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SUPPLEMENTAL BOX 1: CRITICAL CONSIDERATIONS FOR THIS LITERATURE SEARCH

Several papers required additional considerations/criteria for characterization and grouping for literature analysis. These in-
clude:

1) Distinguishing Between Resistance that was ‘Derived’ vs. ‘Studied’

Of the 109 papers analyzed, we found that how resistance was derived was not always similar to how resistance was studied.
For instance, some papers described resistant cells that were derived in vitro but then later used to study resistance mechanisms
in vivo, or vice versa. For example, Zhai et al. treated hepatocellular carcinoma cells with increasing concentrations of soraf-
enib in vitro to derive cells, but then implanted these cells ectopically in mice to study the effects of Akt inhibition on resistance
[88]. Conversely, Baker et al. derived sorafenib resistant cells from acute myeloid leukemia patients but then studied whether
sorafenib-resistant FLT3 mutated cells were sensitive to sunitinib in vitro [37]. In such instances, we used such designations to
separate studies as described in Fig. (3) and as outlined in Supplemental Table 1.

2) Distinguishing Between Acquired or Intrinsic Resistance

Out of the 109 papers, we identified 62 papers that derived resistance by treating cells in vitro or in vivo until they became non-
responsive to treatment over time. These were designated as acquired resistance studies. In contrast, we found 50 papers that
identified intrinsically resistant cells and used them for study. These included either an initial (failed) treatment effect or a phe-
notype induced by genetic modification that generated non-responsiveness to therapy. For example, Shojaei ef al. identified
cells with intrinsic sunitinib resistance in implanted tumors iz vivo [10], whereas Liu et al. induced sorafenib resistance in hepa-
tocellular carcinoma cells by overexpressing PROX1 [99]. For this reason, we grouped papers accordingly in our analysis (see
Supplemental Table 1 for details).

3) Some Studies Fit into Multiple Categories

Of 109 papers identified in our literature search, we found several studies which could not be sub-grouped easily as they con-
tained multiple classifications or categories (see Fig. 3; gray areas). For example, Bender et al. used sunitinib and sorafenib for
their studies [24], Lo et al. derived resistance in vitro and in vivo [100], and Harada et al. studied resistance in vivo and in vitro
[74]. Groupings for each study in our analysis are explained in Supplemental Table 1.

4) Search Criteria did not Identify all Papers

As mentioned in the manuscript, our search results identified 381 publications related to antiangiogenic drug resistance, which
was reduced to include only those that met our criteria (detailed in Fig. 1). In instances where PubMed did not identify all key
words, additional papers were added to the final list (total 30). While the final 109 papers identified may not represent a com-
plete list, we feel excluded papers likely do not represent sufficient quantities to alter the general disparities noted in Figs. (2-4).
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Table S1. Summary of preclinical studies used in analysis.
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1 11859195 X X X X
2 16226705 x x X
3 17981115 X X X
4 19861442 X X X
5 | 19249680 X X
6 19318574 x X X
7 | 20699227 X X X X X
8 20501804 X x X x x
9 20406969 X X X X
10 | 20952508 X X X X X
11 | 21076618 x x X x
12 | 21622725 x x x X x
13 | 21737511 X x X X X X
14 | 21436589 X X x X X x x
15 | 21407219 X X x x X
16 | 21315783 X X X X X
17 | 21980135 X X X
18 | 21167632 X X X X X X
19 | 21982018 X x X X X X
20 | 21803743 X x X x x
21 | 21750552 x X X X
22 | 21364009 X X X X
23 | 21559452 x x X x
24 | 22020623 X x X X
25 | 22414764 X X X
26 | 22696593 X X X
27 | 22447568 X x x X x x x
28 | 22278289 X X X
29 | 22484816 X X x X x
30 | 22532600 X X X X X
31 | 22783417 X X X X X X
32 | 22354205 X X X
33 | 22473773 b3 X X
34 | 22269210 X X X X x X x
35 | 22180308 X X X
36 | 22869928 X x X X
37 [ 23969938 X X X X
38 | 23804704 X x X x
39 | 23644530 X x X X X x
40 | 24244338 X X X X X X
41 | 23913124 X X X X X
42 | 23630186 X X X X X
43 | 24113128 x X X X X X X
44 | 23623402 X X x X x
45 | 23790465 X X X X X X
46 | 23781255 X x X x
47 | 23840364 X x x x
48 | 23316005 X X X
49 | 23307858 X X x X x X X x
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53 | 23818948 X x X X X X
54 | 23497256 X X X X
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57 [ 23839492 X X X X X X X
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59 | 23257894 X X X
60 | 24122734 X x X X
61 | 23111106 x X
62 | 22983756 x x X x
63 | 22858906 X X X X X
64 | 23471579 x X X X x x
65 | 23411027 b3 X X
66 | 23427299 X x X X X x
67 | 24173109 X X X
68 | 24529377 X X X X X
69 | 25093491 X X X X x X X X
70 | 24723451 X X X
71 | 23975598 X X X
72 | 25621299 X X X X X
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73 | 25319392 X x X X
74 | 24356934 x x X X
75 | 25587220 X x X x
76 | 24628546 x x x x x
77 | 24333721 X X X
78 | 24240114 X X x x X x
79 | 25015210 X X x x x
80 | 25017961 X X X
81 | 24716227 x X x
82 | 24726537 x X x
83 | 24475095 X X x x
84 | 25088418 X X X
85 | 25216638 X X X
86 | 25047655 x x x x x
87 | 25531114 X X X
88 | 24705351 x x x x x
89 | 24619500 X X X
90 | 24486412 X x x x x
91 | 25519701 X x X x x x
92 | 25381264 X X x X x
93 | 25381153 X X X X x x
94 | 25053293 X X X X X
95 | 25663899 X X x
96 | 25855496 x x X x x X X
97 | 25908587 x X x X x
98 | 26219898 X X X
99 | 25684142 X X X
100 | 25902734 X x X x x x x
101| 25976987 X X X
102 | 26172295 X X x x x X
103 | 25519148 X X X X
104 | 25769726 X X X X
105 | 26114873 X X X X x
106 | 25501128 X X x X X
107 | 25885470 X X X
108 | 25850433 X x x x x
109 | 25675297 X X X X

Classification of 109 papers used for analysis based antiangiogenic drugs used and methods used to derive and study resistance. Notes: Studies involving intrinsic resistance were sub-

divided into those generated by genetic modification or those found non-responsive to treatment in previous (‘known’) or current (‘discovered’) studies. Studies involving acquired

resistance included those derived in vitro or in vivo following chronic or escalating drug doses (‘generated’). See Fig. (1) for complete list of drugs and drug names used in search.

GEMM, Genetically Engineered Mouse Model; PDX, patient-derived xenograft; IV, intravenous.
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