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Figure S1 | Selection of features and a single individual G4-seq mm% value per putative quadruplex 
sequence. Machine-supervised learning procedure requires training data, where each entry contains both the 
necessary response value, and the set of features to build the model upon. As a response value, we used the 
maximum experimental G4-seq mm% (labelled with blue × in example a) observed among all the mm% 
values, measured for each 15-nt bin that overlap with the given extended PQS sequence and its 50-nt long 
5’- and 3’-flanks (see a and b). The number of 15-nt bins that overlap with PQS+flanks can vary depending 
on the length of the PQS. We then defined 209 features fully based on the DNA sequence of PQS and its 
flanks (c). Of those, 201 were the triad (64) and singleton (3) contents of the PQS, 50-nt-long 5’-flank and 
50-nt-long 3’-flank sequences (considered separately). 5 were describing the overall architecture of the 
quadruplex sequence and 3 were reflecting the stem-loop-formation ensemble averaged free energies of the 
first three loop sequences of PQS (c). For complete details, see subsection 11 of Methods. 
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Figure S2 | Data partitioning for machine learning. The application of the extended Quadparser sequence 

motif to search for putative quadruplex sequences (PQS) throughout the human genome produced 703,091 

hits, of which 15,245 were not mapped in the G4-seq experiment, hence were left out. From the remainder, 

619,282 sequences (b) were further considered (along with their 50-nt flanks in both 5’ and 3’ directions), 

since the other 68,564 contained additional PQSs within their flanks (c). The latter exclusion was necessary 

due the additive effect reflected in G4-seq mm% values where there were multiple G4s immediately 

following each other (c), which normally resulted in overestimated mm% values assigned to the constituent 

G4s in such clusters (Figure S10). The 619,282 sequences (d) were next randomised and partitioned to 

433,498 (70%) for training purposes (e) and 185,784 (30%) for pure testing (f). During the architecture 

adjustment stage of the machine learning workflow based on gradient boosting machine (GBM)1-3, the 

training dataset was subsampled to produce random test sets during the repeated cross-validation process 

(see below, Figure S4). The error metrics obtained from such subsampled test sets, though not directly 

involved in the training process, are still used for the decision making in the selection of the best GBM 

architecture, hence indirectly take part in the machine learning procedure. It is therefore of paramount 

importance to leave out a “pure” dataset from the very beginning, where the data have no direct and indirect 

relation to the machine learning process. Pure test in f was thus created to achieve just that, with the absence 

of the underlying data from both the model parameterisation and the optimisation of the machine learning 

architecture (learning parameters in GBM). Note that both training and pure test datasets held PQSs with the 

high-to-low (> 18 mm% vs. < 18 mm%) ratio of actual G4 formation propensities in G4-seq experiments 

being 1.000/1.039, thus devoid of a imbalanced data representation and associated danger of biasing our 

outcomes. 

  



	 4	

 

 
Figure S3 | Preliminary GBM model generation for the initial assessment of feature importance. For 

the first stage of the machine learning workflow (see Methods), we have utilised all the 209 generated 

features (a), and parameterised a preliminary model by using a reasonably sophisticated (low learning rate, 

high interaction depth and maximum number of trees, b) set of learning parameters and optimising only the 

number of trees (b). In the notations in b, the values within the curly brackets denote the sampled numbers of 

trees. The initial model arrived to the RMSE of 8.291 (mm%, from the repeated cross-validation process) 

with 3500 trees (c). We used that model to assess the relative importance of each of the 209 used features (d, 

example relative importance of the top 50 influential features), normalising the values by setting the relative 

importance of the most influential feature to 100. Feature importance values were directly obtained from the 

GBM procedure, where it accounts for the number of times a given feature was used for a split in the 

underlying decision trees, along with the squared improvement achieved in describing the data after such 

splits3. 
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Figure S4 | Repeated cross-validation procedure and error metric used within GBM architecture 

tuning stages. In all but the last stage of the machine learning workflow, we tuned the major learning 

parameters that define the topology of the underlying trees (interaction depth, number of trees, minimum 

child weight) and the exact procedure of gradient boosting (learning rate or shrinkage coefficient, bag 

fraction or subsample ratio)2,3. A given GBM architecture can thus be defined through a specific 

configuration of those learning parameters. To assess each configuration for its suitability to a given dataset 

(problem), we need an unbiased error metric to measure the performance of the model built with such a 

configuration on the training data. For this purpose, we used repeated (twice) 3-fold cross-validation 

procedure2. There, the training data is shuffled twice (for two repeats). Next, for each shuffled state, data is 

partitioned into three sets, and a model is built and tested three times. Each such instance utilised the merger 

of two datasets (2/3 of training set) with the third one (1/3 of training set) used for testing. The three model-

building and testing cycles differ by the choice of the three partitions to use for the merger training set and 

for the test. Therefore, to assess each parameter configuration in such a repeated (twice) 3-fold cross 

validation procedure, six model training and internal testing rounds is done, each resulting in an individual 

error metric. We used root mean squared deviation (rmsei) of the predicted vs. actual G4-seq mm% values as 

error metric from each constituent case, and described the overall performance of a given parameter 

configuration through the RMSE value that is the average of the six constituent ones. 
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Figure S5 | Optimisation of the number of features used in the GBM model development. Based on the 

preliminary GBM model and the crude relative importance estimation of all generated 209 features in that 

model, we next (2nd stage) explored how many features can be excluded without influencing the GBM model 

performance. We generated models with varying GBM architectures for four classes of models, using all 

