.692790	3.455521	-1.917722
С	5.070075	0.795417	-4.059689
Н	4.869802	1.357698	-4.977933
Н	6.090129	0.399389	-4.106611
Н	4.370465	-0.046079	-4.015139
Rh	0.191529	-0.424439	0.575944
С	-4.033961	-1.238568	0.468826
Cl	-0.331218	-2.743212	1.013760
Br	-1.639702	0.437822	2.084838
H	-3.848260	-2.112026	1.095066
С	-5.146981	-0.427491	0.780717
С	-5.508281	0.717454	0.024742
С	-5.944876	-0.749578	1.910027
С	-6.597178	1.490197	0.386683
H	-4.923419	0.986824	-0.852690
С	-7.032054	0.028087	2.262899
H	-5.674870	-1.621473	2.504831
С	-7.366852	1.154774	1.504983
Н	-6.856542	2.366020	-0.207440
Н	-7.626554	-0.236504	3.135491
Н	-8.222407	1.767113	1.783976
С	-3.061163	-1.012144	-0.625214
Н	-3.008177	0.039665	-0.934401

Н	-2.065360	-1.296725	-0.256016
С	-3.265745	-1.841043	-1.886910
Cl	-4.734540	-1.313381	-2.781112
Cl	-3.399719	-3.576213	-1.515265
Cl	-1.825223	-1.589002	-2.964162

M06L SCF energy:	-6903.88929934 a.u.
M06L enthalpy:	-6903.134401 a.u.
M06L free energy:	-6903.275577 a.u.
M06 SCF energy in solution:	-6906.11748060 a.u.
M06 enthalpy in solution:	-6905.362582 a.u.
M06 free energy in solution:	-6905.503758 a.u.
Imaginary frequency:	-37.2961 cm-1

ATOM	Х	Y	Z
Н	-2.412105	-1.262530	-2.060041
С	-2.710254	-1.738426	-1.115493
Н	-2.930023	-2.788764	-1.348067
С	-3.983406	-1.100382	-0.613164
Н	-4.205395	-1.440356	0.417667
С	-4.089393	0.415046	-0.658039
С	-3.512994	1.168092	0.520190
Н	-3.630356	0.575845	1.438376
Н	-4.095090	2.087092	0.666534
P	-1.246075	-1.706540	0.031609
P	-1.739875	1.669842	0.345740
С	-0.334405	-3.143074	-0.651869
С	1.125381	-5.285810	-1.717108
С	-0.246661	-3.328211	-2.036087
С	0.324038	-4.044395	0.193306
С	1.047581	-5.107232	-0.337599
С	0.474795	-4.394525	-2.566135
Н	-0.734303	-2.627581	-2.713168
Н	0.272736	-3.906874	1.271562
Н	1.554488	-5.799339	0.332391
Н	0.527852	-4.527520	-3.646039
Н	1.690998	-6.119429	-2.129718
С	-1.945643	-2.365293	1.589075
С	-3.039665	-3.313748	3.981706
С	-2.733677	-3.524217	1.598541
С	-1.702051	-1.695800	2.792096
С	-2.249668	-2.167843	3.983526

С	-3.278247	-3.994523	2.788091
Н	-2.915321	-4.066221	0.669316
Н	-1.059418	-0.813381	2.784537
Н	-2.048360	-1.642037	4.915438
Н	-3.889135	-4.895426	2.785605
Н	-3.465053	-3.684174	4.912775
С	-1.606101	2.755464	1.807936
С	-1.365389	4.357332	4.089637
С	-2.038999	2.287414	3.054458
С	-1.034876	4.029400	1.720121
С	-0.921747	4.825003	2.855301
С	-1.922105	3.084904	4.187997
Н	-2.463913	1.287508	3.149012
Н	-0.665637	4.389087	0.762165
Н	-0.474710	5.814095	2.774194
Н	-2.265809	2.709194	5.150136
Н	-1.272769	4.982192	4.976203
С	-1.824846	2.791460	-1.094224
С	-1.980340	4.378956	-3.390168
С	-2.741675	3.848014	-1.162873
С	-0.982755	2.544855	-2.183228
С	-1.064318	3.332624	-3.327677
С	-2.815289	4.639536	-2.304400
Н	-3.391458	4.062968	-0.313565
Н	-0.250162	1.737567	-2.117505
Н	-0.406477	3.129533	-4.171729
Н	-3.527289	5.461954	-2.347921
Н	-2.042256	4.997866	-4.283676
Н	-3.663611	0.786074	-1.612341
0	-5.499311	0.594667	-0.654538
0	-5.034412	-1.485443	-1.487918
С	-6.077262	-0.514965	-1.350745
С	-7.205083	-1.060245	-0.498715
Н	-7.958136	-0.285802	-0.317606
Н	-7.687991	-1.906962	-0.997946
Н	-6.817543	-1.396329	0.468488
С	-6.516638	-0.103811	-2.740451
Н	-6.872188	-0.973684	-3.303135
Н	-7.326785	0.630780	-2.683646
Н	-5.677409	0.340925	-3.284850
Rh	-0.044210	0.180820	0.259569
С	3.899533	-0.446985	-0.556630
Cl	1.406720	2.123014	0.476175
Br	1.795499	-1.185105	1.332667

H	4.121516	-1.487919	-0.327124
С	3.139394	-0.180820	-1.719016
С	2.976576	1.120744	-2.257382
С	2.498834	-1.259587	-2.382195
С	2.212924	1.324764	-3.392835
Н	3.457263	1.969584	-1.780211
С	1.732274	-1.043621	-3.511699
Н	2.592262	-2.262489	-1.963299
С	1.579835	0.250353	-4.022000
Н	2.103621	2.332604	-3.790033
Н	1.250213	-1.885077	-4.006138
Н	0.976680	0.418167	-4.913619
С	4.559595	0.577080	0.292933
Н	4.333779	1.596350	-0.034369
Н	4.186184	0.500698	1.322943
С	6.076534	0.427318	0.349045
Cl	6.773963	0.543330	-1.302691
Cl	6.524347	-1.161654	1.058748
Cl	6.762280	1.725379	1.368856

M06L SCF energy:	-6903.88979598 a.u.
M06L enthalpy:	-6903.134676 a.u.
M06L free energy:	-6903.274192 a.u.
M06 SCF energy in solution:	-6906.11671108 a.u.
M06 enthalpy in solution:	-6905.361591 a.u.
M06 free energy in solution:	-6905.501107 a.u.
Imaginary frequency:	-60.0515 cm-1

ATOM	Х	Y	Z
Н	-3.775667	0.290418	0.937960
С	-3.586491	0.868587	0.022213
Н	-4.302047	1.700573	0.004130
С	-3.817240	0.016273	-1.210567
Н	-3.129541	0.305071	-2.032941
С	-3.738881	-1.485957	-0.995084
С	-2.379607	-2.143657	-1.056869
Н	-1.920222	-1.911240	-2.027510
Н	-2.522975	-3.232083	-1.030669
Р	-1.886752	1.585291	0.066113
Р	-1.146888	-1.681132	0.251889
С	-1.854877	2.437428	1.684654
С	-1.715855	3.636521	4.212316

С	-3.012841	2.610787	2.455183
С	-0.624505	2.876636	2.195387
С	-0.561380	3.474617	3.449413
С	-2.941414	3.206936	3.711679
Н	-3.980406	2.274848	2.087062
Н	0.283821	2.735116	1.609717
Н	0.400517	3.807443	3.834199
Н	-3.848971	3.331113	4.300413
Н	-1.659832	4.096021	5.197782
С	-2.085591	2.898437	-1.192181
С	-2.534240	4.816514	-3.169948
С	-2.840157	4.040917	-0.907265
С	-1.554025	2.725637	-2.473221
С	-1.783012	3.680238	-3.459404
С	-3.061429	4.997085	-1.893296
Н	-3.246979	4.188503	0.094136
Н	-0.930733	1.855041	-2.678933
Н	-1.357509	3.543858	-4.451722
Н	-3.642228	5.888018	-1.661285
Н	-2.702567	5.568337	-3.938999
С	-0.117424	-3.195846	0.244803
С	1.393808	-5.553091	0.251486
С	0.112591	-3.896216	-0.944176
С	0.440375	-3.678004	1.436012
С	1.191325	-4.848101	1.435894
С	0.854796	-5.073280	-0.937689
Н	-0.289911	-3.528844	-1.887365
Н	0.279066	-3.135791	2.365980
Н	1.613482	-5.214601	2.369805
Н	1.018032	-5.610283	-1.871182
Н	1.975716	-6.473415	0.255640
С	-2.084764	-1.826135	1.817713
С	-3.575788	-1.936189	4.183007
С	-3.001869	-2.864835	2.030741
С	-1.905262	-0.861015	2.814528
С	-2.650627	-0.914938	3.990495
С	-3.745003	-2.916516	3.204936
Н	-3.137427	-3.636905	1.271978
Н	-1.175963	-0.064674	2.663870
Н	-2.504939	-0.149618	4.750993
Н	-4.461487	-3.721915	3.356674
Н	-4.164854	-1.974784	5.097712
Н	-4.234485	-1.721732	-0.033278
0	-4.510740	-1.984706	-2.076066

0	-5.165931	0.162104	-1.627470
С	-5.487322	-0.985973	-2.413086
С	-5.352319	-0.682939	-3.892100
Н	-5.496351	-1.593230	-4.483928
Н	-6.097053	0.057825	-4.201793
Н	-4.354613	-0.286696	-4.108731
С	-6.872794	-1.446840	-2.016306
Н	-7.606556	-0.654408	-2.198427
Н	-7.161891	-2.329928	-2.595281
Н	-6.893422	-1.701067	-0.952001
Rh	-0.058603	0.266471	-0.068700
С	4.275328	-0.694500	0.278684
Br	1.669585	-0.426109	1.657438
Cl	1.223515	2.207844	-0.761071
Н	4.834772	-1.263725	1.022949
С	3.759599	-1.418046	-0.824236
С	4.054540	-2.798300	-0.943736
С	2.942060	-0.821675	-1.818746
С	3.598473	-3.533314	-2.022493
Н	4.665687	-3.271274	-0.174988
С	2.467907	-1.574845	-2.879955
Н	2.677077	0.232111	-1.741888
С	2.800732	-2.927174	-2.997080
Н	3.850625	-4.589680	-2.103679
Н	1.837523	-1.100265	-3.631504
Н	2.434550	-3.509952	-3.841725
С	4.362066	0.788247	0.383006
Н	3.541827	1.293387	-0.144014
Н	4.292219	1.097353	1.432302
С	5.678105	1.363020	-0.145065
Cl	7.077350	0.608254	0.710686
Cl	5.707676	3.127306	0.152329
Cl	5.858013	1.067725	-1.900762

