Supplementary methods

The factorial scLVM model (f-scLVM) builds on sparse factor analysis, a linear latent variable model
for dimensionality reduction. In Section [} we derive the generative model that underlies f-scLVM and
present an efficient inference scheme using deterministic variational Bayesian approximations. In Section 2]
we provide an overview of f-scLVM in the context of other factor analysis models. Finally, in Section [3| we
discuss further details on the presented experiments, including the parameter values we use and additional
robustness experiments.

1 The f-scLVM model

We here derive f-scLVM starting from the perspective of conventional factor analysis. Let Y by the N x G
matrix of log-count expression levels for G' genes observed in each of N samples (cells). We start with a
bivariate linear model that factorizes the expression matrix into the sum of known covariates, annotated
factors and unannotated factors:

C A H

Y = > uVli+ > pRI O+ D siQF o+ ¢ (1)
c=1 a=1 h= Y
~—— —_——— N 1 , residuals

cell covariates  annotated factors unannotated factors

Here, the vectors u., p, and s;, are known cell covaraites, as well as facto states for annotated and unan-
notated factors and V., R, and Qj, are the corresponding regulatory weights of a given factor on all genes.

To simplify the derivation we will collapse the factors and weights, defining X = [uy,...,uc,r1,...,r4,81,...

and a corresponding concatenated weight matrix W, resulting in

Y = X -WT4q. (2)
Here, W denotes a G x K weight matrix that determines the regulatory affect of each factor k € (1, ..., K)
on gene g € (1,...,G). The N x K dimensional matrix X denotes the activity of each of K = C+ A+ H

factors in each sample and ) is residual noise.

We start by assuming Gaussian distributed residuals, which is similar to conventional factor analysis [1§]
(see Section where we discuss generalizations to count-based and dropout noise models)
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Y ~ N(0,diag(T ™). 3)

Here, diag(7~!) denotes the diagonal covariance matrix formed of the inverse elements of the noise pre-
cisions for each dimension (gene) 7 = (71,...,7¢). Together with Eq. this noise model implies a
Gaussian marginal likelihood of the form

N
PYIW,X, 1) = H N (yn| xn W1, diag(77")) . (4)
n=1

We introduce a conjugate prior on the noise precisions

G
P(r) = H Gamma(rg | ar,br), (5)
g=1
where Gamma denotes the gamma distribution. The prior on the factor activities X is an independent
normal distribution with unit variance

N K
PX) = [T [TV (zaxl0.1). (6)
n=1k=1

Depending on the specific choice of the prior distribution for the weight matrix W, different factor
models can be derived, including independent component analysis or conventional factor analysis [I8]. We
employ a structured sparsity prior that jointly models gene set annotations.

1.1 Modeling annotated and unannotated factors using a structured sparsity prior

An important difference between f-scLVM and conventional factor analysis is the two-level regularization
on W, inducing structured sparsity on the weights and thereby interpretabilty of the corresponding factors.
Specifically, we first use a gene-level sparsity prior on the elements of individual columns of W' [I6], 21]. As
a second level of sparseness we employ a relevance prior on the level of factors, corresponding to columns
of W, thereby deactivating factors that are unused [I5].

We start by describing the structured sparsity prior for annotated factors.

1.1.1 Modeling annotated factors

Sparseness of the factors weights is encouraged via a slab and spike prior

N(wgr| 0, 1/ag) if z5, =1
So(wg k) otherwise.

Pwg,k | 2g,6) = { (7)

Here, do(wy ;) denotes the Dirac delta function centered on zero (inactive links) and 1/ay is the prior
variance of weights for active links (factor specific; see also Section [1.1.3). The indicator variable z, j
determines whether factor k has as a regulatory effect on gene g (z4x = 1) or not (241 = 0).
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To achieve identifiability of the fitted factors as pathways, we link the binary indicator z4  to binary
gene set annotations by explicitly modelling them as observed data

Bernoulli(fy’;, = 1|1 —FPR) if zg, =1

3
Bernoulli(}; = 1[FNR) otherwise ®)

P(I;L,k | 2g.6) =2 Pg.k = {

Here, the observed binary indicator I, determines whether gene g is annotated to a given pathway
(factor) k in the annotation. The annotatlons are replicated such that for each sample n a complete an-
notation is available. Technically, this approach is equivalent to scaling the likelihood component of the
annotation with the number of cells. Since the likelihood component that links the indicator zg4 ; to ob-
served expression data (Eq. ) scales with the number of cells, this ensures that the relative contribution
of the annotations is independent of dataset size.