209, the top 119 (removing all the features that are more than 1000 times weaker than the most influential 

feature), the top 60 (removing all the features that are more than 300 times weaker than the most influential 

feature) and the top 32 (removing all the features that are more than 200 times weaker than the most 

influential feature) features (a). For each class, we additionally tried 2 different learning rates (shrinkage 

coefficients) and 8 different values for the number of trees. We set the rest of the learning parameters to 

define the GBM architecture equal to the values in the initial model (Figure S3). In the notations in a, the 

numbers within the curly brackets denote the sampled values for each corresponding learning parameter, 

where all the possible permutations of those values across the 2 optimised parameters (learning rate and 

number of trees) were sampled. At this stage, we learned that 90 features could be eliminated without any 

loss in the performance of GBM models. Such elimination left only the top 119 features (b) to be used for 

the further optimisation of the GBM architecture, which increased the computation speed and reduced the 

memory usage at all levels of further model development. 
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Figure S6 | Tuning the GBM architecture. At the 3rd stage of the machine learning workflow, we started 

from the training dataset and the optimally reduced 119 features (a) to try different values for 5 learning 

parameters (b), with the aim to find the optimal combination. For each parameter configuration, the model 

was built and tested using a repeated (twice) 3-fold cross-validation process, employing RMSE as the 

performance metric. Parameter sampling was done in three cycles, where the first one tried 330 different 

combinations (c) with fixed 0.01 learning rate (shrinkage coefficient), the second one tried 264 similar 

combinations but with fixed 0.05 learning rate and slightly reduced upper limit for the tree interaction depth, 

and the third cycle combined the outcomes of the first two cycles to focus on the putatively optimal learning 

parameter ranges, fixing the learning rate to 0.01 and increasing the tree interaction depth to 14 (b, c). We 

did not try interaction depths greater than 14, taking into account the substantial compromise in 

computational speed that may prevent the genome-wide applicability of any outcome model. In the notations 

in b, the numbers within the curly brackets denote all the sampled values for each corresponding learning 

parameter, where all the possible permutations (with the overall number indicated at the right side) of those 

values across the 5 parameters were sampled. The found optimal values (at the third cycle) are highlighted in 

red, with the overall RMSE from the cross-validation process settling at 8.21 (mm%) after trying overall 634 

configurations (d). 
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Figure S7 | RMSE variation across different GBM learning parameter configurations. The plots a-f 

correspond to different values of interaction depth for the tree complexity, as indicated on top of each plot. 

The x-axes capture the variation in the number of trees, while the size, shape and colour of the individual 

points denote the learning rate (shrinkage coefficient), bag (subsampling) fraction and minimum child 

weight, of the learning parameters2,3, with the key indicated in f. The plots demonstrate a rapid convergence 

toward a reasonable range of errors (low RMSE) for the models, as soon as 500 and more trees are used. The 

details of the lower RMSE region are visible in the zoomed version of the figure shown below. 
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Figure S8 | RMSE variation across different GBM learning parameter configurations: the zoomed 

plots. The plots a-f correspond to different values of interaction depth for the tree complexity, as indicated 

on top of each plot. The x-axes capture the variation in the number of trees, while the size, shape and colour 

of the individual points denote the learning rate (shrinkage coefficient), bag (subsampling) fraction and 

minimum child weight, of the learning parameters2,3, with the key indicated in f. The plots demonstrate the 

preference towards the configurations with lower learning rate and higher number of trees in the case of our 

particular problem. The data shown are identical to Figure S7, but with y-axes zoomed (range 8.2-8.5) to 

better visualise regions of lower RMSE.  
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Figure S9 | Final Quadron model generation using the entire training dataset. This 4th stage was based 

on the previously revealed 119 features (a) and the set of 5 optimal parameters defining the GBM 

architecture (b). The final model was then built in a single run, utilising the complete set of training data 

(433,498 entries), without any cross-validation cycles, hence without part of the data internally excluded to 

be used as internal tests. The model (c) was produced as an R4 object that works with the xgboost library 

(http://github.com/dmlc/xgboost). 
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Figure S10 | Distribution of G4-seq mm% for all the extended putative quadruplex sequences (PQS). 