M06L SCF energy:	-6903.89696046 a.u.
M06L enthalpy:	-6903.140690 a.u.
M06L free energy:	-6903.278800 a.u.
M06 SCF energy in solution:	-6906.12071706 a.u.
M06 enthalpy in solution:	-6905.364447 a.u.
M06 free energy in solution:	-6905.502557 a.u.
Imaginary frequency:	-60.3774 cm-1

ATOM	Х	Y	Z
Н	-3.824134	-0.893875	-0.068284
С	-3.621182	0.186685	-0.063577
Н	-4.527137	0.687407	0.300661
С	-3.326852	0.696622	-1.470137
Н	-2.457776	1.384599	-1.465233
С	-3.107656	-0.382529	-2.535454
С	-1.680819	-0.862414	-2.745551
Н	-1.094830	-0.034164	-3.167368
Н	-1.664837	-1.676291	-3.483806
Р	-2.229071	0.550745	1.095037
P	-0.790874	-1.351275	-1.207930
С	-2.705581	-0.315395	2.629548
С	-3.302540	-1.712157	4.979938
С	-3.976167	-0.872127	2.820657
С	-1.734516	-0.465206	3.630346
С	-2.035991	-1.157682	4.798202
С	-4.271561	-1.566445	3.990948
Н	-4.744111	-0.772423	2.055170
Н	-0.741789	-0.037671	3.476557
Н	-1.274987	-1.268725	5.568457
Н	-5.262132	-1.997340	4.126814
Н	-3.533790	-2.259183	5.892544
С	-2.539086	2.323045	1.431814
С	-3.114774	5.030749	1.808286
С	-3.514431	2.715799	2.354641
С	-1.850932	3.298459	0.701286
С	-2.144158	4.645661	0.887244
С	-3.797592	4.064805	2.543315
H	-4.047866	1.963825	2.937007
H	-1.062204	2.998912	0.009201
H	-1.597405	5.397299	0.321075
H	-4.550779	4.361616	3.271391
H	-3.334531	6.086246	1.960544
С	0.661489	-2.268633	-1.835746
С	3.003483	-3.574657	-2.641673
С	1.269487	-1.944742	-3.054750
С	1.244735	-3.251938	-1.024977
С	2.408337	-3.899464	-1.425114
С	2.431108	-2.599544	-3.454477
Н	0.848290	-1.165871	-3.687300
Н	0.787458	-3.509891	-0.069773
Н	2.856145	-4.652931	-0.779556
Н	2.892726	-2.340167	-4.405821

Н	3.918914	-4.075945	-2.951330
С	-1.794782	-2.688255	-0.465271
С	-3.271425	-4.714056	0.781179
С	-2.659213	-3.497810	-1.213397
С	-1.662412	-2.925399	0.908106
С	-2.394368	-3.933165	1.529041
С	-3.397939	-4.499348	-0.590569
Н	-2.755543	-3.349273	-2.288837
Н	-0.983420	-2.300671	1.492715
Н	-2.286908	-4.093516	2.600542
Н	-4.074118	-5.116213	-1.179868
Н	-3.854409	-5.495764	1.264933
Н	-3.761855	-1.241326	-2.292620
0	-3.564553	0.229862	-3.730530
0	-4.474021	1.360607	-1.974324
С	-4.304652	1.415161	-3.382646
С	-3.492015	2.632332	-3.792467
Н	-3.300673	2.616208	-4.870574
Н	-4.029141	3.554252	-3.544009
Н	-2.522678	2.646267	-3.280331
С	-5.670971	1.363745	-4.024048
Н	-6.261695	2.240453	-3.738337
Н	-5.576938	1.347354	-5.114395
Н	-6.199220	0.461881	-3.701082
Rh	-0.185854	0.282061	0.197276
Br	1.345575	1.238918	-1.602096
С	3.935036	0.517830	-0.769752
Cl	0.795034	1.564076	2.021669
Н	4.215008	0.036186	-1.708453
С	4.493214	1.798398	-0.512874
С	5.407490	2.349442	-1.441996
С	4.160418	2.559818	0.634760
С	5.987307	3.586654	-1.221640
Н	5.660686	1.774033	-2.332256
С	4.738475	3.799163	0.841167
Н	3.415587	2.182598	1.335929
С	5.656956	4.316637	-0.077684
Н	6.697988	3.989965	-1.940425
Н	4.465387	4.377493	1.721447
Н	6.106144	5.293533	0.092728
С	3.283679	-0.357290	0.242509
Н	2.675410	0.222074	0.952356
Н	2.604841	-1.056588	-0.262680
С	4.230723	-1.223043	1.071506

Cl	5.279194	-0.233280	2.124303
Cl	3.229934	-2.305503	2.103982
Cl	5.273161	-2.236663	0.011004

M06L SCF energy:	-6903.89325927 a.u.
M06L enthalpy:	-6903.137777 a.u.
M06L free energy:	-6903.275781 a.u.
M06 SCF energy in solution:	-6906.11470734 a.u.
M06 enthalpy in solution:	-6905.359225 a.u.
M06 free energy in solution:	-6905.497229 a.u.
Imaginary frequency:	-85.1131 cm-1

ATOM	Х	Y	Z
Н	-4.067868	0.101266	0.302697
С	-3.534814	-0.836487	0.514123
Н	-4.271413	-1.648889	0.473807
С	-2.917633	-0.817299	1.909370
Н	-1.886850	-1.222618	1.888036
С	-2.907866	0.539390	2.619399
С	-1.697350	1.431477	2.392764
Н	-0.823943	0.956884	2.861862
Н	-1.842732	2.398692	2.892826
Ρ	-2.245126	-1.138070	-0.775815
P	-1.225780	1.671991	0.621820
С	-3.140292	-0.976962	-2.358040
С	-4.381981	-0.677564	-4.847618
С	-4.532599	-0.857560	-2.444944
С	-2.374556	-0.942377	-3.532372
С	-2.994997	-0.796457	-4.768007
С	-5.148523	-0.709830	-3.685797
Н	-5.146131	-0.876535	-1.545213
Н	-1.288433	-1.029197	-3.462164
Н	-2.391201	-0.774528	-5.673347
Н	-6.231974	-0.618005	-3.742337
Н	-4.865409	-0.559722	-5.816050
С	-2.013495	-2.944008	-0.563959
С	-1.768139	-5.684983	-0.075854
С	-2.921985	-3.846915	-1.127592
С	-0.977581	-3.426495	0.243613
С	-0.862167	-4.791211	0.489365
С	-2.796143	-5.211400	-0.886700
Н	-3.727993	-3.483501	-1.765757

Н	-0.245556	-2.730725	0.657052
Н	-0.048726	-5.156324	1.113657
Н	-3.502627	-5.906369	-1.337441
Н	-1.668957	-6.753289	0.109598
С	-0.127864	3.139508	0.703829
С	1.534184	5.389634	0.869000
С	0.977844	3.146380	1.567147
С	-0.376230	4.268759	-0.087381
С	0.449768	5.385777	-0.002582
С	1.797252	4.265687	1.649404
Н	1.206902	2.263808	2.161680
Н	-1.228578	4.285525	-0.764334
Н	0.237491	6.258344	-0.618400
Н	2.653475	4.254292	2.321709
Н	2.180422	6.263835	0.934729
С	-2.726596	2.367381	-0.163614
С	-4.993486	3.380956	-1.457196
С	-3.695212	3.078828	0.555867
С	-2.892297	2.203980	-1.543266
С	-4.019111	2.706774	-2.188160
С	-4.825810	3.574237	-0.086678
Н	-3.566785	3.250856	1.624437
Н	-2.127956	1.665738	-2.106527
Н	-4.137995	2.554854	-3.259785
Н	-5.579220	4.113776	0.484524
Н	-5.882896	3.763650	-1.954988
Н	-3.831872	1.078683	2.337600
0	-2.970713	0.193558	3.994021
0	-3.723770	-1.586698	2.787205
С	-3.352861	-1.191571	4.099223
С	-2.156777	-1.986825	4.596076
Н	-1.828936	-1.611279	5.571213
Н	-2.414471	-3.046971	4.695624
Н	-1.312748	-1.897924	3.901815
С	-4.566141	-1.314658	4.989856
Н	-4.895746	-2.357426	5.045993
Н	-4.330747	-0.968466	6.001260
Н	-5.383366	-0.707520	4.589372
Rh	-0.303940	-0.088205	-0.401566
Br	1.560824	-0.351512	1.332291
С	3.760541	-0.197669	-0.199503
Cl	0.845102	-1.529082	-1.987528
Н	3.160787	-0.849461	-0.837748
С	3.764902	1.185551	-0.528175

С	2.804263	1.652108	-1.460575
С	4.659790	2.123724	0.037099
С	2.753019	2.989299	-1.813511
H	2.109286	0.929472	-1.894033
С	4.612248	3.455777	-0.336499
H	5.416827	1.791140	0.745644
С	3.659535	3.895981	-1.259064
H	2.004253	3.332636	-2.525449
H	5.320298	4.162959	0.092522
H	3.620019	4.946875	-1.541032
С	4.736826	-0.877337	0.697480
H	5.169652	-0.201122	1.443958
H	4.232289	-1.683383	1.242904
С	5.904541	-1.539263	-0.042767
Cl	6.893963	-0.314007	-0.896446
Cl	6.941845	-2.378138	1.164852
Cl	5.296390	-2.732161	-1.221586

-6903.88756590 a.u.
-6903.132920 a.u.
-6903.275700 a.u.
-6906.12083400 a.u.
-6905.366188 a.u.
-6905.508968 a.u.
-26.9253 cm-1

