S3 Appendix: Motor expertise facilitates the accuracy of state extrapolation in perception

Nicolas Ludolph^{1, 2*}, Jannis Plöger¹, Martin A. Giese¹, Winfried Ilg¹

¹ Department of Cognitive Neurology, Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, and Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Baden-Wuerttemberg, Germany

² International Max-Planck Research School for Cognitive and Systems Neuroscience, Tübingen, Baden-Wuerttemberg, Germany

* Corresponding author:

Email: nicolas.ludolph@uni-tuebingen.de (NL)

RESPONSE MODELS WITH LIMITED EXTRAPOLATION HORIZON

In order to investigate the hypothesis that subjects may only be able to predict the pole dynamics accurately over a limited period before having to switch to a heuristics, we investigated a class of partly heuristic forward models (lh_cVEL).

Let $t_{\text{noi}} = 4.5s$ be the time after which the force that is applied to the cart is clamped to zero and let $t_{occ} = t_{noi} + 0.1s = 4.6s$ be the time of the occlusion onset. Furthermore, let $t_{resp} = t_{occ} + 0.9s =$ 5.5s be the time when the subjects have to report their current pole angle estimate θ_{est} . For $t_{noi} \leq$ $t \leq t_{resp}$, the true dynamics of the cart-pole system are described by the second-order differential equations (1) with the initial state $s_{init} = s(t = t_{noi}) = (x(t) \quad \dot{x}(t) \quad \theta(t) \quad \dot{\theta}(t))^T$.

$$
\ddot{\theta} = F(\theta, \dot{\theta}, u = 0) = \frac{g \sin(\theta) + \cos(\theta) \left(\frac{-u - m_p l \dot{\theta}^2 \sin \theta}{m_c + m_p}\right)}{l \left(\frac{4}{3} - \frac{m_p \cos^2 \theta}{m_c + m_p}\right)}
$$
\n
$$
\ddot{x} = G(\theta, \dot{\theta}, \ddot{\theta}, u = 0) = \frac{u + m_p l \left(\dot{\theta}^2 \sin \theta - \ddot{\theta} \cos \theta\right)}{m_c + m_p}
$$
\n(1)

These equations describe also the dynamics that are simulated by the model PERF, which consequently extrapolates the pole angle $\theta(t_{resp})$ without error. When assuming constant pole acceleration (cACC) or velocity (cVEL) after the occlusion occurred ($t \geq t_{occ}$), the estimated pole angle $\theta_{est}(t_{resp})$ is determined by simulating the dynamics, which are described by the differential equations in (2) and (3) with the initial state $s_{init} = s(t = t_{occ})$.

$$
\ddot{\theta}_{est} = \ddot{\theta}(t_{occ})
$$
\n
$$
\dot{\theta}_{est} = \dot{\theta}(t_{occ})
$$
\n(2)

Our model lh cVEL has one parameter h , -100 ms $\leq h \leq 900$ ms, which determines the duration of precise state extrapolation in milliseconds. It first either observes ($h \le 0$ ms) or extrapolates ($h >$ 0ms) the state $s(t_{occ} + h)$ by simulating the true dynamics (equation 1) using the initial state s_{init} $s(t = t_{occ})$. Then, it switches to the constant pole velocity model (cVEL) and simulates the corresponding dynamics (equation 4) for $t_{occ} + h \le t \le t_{resp}$ using the initial state $s_{init} =$ $s(t = t_{occ} + h).$

$$
\dot{\theta}_{est} = \dot{\theta}(t_{occ} + h) \tag{4}
$$

For $h = 900$ ms the model coincides with the model PERF, which represents perfect knowledge of the pole dynamics. Correspondingly, for $h = 0$ ms the model coincides with the model cVEL, which assumes that, the pole velocity remains constant over the time of the occlusion. We investigated 61 values of h corresponding to the 61 frames ($\Delta t = 1/60s$) from 100ms before ($h = -100$ ms) to 900ms after ($h = 900$ ms) the pole occlusion. The prediction error increases with increasing value of the parameter *h*. This corresponds to the decreasing accuracy of the model (**Figure 1**).

Figure 1. Prediction error as function of the extrapolation horizon (h) averaged over all stimuli. Notice that the prediction error monotonically increases with decreasing value of the parameter h .

In order to determine the best fitting model (h_s^*) for each subject (s) , we first calculated the root mean squared error ($RMSE_{T4,s,h}$) between the models' ($MDL_h = \theta_{est}(t_{resp})$) and subjects' ($RSP_{T4,s}$) responses in block T4 for each model (h) (Equation S1).

$$
RMSE_{T4,s,h} = \sqrt{\frac{1}{40} \sum_{trial=1}^{40} (RSP_{T4,s,trial} - MDL_{h,trial})^2}
$$
 (S1)

The best fitting model (h_s^*) for each subject (s) was determined by minimizing the root mean squared error with respect to h (Equation S2).

$$
h_s^* = \arg\min_h RMSE_{T4,s,h} \tag{S2}
$$

Figure 2 shows the root mean squared error of all investigated models in the class lh cVEL for two representative subjects, one from the group VF and the other from the group MF.

Figure 2. Root mean squared error of the model class lh_cVEL for two representative subjects. The best fitting model $(h[*])$, according to the root mean squared error (RMSE) is for each of the two subjects indicated by a star. For the subject representing the group MF, h^* (extrapolation horizon) is higher (closer to the model which perfectly extrapolates the dynamic behavior of the pole: $h = 900$ ms) than for the subject representing the group VF.