The PQS motif was used as defined in Methods, with 1) maximum loop size of 12 nt5; 2) allowing nested 

G4s, if the additional G-tracts are present not apart from the 4th G-tract by more than the maximum loop size 

(12 nt). The plots illustrate the presence of two clusters, where the sequences with low mm% represent low 

stability genomic G4-structures, as compared to the sequences with higher mm%6. Two cases of the mm% 

distribution were considered colored in blue and magenta (histograms a and b). In contrast to the blue one 

(a), the magenta histogram (a, additionally zoomed in b) depicts PQSs with another PQS present 

overlapping with 50-nt flanks. Such cases are prone to present inflated mm% values owing to the additive 

accumulation of base mismatches from two G4 structures under the G4-seq condition. The shift toward the 

higher mm% values for the “not-lone” PQSs is reflected in b. Such sequences were later eliminated from the 

model building, owing to their relative sparseness and the necessity for the model to reflect the correct 

formation propensity for individual G4s, regardless the presence of another G4 nearby. 
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Figure S11 | Circular dichroism (CD) characterisation of sequences with different G4-seq mm% levels. 

The CD experiments were done on the PQSs only (Table S1), without the genomic context that is in the G4-

seq experiment6. Typical G4 signatures7 with a maximum at ~260 nm and a minimum at ~240 nm for 

parallel topology, or a maximum at ~290 nm and a minimum at ~260 nm, for  antiparallel topology, are 

appreciable to a different extent for all the sequences tested, however, with more pronounced and intense G4 

signatures for the sequences i-m (blue spectra, as compared to red spectra for sequences a-h) that form stable 

genomic G4 structures (> 18 mm%) in G4-seq6. 
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Figure S12 | NMR characterisation of sequences with different G4-seq mm% levels. 1H NMR spectra 

revealed proton peaks8 associated with Hoogsteen base-paired guanines in G4s (10-12 ppm) for all the 

sequences investigated. However, the sequences i-m (blue spectra, as compared to red spectra for sequences 

a-h, Table S1) that formed stable genomic G4 structures (> 18 mm% in G4-seq6) were distinct in having 

broader merged signals, reflecting either the presence of multiple conformers or highly ordered quadruplex 

cores9, both contributing to the increased stability. Taken together with G4-seq data, CD spectra (Figure 

S11) and UV melting experiments (Figure S12, Table S1), where the melting temperatures correlated well 

with the mm% hierarchy observed through G4-seq, the data lead to the conclusion that the weak-G4 cluster 

in Figure 3A indeed contained sequences that either did not form G4s in a genomic context, or formed rather 

unstable ones.  
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Figure S13 | UV-spectroscopy determined melting temperatures of the studied sequences compared to 

mismatch levels measured by G4-seq. The G4 structure melting temperatures (Tm) were obtained from the 

minimum of the first derivative of the melting curves while following the absorbance at 295 nm10. The 

values reflected in the plot are summarised in Table S1. Despite the different nature and context of the short-

sequence-based UV spectroscopy and genomic G4-seq experiments, a reasonable (Pearson’s R = 0.88) 

correlation can still be noted between the Tm and mm% values. This demonstrates that the G4-seq mismatch 

levels correlate with the stability of G4 structures, even though, unlike the UV data, G4-seq reports upon 

such stabilities in the context of the genomic DNA6. The linear trendline is shown on the plot as a dashed 

line. 
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Figure S14 | NMR and CD investigation of the effect generated by different flanking sequences in G4 

formation propensity. A G4 sequence (sequence a in Table S2) was selected, which, depending on the 

flanks (50-nt long from both sides), showed low (7.4, sequence b in Table S2) and high (45.7, sequence c in 

Table S2) G4-seq mm% values. First, a CD characterization was done for the sequence a without the flanks, 

in G4-stabilising (K+) and contrasting (Na+, Li+) conditions. The biophysical experiments for the longer 

sequences b and c were complicated by the length (115 nt) of the sequences, with no clear melting points 

differentiable from UV experiments due to the presence of multiple competing structures in such long 

constructs. Due to the significant differences in structure populations while a long construct was either free 

(in UV, CD, NMR experiments) or constrained within a longer chain of genomic DNA (in G4-seq 

experiments), we expected the discrepancy between the biophysical and G4-seq experiments to be 

significant. In any case, while using the same concentration of the dissolved DNA, and the same number of 

scans, NMR did show more pronounced signals for Hoogsteen-paired bases in sequence c, as compared to b. 

Furthermore, the CD melting curves, though with Tm not directly differentiable, still favor sequence c, in 

terms of a thermal stability. The CD melting for sequence c has a well pronounced single intersection point 

with the 0 value of molar ellipticity, reflective of a single structure present.  
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Figure S15 | Sequence logo representations of 50-nt-long 5’- and 3’-flanking regions around sequences 

of extended putative quadruplex motif. The plots a and b are sequence logos constructed using base 

probabilities, whereas c and d depict the bases in a more meaningful, information content, scale11. The 

schematic representation of the extended PQS motif5,12,13 (red) with its flanks (blue) is shown in between the 

two rows of plots, where the plots a and c are for the 5’-flank and the plots b and d are for the 3’-flank 

around PQS. Sequence logos are created for the flanking regions of PQS motifs that either do (> 18 mm%, 

bottom subplots in a-d) or do not (< 18 mm%, top subplots in a-d) form actual G4 structures as assessed 

through the G4-seq experiment6 performed on the human genome. The analysis demonstrates the absence of 

specific overall sequence motifs or features within the flanks that becomes visible by examining the flanking 

regions of stable G4 structures, and of PQS motifs that do not form stable G4s (no marked differences 

between the stable-G4 and weak-G4 plots). Also apparent from the examination of a link between simple 

sequence features (base contents) and the G4-seq mm%, the individual features seem to be very weakly 

associated with the overall propensity of G4 formation. Therefore, only high-level (hyper-dimensional) 

methodologies, which combine many weak features to assemble a stronger predictor, could capture the 

sequence vs. G4-formation link at a sufficiently high level of precision. 
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Figure S16 | Top 50 most influential sequence-based features as judged from the final Quadron model. 