ATOM	Х	Y	Z
Н	-1.780585	-2.292815	-1.666490
С	-2.257751	-2.399950	-0.682480
Н	-2.307868	-3.478244	-0.480495
С	-3.666053	-1.854268	-0.744106
Н	-4.163947	-1.982395	0.237277
С	-3.874258	-0.414013	-1.190547
С	-3.739491	0.651631	-0.116455
Н	-3.912876	0.226661	0.882805
Н	-4.517349	1.406273	-0.290834
P	-1.120690	-1.622787	0.560699
P	-2.110092	1.515348	-0.159263
С	0.116211	-2.946608	0.751854
С	2.101583	-4.898746	0.962654
С	0.384561	-3.544515	1.986276
С	0.859298	-3.323622	-0.372822

С	1.846325	-4.297102	-0.267578
С	1.370615	-4.521553	2.086112
Н	-0.165608	-3.236835	2.873851
Н	0.688393	-2.839750	-1.335141
Н	2.424467	-4.567060	-1.149093
Н	1.574146	-4.981964	3.051274
Н	2.877736	-5.657221	1.047924
С	-2.084732	-1.631812	2.108927
С	-3.616947	-1.589027	4.447426
С	-2.035939	-0.526186	2.965174
С	-2.895377	-2.724991	2.446840
С	-3.657980	-2.702717	3.609002
С	-2.803947	-0.505441	4.127489
Н	-1.386209	0.314337	2.719089
Н	-2.926933	-3.601649	1.798349
Н	-4.285724	-3.555195	3.861502
Н	-2.759911	0.361745	4.784007
Н	-4.218182	-1.570888	5.354650
С	-2.178038	2.611248	1.295950
С	-2.198594	4.194779	3.603232
С	-3.378832	2.862969	1.973951
С	-0.986071	3.166988	1.783968
С	-1.002745	3.954213	2.930670
С	-3.386913	3.653318	3.119968
Н	-4.316659	2.440217	1.618063
Н	-0.045054	2.968418	1.270996
Н	-0.069607	4.371111	3.303611
Н	-4.326119	3.839763	3.638041
Н	-2.204852	4.803939	4.505360
С	-2.333976	2.563257	-1.636815
С	-2.803571	4.049601	-3.951532
С	-3.072676	3.748887	-1.572906
С	-1.823217	2.134078	-2.866081
С	-2.065766	2.870024	-4.020070
С	-3.301780	4.490408	-2.728161
Н	-3.457847	4.099764	-0.614889
Н	-1.202252	1.237717	-2.905729
Н	-1.659908	2.532113	-4.971437
Н	-3.868311	5.418087	-2.670606
Н	-2.982507	4.632927	-4.852950
Н	-3.213680	-0.198992	-2.056001
0	-5.228632	-0.451671	-1.612460
0	-4.370478	-2.569027	-1.746283
С	-5.482314	-1.757536	-2.144540

С	-6.766101	-2.268640	-1.525157
Н	-7.598316	-1.595291	-1.756357
Н	-7.005634	-3.265179	-1.910541
Н	-6.662854	-2.327317	-0.436844
С	-5.513494	-1.721270	-3.657496
Н	-5.616486	-2.733312	-4.063219
Н	-6.356672	-1.116779	-4.007476
Н	-4.585836	-1.286737	-4.043390
Rh	-0.189507	0.332262	-0.081581
С	3.899196	0.017988	-0.590663
Br	1.463911	0.068201	1.804358
Cl	0.979767	2.203261	-1.037500
Н	3.201893	0.854706	-0.632709
С	3.730072	-1.018263	-1.535361
С	4.600109	-2.134865	-1.649729
С	2.632911	-0.948306	-2.439084
С	4.385265	-3.110490	-2.608093
Н	5.464461	-2.213902	-0.991690
С	2.423829	-1.934545	-3.388147
Н	1.966692	-0.085807	-2.371747
С	3.295715	-3.025335	-3.481952
Н	5.075495	-3.950008	-2.684093
Н	1.580192	-1.853314	-4.073716
Н	3.136682	-3.793540	-4.236855
С	4.938491	0.077068	0.466569
Н	4.478372	0.381658	1.417314
С	6.044403	1.093082	0.182749
Н	5.432397	-0.886760	0.637965
Cl	5.353894	2.726509	-0.025397
Cl	7.194245	1.117724	1.570235
Cl	6.944464	0.633768	-1.301864

M06L SCF energy:	-6903.89216602 a.u.
M06L enthalpy:	-6903.136995 a.u.
M06L free energy:	-6903.277612 a.u.
M06 SCF energy in solution:	-6906.12114078 a.u.
M06 enthalpy in solution:	-6905.365970 a.u.
M06 free energy in solution:	-6905.506587 a.u.
Imaginary frequency:	-32.6248 cm-1

Cartesian coordinates ATOM X Y Z H -1.627277 -2.342835 -1.552089

С	-2.029200	-2.462762	-0.537120
Н	-1.980955	-3.535373	-0.305744
С	-3.477217	-2.033430	-0.521312
Н	-3.885764	-2.117254	0.505777
С	-3.820527	-0.652047	-1.057263
С	-3.688466	0.487711	-0.066326
Н	-3.777167	0.112363	0.963459
Н	-4.517016	1.188284	-0.233806
P	-0.885851	-1.570518	0.619117
P	-2.111625	1.427754	-0.245600
С	0.463255	-2.796669	0.717207
С	2.656534	-4.530844	0.790161
С	0.946502	-3.381599	-0.461110
С	1.093035	-3.087436	1.932476
С	2.182314	-3.952362	1.965437
С	2.034925	-4.247207	-0.423295
Н	0.490218	-3.143875	-1.422094
Н	0.737064	-2.623022	2.850745
Н	2.667489	-4.168654	2.915654
Н	2.409693	-4.681700	-1.348243
Н	3.518135	-5.195771	0.816452
С	-1.731354	-1.669827	2.234933
С	-3.072216	-1.751450	4.686100
С	-2.303754	-2.865875	2.689560
С	-1.826799	-0.520422	3.026748
С	-2.499883	-0.561654	4.245666
С	-2.970368	-2.905429	3.909057
Н	-2.222750	-3.772211	2.087809
Н	-1.357738	0.403622	2.684990
Н	-2.568404	0.340557	4.850986
Н	-3.411161	-3.838416	4.255641
Н	-3.597355	-1.784203	5.639303
С	-2.221402	2.633799	1.125970
С	-2.255270	4.385177	3.313033
С	-3.362977	2.746494	1.931173
С	-1.096086	3.416537	1.427540
С	-1.120339	4.288038	2.510754
С	-3.377214	3.616204	3.018675
Н	-4.250820	2.152928	1.723808
Н	-0.195783	3.324813	0.819436
Н	-0.237748	4.883110	2.736420
Н	-4.269990	3.687539	3.637796
Н	-2.264043	5.057618	4.169237
С	-2.458939	2.359218	-1.779066

С	-3.095622	3.666561	-4.160885
С	-3.394882	3.399429	-1.783316
С	-1.839589	1.983395	-2.974575
С	-2.162629	2.633196	-4.161989
С	-3.709239	4.051849	-2.970780
Н	-3.871064	3.708157	-0.851212
Н	-1.077812	1.203636	-2.960411
Н	-1.670065	2.340956	-5.087478
Н	-4.431279	4.866636	-2.965764
Н	-3.339607	4.181210	-5.088818
Н	-3.234034	-0.453989	-1.978353
0	-5.192932	-0.817596	-1.379686
0	-4.196548	-2.878772	-1.404034
С	-5.370505	-2.167109	-1.819849
С	-6.599598	-2.720551	-1.130438
Н	-7.482374	-2.123911	-1.383906
Н	-6.777523	-3.755939	-1.439208
Н	-6.465608	-2.694556	-0.044338
С	-5.444622	-2.235277	-3.331062
Н	-5.483732	-3.277597	-3.664947
Н	-6.338442	-1.717376	-3.694274
Н	-4.561733	-1.764202	-3.775116
Rh	-0.109382	0.424866	-0.050184
С	4.244462	-0.240727	0.433876
Cl	0.991619	2.222897	-1.233940
Br	1.609405	0.377760	1.824640
Н	4.541144	-1.070900	1.077601
С	3.351028	-0.581980	-0.703171
Н	2.617348	-1.333620	-0.382045
С	4.890100	1.002494	0.636037
С	5.923507	1.097817	1.602339
С	4.541658	2.173471	-0.084722
С	6.591793	2.289858	1.816301
Н	6.192000	0.207021	2.170049
С	5.212645	3.360933	0.141190
Н	3.709640	2.147237	-0.787313
С	6.243391	3.427975	1.084008
Н	7.388834	2.340664	2.556065
Н	4.925162	4.251370	-0.414600
Н	6.765921	4.367628	1.255408
Н	2.779245	0.287675	-1.057374
С	4.062439	-1.175146	-1.917744
Cl	5.020663	-2.628750	-1.454863
Cl	2.815433	-1.672666	-3.123632

M06L SCF energy:	-6903.88693596 a.u.
M06L enthalpy:	-6903.131464 a.u.
M06L free energy:	-6903.271735 a.u.
M06 SCF energy in solution:	-6906.11472130 a.u.
M06 enthalpy in solution:	-6905.359249 a.u.
M06 free energy in solution:	-6905.499520 a.u.
Imaginary frequency:	-36.4105 cm-1

ATOM	Х	Y	Z
Н	2.885304	1.829006	-1.626493
С	2.992355	1.992929	-0.545753
Н	3.234451	3.055324	-0.404003
С	4.152497	1.175601	-0.027790
Н	4.220849	1.269108	1.074392
С	4.209881	-0.301846	-0.385938
С	3.414606	-1.229886	0.509833
Н	3.309459	-0.784669	1.508964
Н	3.967723	-2.171676	0.625643
P	1.348233	1.668506	0.249407
P	1.748425	-1.638101	-0.165994
С	0.473783	3.226024	-0.146779
С	-0.909396	5.582695	-0.752665
С	0.752799	3.931946	-1.323671
С	-0.523269	3.705466	0.713889
С	-1.209095	4.874475	0.409265
С	0.069917	5.108179	-1.619698
Н	1.509817	3.568621	-2.017250
Н	-0.767951	3.149890	1.617490
Н	-1.987226	5.231695	1.081572
Н	0.303993	5.651648	-2.533975
Н	-1.449244	6.498891	-0.987834
С	1.730597	1.809929	2.032630
С	2.398298	1.929513	4.743935
С	2.355071	2.948901	2.557163
С	1.432264	0.739984	2.882133
С	1.770745	0.797705	4.231810
С	2.686171	3.007361	3.906488
Н	2.576814	3.796244	1.906781
Н	0.913552	-0.131364	2.478304
Н	1.530445	-0.042196	4.882018