The rate parameter FPR corresponds to the probability of false-positive annotations in the annotation
and FNR denotes the probability of false-negative assignments.

Finally, for annotated factors the indicator variables zg 3 are a priori Bernoulli distributed
P(z4 1) = Bernoulli(zg j | ). (9)

For annotated factors the sparseness structure is determined by the annotation and hence we choose an
uninformative prior m = 0.5. The joint probability of all observed and unobserved data then follows as

N

P(Y,LX,W,Z,7) = [[ N (yn| xn- W" , diag(r Hp Wok | 290 ) P10k | 29.1) P2g.6) P(7g). (10)
n=1

Here I, is identical for all cell copies, i.e. 17} = Iy ,Vn. A graphical model representation of the full

model is shown in Figure [M1]

1.1.2 Modelling unannotated factors and known covariates

The effect of factors that are not included in the pathway annotation is modeled within the same frame-
work. For unannotated factors, there exists no prior information, which means that the likelihood com-
ponent for the annotation prior (Eq. ) is omitted. The prior probability of a regulatory effect for
unannated factors m determines the expected sparseness level (see Eq. @D) In the experiments, we con-
sider two different types of factors. For sparse factors we set m = 0.1, which corresponds to the belief that
10% of the genes are regulated by these factors. Additionally, we model dense factors at a sparseness level
of 0.99 (m = 0.99). Sparse factors tend to explain biological variation that is not well captured by the
pre-annotated gene sets, whereas dense factors frequently correspond to confounding factors. These prin-
ciples of sparse versus dense effects are similar to ideas that have previously been considered in population
genomics [14], 22].

For details and guidelines on how to set model parameters for learning unannotated factors, see Sec-
tion B3

Finally, cell covariates (e.g. the number of expressed genes [7], size factors, etc.) are treated analogously
to dense factors. However, importantly their factor states xj, are observed and do not need to be inferred
during training.
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Supp. Meth. Figure M1: Graphical model representation of f-scLVM . Circled variables are random
and unobserved. Double-circled variables denote observed data, including gene
expression profiles y, , and the annotation data I7,. Statistical dependencies
between all variables are indicated using arrows. The filled circles linking w,
and z4, 1, denote the sparsity likelihood. For simplicity we have omitted an explicit
representation of unannotated factors and cell covariates, for which no prior
annotations are provided.

1.1.3 Automatic relevance determination for identifying relevant factors

A conventional spike and slab prior (Eq. ) is based on the assumption that each factor explains the
same prior variance, although the set of active genes may differ between factors.

In particular for large annotations with hundreds of factors this assumption is likely false, as only a
subset of the pathways will be active in a given dataset. To model different overall regulatory importance
across factors we use a second regularization based on the automatic relevance determination (ARD)
prior [15]. The ARD prior has been shown to be effective for shrinking factors with low relevance, for
example in the context of conventional FA models (e.g. [22, [6]). This factor level regularization is achieved
by placing a hierarchical Gamma prior on the precision parameters of the regulatory prior for each factor k

(see Eq. (7))
P(ag | an,by) = Gamma(ay|aq,ba)- (11)

For factors that do not explain variation in the data the precision ay will be large, which corresponds to
a small prior variance for the corresponding factor weights. The posterior distribution over the relevance
parameters oy, can also be used to deduce the importance of individual factors; see Section [3.6
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1.2 Parameter inference

Closed-form inference in sparse factor analysis is not tractable and hence, in general, computationally
expensive Monte Carlo simulations or other approximate inference schemes are required. To enable the
application of f-scLVM to large datasets with up to hundreds of thousands of cells and genome-wide ex-
pression counts, we here use efficient deterministic approximations instead of Monte Carlo schemes. This
fully-factorized Variational Bayesian approximation scales linearly in the number of cells and genes, which
renders the applications to larger datasets feasible.