The feature names contain prefixes G4, 5’f and 3’f and denote the features extracted from the PQS, 5’-flank 

and 3’-flank segments of DNA respectively. The single-letter suffixes denote the singleton contents; three-

letter suffixes denote the corresponding triad counts; the suffixes numlps, lp1len, lp2len, lp3len, length, 

lp1efe, lp2efe and lp3efe (Table S3) denote the number of loops in the extended PQS definition, length of the 

first, second and third loops, overall length of PQS, ensemble averaged free energies for the sequences of the 

first, second and third loops. Blue (+), red (-) and green (*) marks highlight the features as generally G4-

stabilising, generally G4-destabilising, and more complex respectively. The most pronounced features are 

summarised on the plot. Please note, that all the used features passed the criterion of not cross-correlating 

with each other; i. e. the overall G-content in all the PQSs does not correlate too strongly with the GGG 

count in the same sequences. Furthermore, any single feature presents no significant correlation with the 

stability of G-quadruplex structure, hence, it is their multiplexed combination through a hyper-dimensional 

machine learning model that has produced a predictor with high performance. 
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Figure S17 | UV-determined melting temperatures of the randomly picked sequences from C. elegans 

as compared to the computed Quadron scores. The G4 structure melting temperatures (Tm) were obtained 

from the minimum of the first derivative of the melting curves while following the absorbance at 295 nm10. 

The values reflected in the plot are summarised in Table S4, along with the full information on the selected 

quadruplex sequences and their genomic coordinates in C. elegans. Despite the different nature and context 

of the short-sequence-based UV spectroscopy and genomic G4-seq-based Quadron prediction, a reasonable 

(Pearson’s R = 0.73) correlation can be noted between the Tm and Quadron scores. This demonstrates how, 

using Quadron, we can obtain novel insight about G4 stability for sequences in genomes, where 

experimental G4-seq data are not available. The linear trendline is shown on the plot as a dashed line. 
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Figure S18 | Graphical user interface (GUI) of the Quadron program. The program accepts either 

FASTA files with a DNA sequence, or can provide a separate box to paste a sequence directly (useful for 

small queries) (a). The Quadron algorithm is parallelized, hence more than one processing cores (b) can be 

utilized to speed up the computations. The output can then be loaded into any directory (c), with a few 

friendly messages, about the progress of the computation, displayed on fly (d). 
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Table S1 | Sequences representing varying G4-seq mm% levels selected for detailed biophysical 

characterisation. The CD, NMR and UV melting experiments are detailed in Methods and Figures S11-

S13. The experiments have been done on the PQSs only, outside the genomic context captured in the G4-seq 

experiment6. The sequences are brought in conjunction with their G4-seq mm% values, genomic location 

(chr - chromosome, str - strand, pos - genomic coordinate of the sequence border with the smaller value) and 

ID, as used in Figures S11 and S12. The coloured rows (b, e, h, i, l and m) correspond to the example 

spectra shown in Figure 3. The sequence c had too weak UV-melting curve to robustly decipher its melting 

temperature (hence, n.d.). 

 

ID G4-seq 
mm% chr str pos PQS Tm (°C) 

a 0.8 10 - 60432001 GGGACTGGGAGGAGGGAGAAATGGG 50.9 
b 0.9 5 - 178492127 GGGAATAACGGGAAGCTGGGTGCAGGG 52.7 
c 0.9 5 - 120045316 GGGAAGGGTAATAAAGAGTAGGGAGGAAGAGGG n.d 
d 4.3 4 + 164721276 GGGAACTACTAGGGCTGGGAACAAGGGG 46.4 
e 5.2 10 - 100402034 GGGATTAGTGATGGGCATGGGATGGG 50.8 
f 5.8 7 + 75855277 GGGGTCCCCAGGGCAGGGCTGGG 45.1 
g 9.3 6 - 1973720 GGGATGAAGGGTGTGGTTCTCAGGGAGGG 45.6 
h 10.1 4 + 7326729 GGGAGGGCAGAAGGCAGTGGGGATGTGGG 53.1 
i 20.0 22 + 16467917 GGGCGGGTCGGGGGCACCGCGAGGG 64.0 
j 20.0 5 - 120826158 GGGAGGAGGGGGCCACGGGGATGGGG 78.8 
k 30.0 1 + 203401919 GGGTGGAGGGGGAGGGAGTTGGGGGG 77.4 
l 30.7 13 - 105003840 GGGGCCAGGGTGGGGTGGGGTGGG 87.6 

m 39.1 17 + 46088667 GGGGAGGGTAGAAAAGGGGTGGGG 75.9 
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Table S2 | One of the studied G4 sequence, separately and within the context of two different flanking 

DNA. The sequences are brought in conjunction with their G4-seq mm% values, genomic location (chr - 

chromosome, str - strand, pos - genomic coordinate of the sequence border with the smaller value) and ID, as 

used in Figure S14. 