Н	3.168484	3.896983	4.308061
Н	2.659502	1.977976	5.799625
С	1.077262	-2.778459	1.096832
С	-0.083565	-4.471989	3.003202
С	1.674516	-2.951675	2.352350
С	-0.114830	-3.461247	0.809978
С	-0.681916	-4.307440	1.754992
С	1.093626	-3.792345	3.299235
Н	2.599256	-2.436047	2.605902
Н	-0.602956	-3.309300	-0.153417
Н	-1.602675	-4.836958	1.516089
Н	1.569435	-3.917529	4.270598
Н	-0.536153	-5.128252	3.744482
С	2.208396	-2.716652	-1.568210
С	3.049048	-4.295524	-3.710651
С	2.779529	-3.973418	-1.336616
С	2.054112	-2.260927	-2.880071
С	2.478137	-3.047916	-3.947197
С	3.196154	-4.760133	-2.405171
Н	2.886902	-4.342044	-0.315248
Н	1.567348	-1.301137	-3.054918
Н	2.347827	-2.690093	-4.966822
Н	3.633142	-5.739625	-2.218911
Н	3.371592	-4.913631	-4.546790
Н	3.930504	-0.434265	-1.451236
0	5.592120	-0.571066	-0.207489
0	5.339369	1.664193	-0.633450
С	6.310081	0.610233	-0.576667
С	7.333688	0.885110	0.504993
Н	8.016024	0.034728	0.609859
Н	7.921289	1.775939	0.259792
Н	6.833173	1.045821	1.465278
С	6.915275	0.461919	-1.956945
Н	7.380837	1.401346	-2.273797
Н	7.677511	-0.324196	-1.958207
Н	6.139493	0.199297	-2.683374
Rh	0.169086	-0.089856	-0.460665
С	-4.068450	0.369514	-0.653015
Cl	-1.122386	-1.507685	-1.928616
Br	-1.745929	0.455364	1.113962
С	-3.885605	1.642828	-1.240086
С	-2.850091	1.807960	-2.197543
С	-4.673977	2.772251	-0.908671
С	-2.634630	3.034562	-2.798517

Н	-2.231312	0.943507	-2.444436
С	-4.452178	3.993512	-1.522068
Н	-5.464713	2.679922	-0.165002
С	-3.436951	4.131938	-2.472155
Н	-1.834302	3.144885	-3.528617
Н	-5.073315	4.849382	-1.262115
Н	-3.266301	5.094837	-2.951666
Н	-3.455668	-0.452702	-1.025763
С	-5.152414	0.041645	0.314080
Н	-6.080140	0.579814	0.073090
Н	-4.884100	0.329975	1.341085
С	-5.503228	-1.439566	0.346297
Cl	-4.097231	-2.417015	0.834825
Cl	-6.054589	-1.967033	-1.276677
Cl	-6.837385	-1.690820	1.526884

M06L SCF energy:	-6903.89639956 a.u.
M06L enthalpy:	-6903.140704 a.u.
M06L free energy:	-6903.280173 a.u.
M06 SCF energy in solution:	-6906.12141776 a.u.
M06 enthalpy in solution:	-6905.365722 a.u.
M06 free energy in solution:	-6905.505191 a.u.
Imaginary frequency:	-56.1269 cm-1

ATOM	Х	Y	Z
Н	-3.682890	0.130949	1.309528
С	-3.636093	-0.389488	0.342280
Н	-4.650890	-0.398655	-0.074984
С	-3.175854	-1.833478	0.519274
Н	-2.407985	-2.095946	-0.235855
С	-2.657335	-2.197395	1.913359
С	-1.167601	-2.015352	2.164128
Н	-0.625130	-2.746005	1.548062
Н	-0.931743	-2.240488	3.213550
P	-2.518518	0.540079	-0.797692
P	-0.497019	-0.371621	1.668065
С	-3.126553	2.257731	-0.705601
С	-3.932729	4.932631	-0.559236
С	-4.338529	2.600015	-0.093769
С	-2.319961	3.270095	-1.244508
С	-2.725348	4.598589	-1.171606
С	-4.738416	3.932223	-0.022811

Н	-4.978456	1.830594	0.336312
Н	-1.372454	3.001959	-1.716872
Н	-2.092226	5.376824	-1.593992
Н	-5.682350	4.186677	0.456818
Н	-4.245481	5.973872	-0.500917
С	-3.109844	-0.076555	-2.417145
С	-4.116075	-1.144426	-4.794520
С	-4.279946	0.439889	-2.984235
С	-2.443402	-1.129273	-3.053930
С	-2.950971	-1.662593	-4.235351
С	-4.778075	-0.090377	-4.169795
Н	-4.799947	1.267698	-2.501354
Н	-1.510074	-1.509363	-2.635198
Н	-2.422160	-2.476456	-4.727593
Н	-5.684389	0.324232	-4.608202
Н	-4.504853	-1.556702	-5.724166
С	1.148856	-0.321405	2.468155
С	3.747098	-0.163032	3.502706
С	1.927861	-1.477308	2.608078
С	1.689934	0.912812	2.848991
С	2.982453	0.992301	3.359270
С	3.214968	-1.396740	3.129797
Н	1.537664	-2.441284	2.288630
Н	1.101298	1.822634	2.734784
Н	3.393856	1.961778	3.634509
Н	3.811584	-2.302501	3.228599
Н	4.760183	-0.101591	3.897814
С	-1.440949	0.853141	2.645963
С	-2.873543	2.807327	4.048457
С	-2.076552	0.536145	3.853109
С	-1.511596	2.166812	2.166628
С	-2.221674	3.139868	2.864138
С	-2.794639	1.507100	4.545116
Н	-2.013182	-0.474054	4.257577
Н	-1.011533	2.417112	1.228206
Н	-2.276797	4.152879	2.468734
Н	-3.296169	1.246632	5.475653
Н	-3.441318	3.562277	4.589444
Н	-3.237788	-1.618275	2.656433
0	-2.976354	-3.572980	2.040182
0	-4.294238	-2.698829	0.399709
С	-3.900910	-3.927102	0.994577
С	-3.183256	-4.818835	-0.005570
Н	-2.822354	-5.728107	0.486796

Н	-3.858494	-5.104298	-0.819721
Н	-2.316390	-4.305495	-0.437810
С	-5.124274	-4.573695	1.599585
Н	-5.851629	-4.822993	0.819856
Н	-4.845521	-5.493753	2.122907
Н	-5.592625	-3.889205	2.312807
Rh	-0.343406	0.051533	-0.523926
Br	1.359469	-1.806673	-0.805162
С	3.677274	-0.359677	-1.300513
Cl	0.229660	1.084892	-2.630270
Н	3.324429	-0.289342	-2.329177
С	4.720465	-1.284078	-1.027922
С	5.159782	-2.144126	-2.064047
С	5.335603	-1.406133	0.241256
С	6.163040	-3.070498	-1.844916
Н	4.685793	-2.065043	-3.041871
С	6.335962	-2.338894	0.453551
Н	5.016058	-0.758875	1.055654
С	6.756858	-3.174682	-0.584129
Н	6.488198	-3.719630	-2.655667
Н	6.797210	-2.419377	1.436889
Н	7.544380	-3.905685	-0.410917
С	3.215767	0.731476	-0.400536
Н	2.161604	0.943801	-0.630305
Н	3.275100	0.460047	0.661532
С	3.941872	2.064626	-0.573259
Cl	3.965820	2.560994	-2.286464
Cl	5.631296	1.970846	0.034242
Cl	3.065290	3.317356	0.383436

M06L SCF energy:	-6903.89455207 a.u.
M06L enthalpy:	-6903.139143 a.u.
M06L free energy:	-6903.278610 a.u.
M06 SCF energy in solution:	-6906.11785103 a.u.
M06 enthalpy in solution:	-6905.362442 a.u.
M06 free energy in solution:	-6905.501909 a.u.
Imaginary frequency:	-80.1474 cm-1

ATOM	Х	Y	Z
Н	3.909348	0.236443	0.308966
С	3.519973	-0.676114	-0.164663
Н	4.296248	-1.447037	-0.081282

С	3.227241	-0.452876	-1.642907
Н	2.266345	-0.925706	-1.929203
С	3.226609	1.004223	-2.099985
С	1.908415	1.750485	-2.021419
Н	1.203594	1.288539	-2.726758
Н	2.051069	2.788770	-2.350484
Р	2.013599	-1.266897	0.725694
P	1.048136	1.721852	-0.382659
С	2.556580	-1.362069	2.468179
С	3.282693	-1.455846	5.170774
С	3.899436	-1.241144	2.847279
С	1.579538	-1.528551	3.460084
С	1.944115	-1.577261	4.801340
С	4.258651	-1.288803	4.192119
Н	4.675735	-1.105551	2.095918
Н	0.533415	-1.623600	3.164390
Н	1.177198	-1.711828	5.561911
Н	5.306286	-1.194900	4.473610
Н	3.565356	-1.491376	6.221492
С	1.998944	-3.001083	0.132791
С	2.147420	-5.579180	-0.933490
С	2.877026	-3.942300	0.680293
С	1.189381	-3.363716	-0.949300
С	1.270392	-4.646637	-1.481720
С	2.947122	-5.227107	0.150740
Н	3.503695	-3.672366	1.531014
Н	0.476422	-2.643943	-1.354511
Н	0.633686	-4.920704	-2.320787
Н	3.627454	-5.955287	0.589049
Н	2.202955	-6.584864	-1.347000
С	-0.035211	3.194878	-0.574878
С	-1.496497	5.554526	-0.976552
С	-0.727587	3.409408	-1.774938
С	-0.114332	4.164691	0.431588
С	-0.836168	5.337284	0.228798
С	-1.448775	4.582386	-1.972871
Н	-0.700354	2.656569	-2.560048
Н	0.408511	4.015068	1.375696
Н	-0.878952	6.084954	1.019826
Н	-1.968806	4.738762	-2.916637
Н	-2.051059	6.477661	-1.138712
С	2.292018	2.345679	0.807228
С	4.151308	3.243266	2.698178
С	3.304121	3.240750	0.437226

