
Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O₂⁻ and H₂O₂

Sabrina Ehnert,^{1*} Anne-Kristin Fentz,² Anna Schreiner,¹ Johannes Birk,¹ Benjamin Wilbrand,¹ Patrick Ziegler,¹ Marie K. Reumann,¹ Hongbo Wang,³ Karsten Falldorf,² Andreas K. Nussler¹

Supplementary Figure 2: H_2O_2 treatment increases expression of of antioxidative enzymes in hOBs. hOBs were osteogenically differentiated with or without 0.0005% or 0.001% H_2O_2 . After 2 days mRNA levels of the antioxidative enzymes (*SOD2*, *CAT*, *GPX1*, *GPX3* and *GSR*) were determined by conventional RT-PCR. (a) Representative figure of the RT-PCR products for 1 donor. (b-f) Densitometric analysis (ImageJ software) was performed with individual samples (N = 3) analyzed twice (n = 2) to reduce small loading differences. The mean signal intensity of untreated cells was set as reference. * p < 0.05 and ** p < 0.01 as indicated (Kruskal-Wallis test followed by Dunn's multiple comparison test, α = 0.05).