 

ID G4-seq 
mm% chr str pos PQS 

seq. a na na na na GGGAGGGAGGGAGGG 

seq. b 7.4 5 + 49835788 
AGAAAGAAGGAAACAAAGAAACAAAGGAAGAGA
AGGCAGGAAGGAAGGAAGGGAGGGAGGGAGGGA
AGGAAGGAAAAGAAAGAAAGAAAGAAAGAAAGA
AAGAAAGAAAGAAAGA 

seq. c 45.7 7 - 25192340 
GGTGACAGAGAGACTCTGTCTCAAAAAAAAAAA
AAAAGAGAGACAACGAAGGGAGGGAGGGAGGGA
GGAAAAGGAAGAGAGAGAGAAAGAGGAAGGGAG
GGAGGAAGGAAAGAAG 
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Table S3 | Feature importance and crude directionality in defining G4-structure stabilities. The relative 

importance values were normalized for the most influential feature to have a value of 100. Hence, for the rest 

of the features, importance values represent the fractions (%) of the importance from the most influential 

feature. As a crude estimate for the directionality of each feature, i. e. whether an increase in a given feature 

value leads to an increase in G4 stability (“+” in Figure 5D) or vice versa (“-” in Figure 5D), the training 

dataset was further analyzed to retrieve the mean (MN) and standard deviation (SD) values of each feature in 

strong-G4 (ON, mm% > 18) vs. weak-G4 (OFF, mm% < 18) clusters (Figure S1). Further, the ON/OFF ratio 

and ON-OFF difference were calculated for each feature as presented in the table. The p-values reflecting the 

significance of the difference is estimated based on the comparison of ON and OFF distributions via a two-

sided Mann-Whitney test. For the ON/OFF ratio, values that are significantly greater than 1, hence are 

positively correlated with G4 stability, are highlighted in blue. Values that are significantly less than 1, hence 

are negatively correlated with G4 stability, are highlighted in red. Green colour is used for the values that are 

either close to 1, or the difference is not significant as judged based on the p-value. The colouring is used for 

the top 50 features only (Figure 5D). The feature names should be deciphered as described in Methods. 

 