С	2.206611	1.933395	2.140990
С	3.131843	2.377079	3.082868
С	4.231396	3.680983	1.376439
Н	3.366882	3.600624	-0.589954
Н	1.406945	1.250075	2.433633
Н	3.059979	2.030044	4.112603
Н	5.021313	4.366925	1.075399
Н	4.882918	3.584446	3.428489
Н	4.003004	1.544254	-1.525992
0	3.622987	0.925252	-3.460621
0	4.284024	-0.992376	-2.419989
С	4.172862	-0.383855	-3.699104
С	3.217408	-1.156353	-4.593400
Н	3.081330	-0.633384	-5.545985
Н	3.607767	-2.159784	-4.795761
Н	2.232896	-1.255204	-4.121636
С	5.560274	-0.252411	-4.281411
Н	6.008708	-1.240400	-4.429345
Н	5.518166	0.259135	-5.248257
Н	6.195435	0.325361	-3.603549
Rh	0.087357	-0.223933	0.192448
Br	-1.492421	-0.049714	-1.800074
С	-4.031398	0.302540	-0.790311
Cl	-1.107447	-2.108676	1.186103
Н	-4.483817	0.713862	-1.693980
С	-3.681571	1.232746	0.224669
С	-3.924883	2.610121	0.014992
С	-3.035921	0.840999	1.422443
С	-3.569105	3.547267	0.967482
Н	-4.405639	2.924123	-0.911826
С	-2.651030	1.790735	2.354583
Н	-2.815356	-0.209862	1.599449
С	-2.921444	3.143948	2.138151
Н	-3.774329	4.601734	0.793930
Н	-2.137572	1.472021	3.261124
Н	-2.621328	3.886728	2.876464
С	-4.169860	-1.171524	-0.603948
Н	-3.991029	-1.683998	-1.555529
Н	-3.435164	-1.572961	0.107206
С	-5.561390	-1.609684	-0.141158
Cl	-6.817738	-1.003855	-1.285851
Cl	-5.933000	-0.991103	1.495517
Cl	-5.625046	-3.396894	-0.113666

22

M06L SCF energy:	-6594.24837398 a.u.
M06L enthalpy:	-6593.636743 a.u.
M06L free energy:	-6593.760953 a.u.
M06 SCF energy in solution:	-6596.60165057 a.u.
M06 enthalpy in solution:	-6595.990020 a.u.
M06 free energy in solution:	-6596.114230 a.u.

ATOM	Х	Y	Z
Н	-1.933117	-0.244221	2.002518
С	-2.587402	0.166687	1.220603
Н	-3.330096	0.806522	1.715539
С	-3.328230	-0.953994	0.504682
Н	-3.484856	-0.710333	-0.566911
С	-2.720075	-2.349686	0.620028
С	-1.652015	-2.742882	-0.376738
Н	-2.062344	-2.663715	-1.391765
Н	-1.382687	-3.796005	-0.217981
Ρ	-1.600087	1.228216	0.081893
Ρ	-0.131135	-1.693238	-0.296405
С	-0.794917	2.433442	1.187861
С	0.566042	4.277592	2.789996
С	-0.996908	2.451251	2.573956
С	0.097941	3.349492	0.611923
С	0.769009	4.266814	1.411203
С	-0.316955	3.370631	3.369235
Н	-1.683247	1.749025	3.045130
Н	0.278137	3.320411	-0.464719
Н	1.468288	4.964484	0.954859
Н	-0.480199	3.375606	4.445755
Н	1.102390	4.989525	3.414996
С	-2.929807	2.159888	-0.759758
С	-5.047700	3.488093	-2.000549
С	-3.633647	3.157536	-0.074753
С	-3.292308	1.835907	-2.070400
С	-4.351819	2.495668	-2.685520
С	-4.686876	3.820223	-0.696228
Н	-3.346882	3.426008	0.943030
Н	-2.713040	1.089143	-2.614049
Н	-4.621527	2.244697	-3.709452
Н	-5.222713	4.603303	-0.162824
Н	-5.868825	4.011833	-2.486888
С	1.058343	-2.601144	-1.334473

С	2.935842	-3.693785	-3.095655		
С	0.687269	-2.951291	-2.641599		
С	2.384630	-2.790822	-0.926123		
С	3.315640	-3.335395	-1.803531		
С	1.620972	-3.502451	-3.512880		
Н	-0.333884	-2.780933	-2.984686		
Н	2.692465	-2.490766	0.074699		
Н	4.345602	-3.469492	-1.476877		
Н	1.322285	-3.772993	-4.523791		
Н	3.668318	-4.113891	-3.782188		
С	0.428100	-1.943176	1.425839		
С	1.227454	-2.294673	4.083637		
С	0.613258	-3.231486	1.946022		
С	0.654982	-0.837800	2.251165		
С	1.048621	-1.011759	3.574988		
С	1.012157	-3.404563	3.267276		
Н	0.455893	-4.103963	1.310310		
Н	0.538809	0.167094	1.845924		
Н	1.227669	-0.139294	4.201393		
Н	1.156896	-4.408647	3.661889		
Н	1.541262	-2.433672	5.116793		
Cl	0.025872	2.039993	-2.855415		
Н	-2.337054	-2.476045	1.653061		
0	-3.848211	-3.181402	0.409315		
0	-4.574316	-1.143671	1.155150		
С	-5.001149	-2.484871	0.900356		
С	-6.059312	-2.517502	-0.182950		
Н	-6.311378	-3.551977	-0.439329		
Н	-6.968813	-2.009101	0.153865		
Н	-5.693210	-2.018469	-1.086013		
С	-5.464045	-3.080001	2.213298		
Н	-6.286380	-2.490071	2.632005		
Н	-5.811355	-4.107938	2.065799		
Н	-4.640638	-3.086183	2.934595		
Rh	-0.182041	0.293735	-1.294460		
Br	2.375270	0.766428	-0.287913		
С	4.405026	0.690261	0.224117		
Cl	4.654616	-0.694885	1.327682		
Cl	5.370554	0.470638	-1.244514		
Cl	4.851748	2.198119	1.047233		
23-TS					
M06L SCF energy: -6594.23476824 a.u.					
M06L enthalpy:			-6593.624790 a.u.		
M06L	free energy:		-6593.751042 a.u.		

M06 SCF energy in solution:	-6596.58350134 a.u.
M06 enthalpy in solution:	-6595.973523 a.u.
M06 free energy in solution:	-6596.099775 a.u.
Imaginary frequency:	-53.2840 cm-1

ATOM	Х	Y	Z
Н	0.672310	2.159866	-2.023489
С	0.792938	2.531866	-0.996909
Н	0.421541	3.565419	-0.997305
С	2.262666	2.550373	-0.644024
Н	2.399802	2.929824	0.387683
С	3.056689	1.259239	-0.778399
С	3.001631	0.314505	0.407503
Н	2.745464	0.855050	1.330032
Н	4.001237	-0.117213	0.546898
P	-0.317807	1.510681	0.086051
P	1.821157	-1.080657	0.144193
С	-1.910731	2.333487	-0.268847
С	-4.322734	3.601914	-0.892386
С	-2.742141	2.806833	0.750664
С	-2.314127	2.475148	-1.602235
С	-3.512199	3.109287	-1.911903
С	-3.939368	3.443022	0.436624
Н	-2.451912	2.675691	1.791963
Н	-1.692370	2.077985	-2.405767
Н	-3.815547	3.210861	-2.952400
Н	-4.578397	3.810654	1.237637
Н	-5.261449	4.097898	-1.133893
С	0.116494	2.041501	1.778705
С	0.892623	2.790008	4.359569
С	0.260779	1.077552	2.782472
С	0.347868	3.389534	2.087087
С	0.733588	3.760552	3.370378
С	0.652101	1.451019	4.066250
Н	0.057263	0.031138	2.552206
Н	0.222318	4.153726	1.318842
Н	0.914500	4.809246	3.599354
Н	0.768265	0.688332	4.834294
Н	1.200783	3.082698	5.361864
С	1.881983	-1.978195	1.734342
С	1.843412	-3.354247	4.171723
С	2.842363	-1.706111	2.718104
С	0.899687	-2.947206	1.986866
С	0.886584	-3.629916	3.197825
----	-----------	-----------	-----------
С	2.821423	-2.393089	3.929638
Н	3.611084	-0.953450	2.550949
Н	0.141573	-3.155143	1.231803
Н	0.116777	-4.376831	3.380464
Н	3.573148	-2.173050	4.685889
Н	1.826560	-3.886389	5.121505
С	2.784065	-2.083444	-1.043129
С	4.342194	-3.477498	-2.892040
С	3.885150	-2.831515	-0.613877
С	2.466054	-2.043423	-2.403861
С	3.247235	-2.733903	-3.324897
С	4.659298	-3.527794	-1.536642
Н	4.130263	-2.879143	0.448039
Н	1.581512	-1.495597	-2.729803
Н	2.987484	-2.705793	-4.381257
Н	5.509354	-4.115983	-1.195432
Н	4.945668	-4.027596	-3.612087
Н	2.763763	0.741148	-1.715573
0	4.376270	1.768104	-0.899480
0	2.921661	3.402591	-1.567618
С	4.287928	2.969808	-1.665288
С	5.209883	3.990952	-1.036449
Н	6.243042	3.627460	-1.038386
Н	5.170803	4.933201	-1.592636
Н	4.909446	4.179954	-0.001094
С	4.589078	2.701656	-3.126607
Н	4.406802	3.600245	-3.725621
Н	5.634037	2.400059	-3.255264
Н	3.945369	1.900969	-3.506431
Rh	-0.345350	-0.699135	-0.348109
Br	-2.432905	-0.896003	1.056921
Cl	-0.565512	-2.901463	-1.257618
С	-4.494991	-1.058037	-0.923423
Cl	-3.463517	-0.862096	-2.282708
Cl	-5.194939	-2.615209	-0.729562
Cl	-5.511697	0.282107	-0.545298

24-TS

M06L SCF energy:	-6594.21959585 a.u.
M06L enthalpy:	-6593.608996 a.u.
M06L free energy:	-6593.729852 a.u.
M06 SCF energy in solution:	-6596.55979009 a.u.
M06 enthalpy in solution:	-6595.949190 a.u.

 M06 free energy in solution:
 -6596.070046 a.u.

 Imaginary frequency:
 -87.2679 cm-1

ATOM	Х	Y	Z
Н	-2.338703	1.609662	1.115274
С	-2.416353	0.512742	1.112044
Н	-3.475742	0.261348	1.245976
С	-1.642105	-0.094234	2.269469
Н	-1.122058	-1.025739	1.959039
С	-0.645613	0.837021	2.949647
С	0.759980	0.867716	2.391142
Н	1.205094	-0.124276	2.530693
Н	1.370848	1.563359	2.981704
P	-1.857205	-0.151244	-0.518291
P	0.969367	1.292438	0.598159
С	-2.823791	0.866683	-1.694569
С	-4.179065	2.501518	-3.525432
С	-3.938656	1.615129	-1.293957
С	-2.396402	0.949604	-3.027462
С	-3.071882	1.760329	-3.933614
С	-4.612009	2.425308	-2.204781
Н	-4.288982	1.577457	-0.263865
Н	-1.532270	0.366326	-3.348416
Н	-2.728316	1.812169	-4.965107
Н	-5.476385	3.000711	-1.877598
Н	-4.704515	3.137815	-4.235823
С	-2.673730	-1.786874	-0.462503
С	-3.906195	-4.278314	-0.191170
С	-4.047981	-1.919297	-0.678070
С	-1.921626	-2.912215	-0.113897
С	-2.536383	-4.151531	0.027801
С	-4.660212	-3.162670	-0.546530
Н	-4.640547	-1.049666	-0.964857
Н	-0.843578	-2.813229	0.018480
Н	-1.939306	-5.022208	0.293451
Н	-5.729441	-3.260304	-0.726919
Н	-4.386206	-5.250338	-0.091025
С	2.730318	1.774499	0.614119
С	5.461903	2.354610	0.481966
С	3.662410	0.944978	1.247090
С	3.179956	2.893598	-0.091019
С	4.539646	3.182207	-0.153345
С	5.020416	1.235932	1.183943

Н	3.329970	0.051894	1.777864
Н	2.463784	3.536172	-0.602663
Н	4.879270	4.056002	-0.706615
Н	5.735804	0.578425	1.675270
Н	6.525470	2.579492	0.426703
С	0.093823	2.889737	0.420046
С	-1.306029	5.288284	0.065905
С	0.025586	3.830932	1.456011
С	-0.526188	3.179799	-0.800375
С	-1.226137	4.370717	-0.977560
С	-0.672730	5.020803	1.279260
Н	0.522454	3.636182	2.406928
Н	-0.464743	2.453739	-1.613475
Н	-1.715508	4.569348	-1.929771
Н	-0.726184	5.741837	2.093028
Н	-1.858679	6.217136	-0.064881
Н	-1.076314	1.856680	2.958603
0	-0.583362	0.332849	4.275258
0	-2.540404	-0.368711	3.332312
С	-1.752439	-0.473610	4.510091
С	-1.303352	-1.905545	4.741764
Н	-0.603129	-1.954680	5.582262
Н	-2.162352	-2.548720	4.960887
Н	-0.795985	-2.298238	3.853000
С	-2.548403	0.097491	5.661033
Η	-3.467127	-0.478368	5.815531
Н	-1.958706	0.067022	6.582778
Η	-2.817068	1.136508	5.448258
Rh	0.368700	-0.199834	-1.013234
С	2.428346	-2.526777	-0.176104
Cl	4.152594	-2.530715	0.044506
Cl	1.608286	-2.489378	1.390549
Cl	1.836073	-3.730172	-1.229970
Br	2.668410	-0.292179	-1.961681
Cl	-0.269282	-1.763098	-2.757120

25-TS

M06L SCF energy:	-6594.19445515 a.u.
M06L enthalpy:	-6593.583403 a.u.
M06L free energy:	-6593.705480 a.u.
M06 SCF energy in solution:	-6596.54732710 a.u.
M06 enthalpy in solution:	-6595.936275 a.u.
M06 free energy in solution:	-6596.058352 a.u.
Imaginary frequency:	-386.3452 cm-1

ATOM	Х	Y	Z
Н	-2.756893	0.807623	1.134204
С	-2.340239	-0.194798	1.312017
Н	-3.177636	-0.821425	1.643925
С	-1.290359	-0.167482	2.415268
Н	-0.376066	-0.710554	2.103276
С	-0.881863	1.209917	2.928970
С	0.324907	1.812740	2.236305
Н	1.197499	1.209672	2.508182
Н	0.520405	2.826472	2.610147
Р	-1.731880	-0.812844	-0.311082
P	0.257223	1.852910	0.390387
С	-3.248767	-0.666903	-1.324406
С	-5.632771	-0.425949	-2.766325
С	-4.426896	-1.266821	-0.856251
С	-3.274542	0.034734	-2.531697
С	-4.463803	0.155509	-3.246660
С	-5.611758	-1.144220	-1.572093
Н	-4.412553	-1.852267	0.063924
Н	-2.350321	0.445501	-2.932219
Н	-4.469813	0.696797	-4.191238
Н	-6.519325	-1.616243	-1.200120
Н	-6.560446	-0.333059	-3.328477
С	-1.549346	-2.610395	-0.068626
С	-1.137656	-5.364888	0.189250
С	-1.483804	-3.427438	-1.207059
С	-1.418808	-3.189077	1.200879
С	-1.211810	-4.561250	1.322634
С	-1.283655	-4.795926	-1.074928
Н	-1.558894	-2.978270	-2.196763
Н	-1.492638	-2.591090	2.107454
Н	-1.109008	-5.000874	2.313011
Н	-1.232626	-5.418810	-1.965763
Н	-0.969090	-6.435522	0.290113
С	1.714029	2.878986	-0.006609
С	4.012281	4.250728	-0.819533
С	2.908334	2.747768	0.712109
С	1.685678	3.699922	-1.141158
С	2.828123	4.384361	-1.541240
С	4.049141	3.434234	0.307593
Н	2.963711	2.093301	1.580510
Н	0.762885	3.805532	-1.712341

Н	2.793560	5.021759	-2.422613
Н	4.973438	3.315709	0.869038
Н	4.908062	4.779877	-1.138222
С	-1.167140	2.950995	0.041863
С	-3.368646	4.556834	-0.612817
С	-1.664213	3.883823	0.961283
С	-1.778409	2.851375	-1.213865
С	-2.871603	3.646840	-1.542029
С	-2.760617	4.677074	0.635131
Н	-1.196426	3.999633	1.937974
Н	-1.382102	2.135396	-1.938161
Н	-3.337910	3.546703	-2.520461
Н	-3.142365	5.392093	1.361379
Н	-4.229965	5.174175	-0.860362
Н	-1.749753	1.892011	2.864755
0	-0.562411	0.981026	4.291659
0	-1.841379	-0.763841	3.580053
С	-1.033213	-0.325581	4.666759
С	0.160833	-1.244830	4.860158
Н	0.841435	-0.834645	5.613171
Н	-0.166546	-2.237671	5.188253
Н	0.721966	-1.361369	3.925289
С	-1.907946	-0.215118	5.891930
Н	-2.313774	-1.195304	6.163106
Н	-1.327113	0.166360	6.737486
Н	-2.738114	0.469556	5.695921
Rh	0.176815	0.096822	-1.077648
Cl	-0.119737	-0.962896	-3.217830
Cl	2.339856	-0.857352	1.274914
Cl	1.818738	-2.686408	-0.968793
Cl	2.637627	0.142027	-1.558286
Br	4.970564	-1.730048	-0.466344
С	2.259536	-1.131188	-0.433771

26-TS-R

B3LYP SCF energy:	-6904.30490975 a.u.
B3LYP enthalpy:	-6903.549763 a.u.
B3LYP free energy:	-6903.695411 a.u.
M06 SCF energy in solution:	-6906.11697837 a.u.
M06 enthalpy in solution:	-6905.361832 a.u.
M06 free energy in solution:	-6905.507480 a.u.
Imaginary frequency:	-31.5835 cm-1

ATOM	Х	Y	Z
Н	3.575135	0.323733	0.994466
С	2.751125	0.805413	1.532816
Н	3.185069	1.598898	2.147558
С	2.098539	-0.186751	2.491824
Н	1.068446	0.106908	2.738086
С	2.123313	-1.662858	2.081789
С	0.952515	-2.206354	1.271965
Н	0.012690	-1.890138	1.737932
Н	0.991645	-3.297860	1.342882
P	1.651371	1.635093	0.256921
P	0.869786	-1.761280	-0.545483
С	2.963708	2.499549	-0.726270
С	5.000893	3.715074	-2.245041
С	4.086458	3.070591	-0.099984
С	2.876778	2.557499	-2.126235
С	3.890092	3.156759	-2.877799
С	5.094028	3.674824	-0.852531
Н	4.182735	3.059525	0.980852
Н	1.998719	2.166671	-2.628106
Н	3.799745	3.193710	-3.959927
Н	5.950738	4.113412	-0.347926
Н	5.786690	4.184371	-2.830966
С	0.831223	2.943577	1.273396
С	-0.450559	4.875440	2.868076
С	1.156634	4.301135	1.148771
С	-0.158296	2.570221	2.197754
С	-0.789688	3.526833	2.993682
С	0.519834	5.258024	1.941425
Н	1.895824	4.618059	0.421838
Н	-0.457014	1.530423	2.293618
Н	-1.551307	3.216668	3.703983
Н	0.780563	6.306614	1.825907
Н	-0.945110	5.622310	3.483077
С	-0.083306	-3.209412	-1.188181
С	-1.514045	-5.395449	-2.225800
С	-1.030770	-3.880613	-0.402138
С	0.130830	-3.642904	-2.506470
С	-0.573339	-4.731178	-3.016636
С	-1.743081	-4.965681	-0.919797
Н	-1.227582	-3.575746	0.620579
Н	0.847251	-3.127955	-3.137174
Н	-0.392794	-5.054103	-4.038196
Н	-2.473650	-5.471484	-0.294747