Feature Rel. Imp ON.MN ON.SD OFF.MN OFF.SD ON/OFF ON-OFF p-value 
G4.G 100.0000 0.6508 0.0850 0.5286 0.0723 1.2311 0.1222 0.00E+00 
G4.GGG 60.2118 8.9854 5.5121 5.6674 2.4321 1.5855 3.3180 0.00E+00 
G4.lp2len 18.7066 3.6148 3.1884 6.2601 3.2365 0.5774 -2.6453 0.00E+00 
G4.lp3len 18.6704 3.6388 3.1831 6.3448 3.2643 0.5735 -2.7059 0.00E+00 
G4.lp1len 18.2796 4.5058 3.4259 6.4533 3.2276 0.6982 -1.9475 0.00E+00 
5'f.GGG 12.1290 1.5435 1.6401 0.7570 1.0479 2.0389 0.7865 0.00E+00 
5'f.C 11.2899 0.2158 0.0909 0.2425 0.0958 0.8901 -0.0266 0.00E+00 
G4.C 9.6042 0.0869 0.0634 0.1390 0.0756 0.6255 -0.0520 0.00E+00 
3'f.GGG 8.9301 1.4516 1.6265 0.8083 1.0742 1.7958 0.6433 0.00E+00 
3'f.G 7.8474 0.2940 0.0953 0.2534 0.0806 1.1604 0.0406 0.00E+00 
5'f.G 6.2914 0.2934 0.0931 0.2513 0.0796 1.1675 0.0421 0.00E+00 
G4.numlps 5.0018 4.5818 3.1125 3.5317 1.1640 1.2973 1.0501 0.00E+00 
G4.length 4.7670 36.5947 26.0644 35.1827 10.0337 1.0401 1.4121 0.00E+00 
G4.GGT 4.7634 1.5414 2.0616 0.9913 0.9667 1.5549 0.5501 0.00E+00 
G4.A 4.7629 0.1388 0.0733 0.1892 0.0766 0.7337 -0.0504 0.00E+00 
3'f.C 3.7712 0.2129 0.1052 0.2420 0.0982 0.8799 -0.0291 0.00E+00 
5'f.CCC 2.9663 0.7469 1.3051 1.1493 1.5733 0.6499 -0.4023 0.00E+00 
G4.TGG 2.7552 2.1219 2.0474 1.6882 1.1618 1.2569 0.4337 0.00E+00 
G4.GTG 2.5609 1.4649 1.8712 0.8286 0.9984 1.7679 0.6363 0.00E+00 
G4.AGG 2.2819 2.3476 2.7892 2.1060 1.5854 1.1147 0.2416 2.23E-01 
3'f.A 2.2785 0.2670 0.1026 0.2609 0.0931 1.0232 0.0061 1.34E-67 
5'f.A 2.2528 0.2854 0.1113 0.2720 0.0976 1.0492 0.0134 2.75E-190 
G4.GAG 1.9673 1.8133 2.3915 1.3728 1.6606 1.3209 0.4405 0.00E+00 
G4.GGA 1.4353 2.2450 2.5368 1.8767 1.5864 1.1962 0.3683 4.17E-177 
5'f.ACA 1.2207 1.6308 2.2894 1.0247 1.3113 1.5915 0.6061 6.56E-241 
3'f.AGG 1.2124 1.6039 1.5133 1.3118 1.2489 1.2227 0.2921 0.00E+00 
3'f.GGA 1.1781 1.3696 1.4653 1.0422 1.1114 1.3141 0.3274 0.00E+00 
3'f.GAG 1.1714 1.5243 1.6061 1.2036 1.3046 1.2664 0.3207 0.00E+00 
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5'f.GAG 1.1703 1.5906 1.5614 1.2316 1.2971 1.2915 0.3590 0.00E+00 
G4.GGC 1.1048 1.2754 1.7876 1.2755 1.1471 0.9999 -0.0001 7.15E-209 
3'f.AGA 1.0890 1.3611 1.6064 1.2554 1.3837 1.0841 0.1056 2.32E-43 
5'f.GGA 1.0843 1.7000 1.5169 1.1137 1.1353 1.5264 0.5863 0.00E+00 
5'f.AGG 1.0777 1.6480 1.4459 1.2766 1.1983 1.2909 0.3714 0.00E+00 
5'f.AGA 1.0618 1.4404 1.6250 1.3253 1.4029 1.0868 0.1150 5.44E-45 
3'f.TGG 1.0455 1.3371 1.2302 1.1800 1.0674 1.1331 0.1571 3.09E-181 
3'f.CAG 1.0307 1.3373 1.1429 1.4348 1.2025 0.9321 -0.0975 9.06E-89 
5'f.CAG 1.0161 1.3273 1.1236 1.4340 1.2037 0.9256 -0.1067 8.33E-103 
5'f.CCA 1.0000 0.8222 0.9563 1.1565 1.1024 0.7109 -0.3343 0.00E+00 
5'f.GAA 0.9977 1.5507 1.6718 1.0697 1.1734 1.4497 0.4810 0.00E+00 
3'f.CCC 0.9653 0.8859 1.5364 1.0862 1.5338 0.8156 -0.2003 0.00E+00 
5'f.AAA 0.9493 1.1405 2.1508 1.2056 1.7817 0.9460 -0.0651 7.82E-260 
5'f.GGT 0.9273 0.7699 0.9561 0.6733 0.8242 1.1436 0.0967 5.53E-75 
5'f.CTG 0.9163 1.0990 1.1470 1.2649 1.1656 0.8688 -0.1660 0.00E+00 
3'f.CTG 0.9104 1.1222 1.1804 1.3641 1.1928 0.8227 -0.2419 0.00E+00 
5'f.TGG 0.9103 1.3288 1.1942 1.1157 1.0330 1.1910 0.2131 0.00E+00 
3'f.GTG 0.8894 1.0917 1.2580 0.9298 1.0845 1.1741 0.1619 6.96E-275 
3'f.GGT 0.8882 0.9107 0.9514 0.7145 0.8445 1.2746 0.1962 0.00E+00 
5'f.GTG 0.8795 1.0041 1.3703 0.8991 1.0817 1.1167 0.1050 8.11E-21 
5'f.AAG 0.8676 1.1461 1.4121 1.0619 1.1374 1.0794 0.0843 8.41E-03 
3'f.AAG 0.8557 1.0062 1.3826 1.0331 1.1542 0.9740 -0.0268 2.26E-146 
5'f.GCC 0.8496 0.7817 1.0448 0.9139 1.0452 0.8554 -0.1321 0.00E+00 
3'f.AAA 0.8117 1.0845 1.6231 1.1134 1.6519 0.9740 -0.0289 2.69E-01 
3'f.GCA 0.8045 1.0170 1.0006 0.8946 0.9682 1.1369 0.1224 4.80E-257 
3'f.GAA 0.8031 0.9799 1.3420 0.9595 1.1099 1.0213 0.0204 8.67E-36 
3'f.GGC 0.7944 0.9603 1.1257 0.9003 1.0114 1.0666 0.0600 2.07E-07 
5'f.GGC 0.7737 0.9487 1.1218 0.9082 1.0139 1.0445 0.0404 9.30E-01 
5'f.CCT 0.7736 0.7799 1.0021 1.1002 1.1552 0.7089 -0.3203 0.00E+00 
G4.lp1efe 0.7686 -0.0313 0.1363 -0.0545 0.1829 0.5739 0.0232 0.00E+00 
3'f.AGC 0.7540 0.9763 0.9495 0.9398 0.9894 1.0388 0.0365 5.93E-57 
5'f.CAC 0.7426 1.1656 1.5592 0.8872 1.1040 1.3137 0.2783 3.10E-76 