Н	-2.065449	-6.241392	-2.627190
С	2.571460	-2.143513	-1.160057
С	5.148854	-2.701624	-2.131484
С	3.205888	-3.358728	-0.846646
С	3.240980	-1.223735	-1.977375
С	4.523089	-1.500124	-2.461074
С	4.486401	-3.632001	-1.324396
Н	2.696913	-4.100747	-0.237559
Н	2.758172	-0.288729	-2.243930
Н	5.025294	-0.773961	-3.094058
Н	4.965807	-4.573724	-1.071230
Н	6.145984	-2.918298	-2.504981
Н	3.074536	-1.879527	1.573547
0	2.090384	-2.324589	3.348268
0	2.888772	-0.205592	3.683377
С	2.726624	-1.480520	4.317399
С	1.804381	-1.368118	5.528834
Н	1.616974	-2.358079	5.956964
Н	2.259135	-0.732501	6.295037
Н	0.845642	-0.932286	5.232454
С	4.113057	-2.015431	4.666927
Н	4.626799	-1.326238	5.344880
Н	4.031422	-2.992529	5.153158
Н	4.713696	-2.121368	3.758617
Rh	0.180592	0.416848	-1.114633
С	-2.933589	0.661158	0.161163
Br	-1.250935	-0.511755	-2.945412
Cl	-0.478604	2.621246	-1.816294
Н	-2.168759	1.040743	0.830670
С	-3.703718	1.618259	-0.549174
С	-3.448718	3.003279	-0.334462
С	-4.748909	1.274261	-1.452077
С	-4.209691	3.977324	-0.961065
Н	-2.640138	3.288235	0.330206
С	-5.497984	2.256206	-2.080916
Н	-4.957576	0.232699	-1.670057
С	-5.238633	3.612158	-1.837756
Н	-3.996486	5.026848	-0.778946
Н	-6.287167	1.970343	-2.770790
Н	-5.829429	4.376614	-2.334899
С	-3.258386	-0.797610	0.264524
H	-3.979536	-1.112277	-0.491973
H	-2.366924	-1.412073	0.112383
С	-3.847318	-1.209483	1.632351

Cl	-2.642950	-0.907349	2.961964
Cl	-4.222798	-2.981878	1.615441
Cl	-5.355134	-0.307387	2.008955

26-TS-*S*

B3LYP SCF energy:	-6904.31067394 a.u.
B3LYP enthalpy:	-6903.555024 a.u.
B3LYP free energy:	-6903.698332 a.u.
M06 SCF energy in solution:	-6906.12431207 a.u.
M06 enthalpy in solution:	-6905.368662 a.u.
M06 free energy in solution:	-6905.511970 a.u.
Imaginary frequency:	-21.9541 cm-1

ATOM	Х	Y	Z
Н	-3.490667	-0.916653	0.885043
С	-2.614107	-1.358393	1.371100
Н	-2.940019	-2.279133	1.863956
С	-2.093593	-0.422047	2.461335
Н	-1.017819	-0.566779	2.641702
С	-2.387006	1.071278	2.268728
С	-1.373012	1.926708	1.519938
Н	-0.380873	1.773419	1.956851
Н	-1.635343	2.975255	1.694923
Ρ	-1.387991	-1.842263	0.038808
P	-1.203533	1.688888	-0.328508
С	-2.527698	-2.620109	-1.198925
С	-4.264596	-3.741254	-3.112976
С	-3.764807	-3.168880	-0.815287
С	-2.172371	-2.652309	-2.558453
С	-3.036851	-3.206585	-3.504916
С	-4.624122	-3.724748	-1.764137
Н	-4.070409	-3.175019	0.225416
Н	-1.208937	-2.267347	-2.874875
Н	-2.740921	-3.221864	-4.550246
Н	-5.574453	-4.144645	-1.445508
Н	-4.935042	-4.172942	-3.851336
С	-0.522077	-3.253911	0.854416
С	0.780588	-5.351846	2.197165
С	-0.805064	-4.588088	0.532695
С	0.428250	-2.986733	1.851273
С	1.071640	-4.025706	2.522225
С	-0.155395	-5.628175	1.200440
Н	-1.521536	-4.820983	-0.247374

Н	0.683013	-1.960454	2.096854
Н	1.807180	-3.798391	3.288970
Н	-0.379254	-6.657242	0.932689
Н	1.286864	-6.163560	2.712172
С	-0.554286	3.352439	-0.801883
С	0.425988	5.877611	-1.543886
С	0.354912	4.032088	0.020707
С	-0.956979	3.947091	-2.007048
С	-0.473151	5.202388	-2.371744
С	0.839900	5.287917	-0.349720
Н	0.701335	3.592863	0.949462
Н	-1.645521	3.429286	-2.666111
Н	-0.794836	5.648947	-3.308566
Н	1.542759	5.801894	0.300483
Н	0.803625	6.855505	-1.830223
С	-2.936598	1.765052	-0.961389
С	-5.545328	1.888356	-2.000082
С	-3.866029	2.689440	-0.452576
С	-3.329599	0.918374	-2.007053
С	-4.627009	0.979100	-2.523573
С	-5.161364	2.745945	-0.964517
Н	-3.578370	3.376877	0.338110
Н	-2.620069	0.213056	-2.428182
Н	-4.912162	0.313060	-3.332903
Н	-5.869921	3.462970	-0.558794
Н	-6.554988	1.935486	-2.398930
Н	-3.385726	1.179160	1.819476
0	-2.410411	1.544840	3.617184
0	-2.823579	-0.706373	3.656975
С	-2.877167	0.481917	4.457286
С	-1.931793	0.369213	5.650533
Н	-1.914818	1.308460	6.212761
Н	-2.255777	-0.435426	6.317793
Н	-0.916685	0.151969	5.304518
С	-4.330214	0.714343	4.865038
Н	-4.705994	-0.140224	5.436767
Н	-4.412674	1.614828	5.481697
Н	-4.954749	0.837105	3.975122
Rh	-0.051279	-0.228054	-1.039750
С	2.776596	-0.025562	0.501645
Br	1.095278	1.155599	-2.786534
Cl	1.139365	-2.169734	-1.851768
Н	2.306133	-0.951789	0.816526
С	2.741750	1.073021	1.412703

С	3.375420	2.320643	1.156594
С	2.090182	0.923095	2.670644
С	3.369535	3.334828	2.105482
Н	3.873139	2.484253	0.207896
С	2.085247	1.942207	3.612566
Н	1.613566	-0.026248	2.901429
С	2.726606	3.158169	3.337514
Н	3.871873	4.273288	1.886551
Н	1.589106	1.793016	4.567816
Н	2.728623	3.954507	4.076220
С	3.691425	-0.140301	-0.681255
Н	3.197087	-0.730779	-1.457976
Н	3.940932	0.828815	-1.117492
С	5.028011	-0.858314	-0.382896
Cl	5.964455	-0.991218	-1.921601
Cl	4.746391	-2.516238	0.269741
Cl	6.035373	0.062204	0.811907

27-TS-R

M06L SCF energy:	-6903.89184458 a.u.
M06L enthalpy:	-6903.136455 a.u.
M06L free energy:	-6903.273927 a.u.
M06 SCF energy in solution:	-6906.11734918 a.u.
M06 enthalpy in solution:	-6905.361960 a.u.
M06 free energy in solution:	-6905.499432 a.u.
Imaginary frequency:	-78.6781 cm-1

ATOM	Х	Y	Z
Н	3.368203	-0.237980	1.096999
С	2.684299	0.554251	1.435026
Н	3.292226	1.314814	1.939612
С	1.688110	0.018437	2.447824
Н	0.700375	0.511586	2.341121
С	1.490472	-1.490165	2.467195
С	0.494826	-2.108446	1.510317
Н	-0.508146	-1.750062	1.782889
Н	0.485246	-3.195463	1.671364
P	1.871114	1.340707	-0.029351
Ρ	0.730130	-1.762454	-0.297017
С	3.320437	1.730621	-1.084056
С	5.508161	2.202688	-2.775301
С	4.623791	1.778135	-0.571434
С	3.128406	1.926274	-2.459059

С	4.215553	2.162601	-3.294721
С	5.709387	2.012331	-1.411355
Н	4.806513	1.629388	0.491187
Н	2.116249	1.892577	-2.863679
Н	4.049386	2.313472	-4.359989
Н	6.715252	2.043096	-0.995364
Н	6.357273	2.382602	-3.432889
С	1.378266	2.934835	0.731159
С	0.592180	5.288543	2.028066
С	2.235866	4.036226	0.776990
С	0.121944	3.028918	1.339185
С	-0.268028	4.192863	1.990418
С	1.840790	5.208034	1.418358
Н	3.212796	3.986138	0.296507
Н	-0.561767	2.179664	1.282132
Н	-1.251044	4.247696	2.456699
Н	2.512614	6.064689	1.435445
Н	0.286364	6.206412	2.527415
С	-0.169532	-3.183599	-1.025810
С	-1.611344	-5.217010	-2.302101
С	-1.230807	-3.817698	-0.373236
С	0.160853	-3.582009	-2.326504
С	-0.549514	-4.594329	-2.957076
С	-1.950685	-4.826179	-1.011461
Н	-1.510195	-3.529847	0.639957
Н	0.973512	-3.081492	-2.853608
Н	-0.280502	-4.892952	-3.968642
Η	-2.776646	-5.308375	-0.490621
Н	-2.172088	-6.006436	-2.799314
С	2.474436	-2.245716	-0.603155
С	5.146859	-2.888217	-1.141300
С	3.111011	-3.277498	0.098483
С	3.185868	-1.565034	-1.596962
С	4.515981	-1.879797	-1.863361
С	4.440302	-3.591965	-0.165903
Н	2.565055	-3.840581	0.856160
Н	2.687227	-0.771493	-2.155672
Н	5.055306	-1.326450	-2.630597
Н	4.927846	-4.389946	0.391503
Н	6.188934	-3.133045	-1.339507
Н	2.484419	-1.962067	2.335400
0	1.015353	-1.710613	3.786791
0	2.212202	0.237760	3.750399
С	1.576134	-0.691579	4.626778

С	0.442640	-0.025812	5.381971
Н	-0.146648	-0.770649	5.927499
Н	0.834825	0.706066	6.096297
Н	-0.222794	0.494137	4.684326
С	2.637411	-1.278677	5.532861
Н	3.129291	-0.488211	6.109862
Н	2.190802	-1.994258	6.231060
Н	3.395724	-1.794985	4.935809
Rh	0.203116	0.273324	-1.111236
С	-2.754800	0.612038	-0.309842
Br	-1.680618	-0.614214	-2.581274
Cl	-0.273589	2.469795	-2.063983
Н	-1.882222	1.139494	0.078158
С	-3.716857	1.405738	-0.983233
С	-3.457884	2.788940	-1.144336
С	-4.940474	0.882037	-1.465488
С	-4.393530	3.610456	-1.750823
Н	-2.503351	3.185267	-0.803536
С	-5.868614	1.711307	-2.062725
Н	-5.142623	-0.184035	-1.377932
С	-5.597575	3.077331	-2.209613
Н	-4.182661	4.670416	-1.873991
Н	-6.806867	1.301351	-2.430234
Н	-6.329988	3.724162	-2.689641
С	-2.999900	-0.732640	0.287383
Н	-3.746251	-1.322228	-0.256538
Н	-2.069915	-1.311183	0.262835
С	-3.437536	-0.674971	1.753716
Cl	-2.261949	0.286728	2.719690
Cl	-3.465894	-2.350859	2.402662
Cl	-5.060971	0.044810	1.928601

27-TS-*S*

M06L SCF energy:	-6903.89237038 a.u.
M06L enthalpy:	-6903.137082 a.u.
M06L free energy:	-6903.273230 a.u.
M06 SCF energy in solution:	-6906.11712504 a.u.
M06 enthalpy in solution:	-6905.361837 a.u.
M06 free energy in solution:	-6905.497985 a.u.
Imaginary frequency:	-128.2307 cm-1

Cartesian coordinates ATOM X Y Z H -3.533385 -0.682094 -0.202453

С	-2.934975	-1.308505	0.473626
Н	-3.510133	-2.232579	0.612895
С	-2.740119	-0.638281	1.822320
Н	-1.716223	-0.819226	2.209789
С	-3.012399	0.848776	1.914692
С	-1.872102	1.756970	1.522656
Н	-1.004135	1.533590	2.156710
Н	-2.151431	2.796803	1.736442
P	-1.348316	-1.705974	-0.384891
P	-1.303646	1.666486	-0.248569
С	-1.983254	-2.823395	-1.691073
С	-3.065305	-4.464916	-3.677695
С	-2.601066	-4.032490	-1.351799
С	-1.905617	-2.448749	-3.035316
С	-2.450328	-3.264649	-4.022834
С	-3.136962	-4.850495	-2.340500
Н	-2.647040	-4.345037	-0.307183
Н	-1.376323	-1.534042	-3.302569
Н	-2.375604	-2.968811	-5.067691
Н	-3.607079	-5.793779	-2.067014
Н	-3.481236	-5.107951	-4.451694
С	-0.562262	-2.830619	0.851387
С	0.715558	-4.479837	2.738700
С	0.796417	-3.152397	0.720618
С	-1.270600	-3.360779	1.942441
С	-0.634361	-4.173015	2.877539
С	1.424756	-3.972195	1.653805
Н	1.352097	-2.774691	-0.138205
Н	-2.323292	-3.131065	2.097402
Н	-1.203102	-4.562335	3.720922
Н	2.479676	-4.212555	1.531856
Н	1.212737	-5.111966	3.472644
С	-0.574272	3.343080	-0.366839
С	0.687532	5.829221	-0.609516
С	0.276715	3.806487	0.641324
С	-0.777651	4.132408	-1.502152
С	-0.152485	5.369389	-1.620529
С	0.901559	5.044322	0.520381
Н	0.467899	3.193739	1.523520
Н	-1.423477	3.773754	-2.303360
Н	-0.320814	5.974898	-2.509458
Н	1.560075	5.394162	1.314511
Н	1.177222	6.796826	-0.704104
С	-2.888260	1.892381	-1.150936

С	-5.298859	2.227970	-2.536868
С	-3.819340	2.855505	-0.738569
С	-3.175757	1.113336	-2.275545
С	-4.375854	1.278312	-2.964866
С	-5.016725	3.020259	-1.424270
Н	-3.600816	3.488806	0.121973
Н	-2.442713	0.372481	-2.603184
Н	-4.587008	0.661440	-3.836566
Н	-5.733313	3.768785	-1.090539
Н	-6.238610	2.355769	-3.071457
Н	-3.920835	1.089381	1.330811
0	-3.268238	1.019133	3.304928
0	-3.692236	-1.156093	2.742459
С	-3.720006	-0.238789	3.834032
С	-2.751882	-0.673710	4.919485
Н	-2.675145	0.094120	5.696830
Н	-3.086862	-1.608997	5.381628
Н	-1.753266	-0.835557	4.497130
С	-5.149146	-0.119737	4.312013
Н	-5.521340	-1.088499	4.662123
Н	-5.215346	0.597733	5.136366
Н	-5.787986	0.225080	3.493251
Rh	-0.037188	-0.015285	-1.089212
С	2.730639	0.199423	0.037942
Br	1.733529	1.646754	-1.905152
Cl	1.261965	-1.676003	-2.342089
Н	2.138768	-0.715117	-0.028974
С	2.505020	0.982153	1.220334
С	3.260591	2.124223	1.550186
С	1.523181	0.534393	2.130375
С	3.061836	2.771196	2.760831
Н	4.003544	2.496639	0.846594
С	1.339658	1.173830	3.345519
Н	0.913847	-0.331089	1.852611
С	2.106754	2.298960	3.662952
Н	3.653128	3.651041	3.006899
Н	0.590131	0.807015	4.045700
Н	1.953740	2.811040	4.611163
С	4.016445	0.121997	-0.723365
Н	3.797249	-0.276013	-1.721484
Н	4.505727	1.094854	-0.844710
С	5.048166	-0.833966	-0.108656
Cl	6.457311	-0.905076	-1.211907
Cl	4.356141	-2.472775	0.065245

TS-A

M06L SCF energy:	-5718.33400775 a.u.
M06L enthalpy:	-5718.159813 a.u.
M06L free energy:	-5718.233040 a.u.
M06 SCF energy in solution:	-5720.77397892 a.u.
M06 enthalpy in solution:	-5720.599784 a.u.
M06 free energy in solution:	-5720.673011 a.u.
Imaginary frequency:	-381.6541 cm-1

ATOM	Х	Y	Z
С	-1.701536	3.836166	1.001487
С	-1.387635	2.508755	1.249637
С	-1.282628	1.582722	0.194864
С	-1.473823	2.042355	-1.122732
С	-1.784222	3.369772	-1.367334
С	-1.903607	4.271695	-0.307976
Н	-1.791172	4.536226	1.829673
Н	-1.225586	2.164235	2.270744
Н	-1.369519	1.351754	-1.958270
Н	-1.932541	3.709785	-2.390364
Н	-2.148094	5.313576	-0.505379
С	-0.950840	0.203074	0.500461
С	-1.413751	-0.941368	-0.358350
Н	-0.945220	-0.032475	1.565893
Н	-1.373688	-0.693212	-1.424907
Н	-0.758866	-1.807168	-0.209169
С	-2.833863	-1.426475	-0.056219
Cl	-4.047244	-0.145302	-0.335937
Cl	-2.946011	-1.972971	1.649496
Cl	-3.197192	-2.814747	-1.132051
С	3.572365	-0.388226	-0.076509
Cl	4.210994	-0.612296	1.535013
Cl	4.265982	0.994361	-0.894073
Cl	3.627660	-1.847023	-1.039923
Br	1.313163	0.110631	0.187854

S110

1:1, double- triplet, coupling with Deuterium). The assignment of the two additional peaks were shown below.

Based on dept135, the additional two peaks are $\mathrm{CH}_{\mathrm{2.}}$

These two peaks were assigned by comparing with the chemical shift of authentic samples.

References:

- 1 Kharasch, M. S.; Reinmuth, O; Urry, W. H. J. Am. Chem. Soc. 1947, 69, 1105-1110.
- 2 Huyser, E S.; Kim, L, J. Org. Chem, 1968, 33, 94-99.
- 3 Fialkov, Y. A.; Yagupol'skii, L. M. Ukrainskii Khimicheskii Zhurnal, 1966, 32, 996-1002.

4 Sawama, Y; Nakatani, R; Imanishi, T; Fujiwara, Y; Monguchi, Y; Sajiki, H. *RSC Adv.*, **2014**, *4*, 8657-8660.

5 Yagupol'skii, L. M.; Fialkov, Y. A. Zhurnal Obshchei Khimii, 1961, 31, 3586-3593.

6 Morken, P. A., Bachand, P. C., Swenson, D. C., Burton, D. J. J. Am. Chem. Soc. 1993, 115, 5430-5439.

7 Gao, F, Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10961-10963.

8 Koschker, P.; Kähny, M.; Breit, B. J. Am. Chem. Soc., 2015, 137, 3131–3137.

9 Hobbs, C. F.; Knowles, W. S. J. Org. Chem, 1981, 46, 4422-4427.

10 Henri B. Kagan, J. Am. Chem. Soc., 1972, 94, 6429-6433.

11 Dang T; Poulin, J. C.; Kagan, H. B. J. Organomet. Chem. 1975, 91, 105-115.

12 Spindler, F; Pugin, B; Jalett, H; Buser, H; Pittelkow, U; Blaser, H. *Chemical Industries*, **1996**, *68*, 153-166.

13 Werz, U; Brune, H. A. J. Organomet. Chem. 1989, 363, 377-385.

14. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.

15. Zhao, Y.; Truhlar, D. G., J. Chem. Phys., 2006, 125, 1-18.

16. a) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B.* **1988**, *37*, 785; (b) Bechke, A. D. *Phys. Rev. A.* **1988**, *38*, 3098; c) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. *Chem. Phys. Lett.* **1989**, *157*, 200; d) Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648.

17. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378-6396.