3'f.CCT 0.7358 0.9689 1.0347 1.1390 1.1516 0.8506 -0.1701 6.02E-287 
5'f.AGC 0.7348 0.8215 0.9581 0.9635 0.9942 0.8527 -0.1419 0.00E+00 
3'f.CCA 0.7318 0.8050 0.9719 1.0683 1.0733 0.7535 -0.2633 0.00E+00 
3'f.GCC 0.7126 0.8096 1.1005 0.8658 1.0071 0.9351 -0.0562 1.78E-180 
3'f.TGA 0.6996 0.9639 0.9384 0.9766 0.9684 0.9870 -0.0127 6.74E-01 
5'f.GCA 0.6962 0.8320 0.9734 0.9380 0.9889 0.8870 -0.1060 1.37E-225 
G4.CTG 0.6961 0.6920 1.2792 0.8749 0.9578 0.7909 -0.1829 0.00E+00 
5'f.TCT 0.6921 0.6798 0.9568 0.8740 1.0541 0.7778 -0.1942 0.00E+00 
5'f.TGT 0.6888 0.7482 1.2530 0.8485 1.0798 0.8818 -0.1003 0.00E+00 
5'f.TGA 0.6755 1.0266 0.9649 0.9553 0.9551 1.0746 0.0712 2.93E-105 
3'f.TTT 0.6755 0.7498 1.5664 0.9403 1.5685 0.7973 -0.1906 0.00E+00 
3'f.ACA 0.6725 0.7067 0.9454 0.8462 1.0112 0.8351 -0.1395 0.00E+00 
3'f.TGC 0.6719 0.8778 0.9170 0.8911 0.9607 0.9850 -0.0134 3.48E-01 
5'f.CTC 0.6651 0.6947 0.9692 0.9275 1.1040 0.7490 -0.2328 0.00E+00 
3'f.GCT 0.6635 0.8319 0.9389 0.9018 0.9500 0.9225 -0.0699 1.54E-102 
5'f.GCT 0.6629 0.7811 0.9574 0.8911 0.9577 0.8766 -0.1100 6.02E-294 
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3'f.ATG 0.6509 1.0819 1.2362 0.8504 0.9465 1.2723 0.2316 2.11E-293 
3'f.TCT 0.6487 0.6792 0.9857 0.9418 1.1076 0.7212 -0.2626 0.00E+00 
5'f.TCC 0.6287 0.6146 0.8725 0.8916 1.0167 0.6893 -0.2770 0.00E+00 
G4.CGG 0.6267 0.5924 1.5278 0.3494 0.7253 1.6955 0.2430 0.00E+00 
5'f.TGC 0.6182 0.6787 0.8954 0.8422 0.9498 0.8058 -0.1635 0.00E+00 
G4.AAG 0.6134 0.5595 1.2228 0.7514 0.9806 0.7446 -0.1919 0.00E+00 
G4.CAG 0.6106 0.6154 1.1456 0.9363 0.9883 0.6572 -0.3210 0.00E+00 
5'f.ATG 0.6067 0.9173 1.0321 0.8398 0.9363 1.0924 0.0776 5.57E-68 
3'f.TGT 0.6009 0.7919 1.1118 0.8575 1.0590 0.9236 -0.0655 1.05E-94 
5'f.TTT 0.5907 0.6612 1.3567 0.8040 1.3673 0.8224 -0.1428 0.00E+00 
G4.lp3efe 0.5895 -0.0214 0.1266 -0.0528 0.1873 0.4059 0.0314 0.00E+00 
5'f.TCA 0.5796 0.7332 0.8080 0.8262 0.8845 0.8875 -0.0930 9.95E-127 
G4.AGA 0.5757 0.4308 1.0258 0.5931 0.9693 0.7263 -0.1623 0.00E+00 
G4.lp2.efe 0.5681 -0.0217 0.1267 -0.0489 0.1769 0.4429 0.0273 0.00E+00 
3'f.AGT 0.5615 0.7190 0.8276 0.7687 0.8711 0.9353 -0.0498 2.70E-35 
5'f.ACC 0.5590 0.4988 0.7092 0.6427 0.8171 0.7761 -0.1439 0.00E+00 
G4.GCG 0.5439 0.4442 1.2248 0.2002 0.6183 2.2191 0.2440 0.00E+00 
G4.GAA 0.5397 0.5572 1.2434 0.7526 0.9846 0.7404 -0.1953 0.00E+00 
G4.GCC 0.5381 0.3828 0.7682 0.5273 0.7568 0.7259 -0.1445 0.00E+00 
5'f.CTT 0.5316 0.5952 0.8256 0.7614 0.9071 0.7817 -0.1662 0.00E+00 
3'f.TAG 0.5022 0.7018 0.9064 0.5322 0.7559 1.3187 0.1696 0.00E+00 
5'f.CAA 0.4975 0.7143 0.8159 0.7869 0.8863 0.9077 -0.0726 3.67E-67 
G4.GCA 0.4787 0.4904 0.9725 0.6546 0.8235 0.7491 -0.1643 0.00E+00 
3'f.GAT 0.4350 0.7449 0.9723 0.6158 0.8024 1.2097 0.1291 4.02E-214 
5'f.AAT 0.4223 0.7356 0.9267 0.7386 0.9722 0.9959 -0.0030 1.88E-05 
3'f.CCG 0.3977 0.3219 0.7649 0.2302 0.5538 1.3982 0.0917 6.25E-99 
G4.CCC 0.3590 0.1260 0.5133 0.3224 0.7172 0.3908 -0.1964 0.00E+00 
3'f.CGC 0.3528 0.2841 0.7390 0.1916 0.5488 1.4833 0.0926 2.24E-191 
5'f.CCG 0.3490 0.2879 0.6782 0.2317 0.5589 1.2422 0.0561 3.59E-49 
G4.GCT 0.3425 0.4531 1.0282 0.5877 0.7952 0.7709 -0.1346 0.00E+00 
3'f.ATA 0.3190 0.6993 1.0478 0.5210 0.8863 1.3423 0.1783 0.00E+00 
3'f.GCG 0.3060 0.3382 0.8103 0.2028 0.5754 1.6672 0.1353 0.00E+00 
G4.TTG 0.2828 0.4156 0.7296 0.4125 0.6473 1.0076 0.0031 2.09E-02 
5'f.CGC 0.2796 0.2507 0.6757 0.1943 0.5634 1.2902 0.0564 1.76E-80 
5'f.GCG 0.2757 0.3220 0.7972 0.1992 0.5726 1.6166 0.1228 0.00E+00 
5'f.CGG 0.2613 0.3515 0.7511 0.2312 0.5633 1.5200 0.1202 0.00E+00 
3'f.TAT 0.2079 0.4262 0.7595 0.4682 0.8280 0.9103 -0.0420 5.30E-17 
G4.GTT 0.2045 0.3537 1.2941 0.3033 0.5658 1.1663 0.0504 1.31E-56 
G4.TGT 0.1996 0.4016 0.9696 0.3050 0.6077 1.3167 0.0966 2.12E-151 
G4.AGC 0.1911 0.2413 0.7321 0.3600 0.6076 0.6702 -0.1187 0.00E+00 
3'f.TAC 0.1908 0.4195 0.6512 0.4022 0.6722 1.0431 0.0173 1.14E-41 
G4.TGC 0.0875 0.1782 0.5642 0.2640 0.5319 0.6749 -0.0858 0.00E+00 
G4.ATA 0.0000 0.0870 0.3624 0.1479 0.4354 0.5879 -0.0610 0.00E+00 
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Table S4 | Sequences randomly selected from C. elegans spanning varying stability scores, determined 

computationally via Quadron. The sequences are brought in conjunction with their Quadron scores, 

genomic location (chr - chromosome, str - strand, pos - genomic coordinate of the sequence border with the 

smaller value), ID and the UV-determined melting temperatures (Tm). Please note, that the UV-melting 

experiments have been done on the PQS sequences only, outside the genomic context captured in the 

Quadron calculations. 

 

ID Quadron 
score chr str pos PQS Tm (°C) 

A 0.57 X + 6168404 GGGAATGCTTGGGAATTGGGAATTAAATTGGG 41.8 
B 3.19 IV - 5269541 GGGAGACAGGGATGCAGGGGGATCATTGTGGG 58.0 
C 4.93 IV + 7559173 GGGGACCGTGGGGATTGGAGGGACTGGG 48.2 
D 6.72 I + 3376650 GGGATTTCTAAGGGTTGGGGAGATCGGG 49.0 
E 7.92 IV + 13008156 GGGTTTGGGCTTGGGTTTAGGCTTGGG 59.1 
F 9.54 X + 13250248 GGGCGAGAGGGAGCGGGAGAAGCGGGTGGG 62.2 
G 11.08 X - 14862041 GGGCTCATTACACGGGACGGGAAAAGGGGGG 45.4 
H 13.3 I - 11790162 GGGTTAGGAGGGAATTAAGGGGGCTGGGG 57.9 
I 14.4 V + 1693585 GGGATTTGGGAAGGGATTGGG 53.8 
J 15.8 X + 9771776 GGGACGGGAAGACGCGGTGGGATGGG 61.0 
K 17.1 IV - 12826470 GGGATTGGGAAACGGGGAGAAGTTGGGGG 59.9 
L 19.46 I + 7711640 GGGGTTGGGAGTGAGTGAGGGAAGTGGG 53.6 
M 22.02 I + 14183102 GGGAGAGGGATACTGTAGGGAGGG 49.8 
N 24 V - 18415806 GGGTACTTGGTCTGGGCCAAGGGGGCTTGGG 54.3 
O 28.72 IV + 1811299 GGGGAGGCAAGAGGGGGCGGGCGGG 77.4 
P 33.05 III - 2980298 GGGAGGGCATGGGAGGGGGG 74.2 
Q 35.92 IV + 14339135 GGGCTTGGGTGGGATGGGG 77.2 
R 40.37 X - 8360047 GGGTGGGCCATAATCATGGGTGGGG 73.6 
S 41.49 X + 16398498 GGGTGGGGTGGGTTTGTGTGTATTGGG 62.9 
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