Briefly, in variational Bayesian inference, the true intractable posterior distribution of the latent (un-
observed) model parameters P(H | D) is approximated by a simpler (partially) factorized form Q(H) =
[[; Q(H;|6;). Here, D denotes the observed data and @; are variational parameters that parametrize the
distribution of variation factors Q(#; | 0;).

The objective of variational Bayesian inference is to determine variational parameters 8; such that the
Kullback-Leibler (KL) divergence between the true posterior P(H | D) and the variational approximation
Q(H) is minimized. The use of the KL divergence as a measure of distributional distance lends itself to
an iterative algorithm for updating the variational parameters of individual factors sequentially. Under
this approximation the log marginal likelihood is then bounded by

F= /HQ (H:0:)1 ((;: ||§))cmi. (12)

This algorithm is guaranteed to minimize the KL divergence in each iteration and generalizes the widely
used Expectation Maximization algorithm. For a comprehensive overview of Variational Bayesian approx-
imate inference, see for example [5]. In each iteration, the parameters of individual variational factors 6;
are updated in turn, given the current state of all other factors [IT] 2 [3]. For any chosen factorization
QH) =11,Q(H;]6;), it can be shown that the optimal update for each factor can be obtained from the
average log likelihood under all other Q-distributions

Q(Hi]0:) o< exp({log P(H))\», )- (13)

These updates of individual @-distributions are performed sequentially, until convergence is reached. If the
chosen factorization matches the prior factorization of the model, it can be shown that the step in Eq.
corresponds to updating the variational parameters 6;, whereas the functional form of the approximate
Q-distribution remains in the same class as the corresponding prior distributions. For brevity, we will in
the following omit the explicit dependency of each variational factor on the respective parameters 6,.

Variational factorization of the model The first step to derive a variational inference algorithm for
f-scLVM is to re-parameterize the model without the Dirac function (Eq. ) To this end, the elements
wg i are modeled as an (element wise) product of a Bernoulli random variable z4 j and a Gaussian random
variable g 1, [25]

Plugrlor) = N(dgr| 0, 1/ox)
P(zgr|m) = Bernoulli(z,|m). (14)
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The joint prior distribution of these two new random variables follows as
P(dgi, 2g6) = N (g | 0, 1/ag) moer (1 — )t =20r, (15)

This re-parameterization then allows us to define a suitable factorization of the unobserved variables
W, Z, X, 7 and a. Variational inference is most efficient if the Q distribution is factorized, which implies
independence assumptions on the approximate posterior. Such approximations are generally problematic
for strongly coupled parameters. In f-scLVM this concern applies in particular to the regulatory weights
W and the binary indicator variables Z. While a factorizing assumptions, i.e. Q(W,Z) = Q(W)Q(Z) has
been considered elsewhere [25], [24], such an approach will lead to poor convergence, as the true factor with
2K modes is approximated by a single unimodal factor [13]. In other words, two highly coupled random
variables (V~V and Z) are inferred assuming approximate independence, which leads to poor results. To
circumvent this, we here adapt the scheme proposed by Lazaro-Gredilla & Tsitas (2011) [13], who derived
an efficient and accurate variational inference for the spike and slab prior, however in the context of
Multi-Task and Multiple Kernel Learning. Briefly, the key idea is to treat each pair {w, 1, 24,1} as a single
unit, choosing a joint factorization of the form Q(W,Z) = I, Hg Q(Wy.k, 2g,1)- This approach yields an
approximate marginal distribution with 2% components, which better captures the multinomial posterior
distribution of W. For all remaining model parameters we choose a fully factorized variational distribu-
tion, which delivers an overall linear runtime complexity of f-scLVM. The full approximate variational
distribution follows as

QW.X,T,a) = QW,Z)Q(X)Q(1)Q(a)

G K N K G
= (H HQ(uvg,k,zg,k)) (H HQ(:vn,k)Q(ak)) ( Q(Tg)>~ (16)
n=1k=1 1

g=1 k=1 g=

The corresponding variational lower bound F of this model can be written as:

F = (log P(Y|X,W.Z, . 7)) oW z)0x)00m)0() (17)
—(log P(IZ) (v z)
~KL(Q(X)||P(X)) = (KL(Q((W,Z)||P(W, Z | ))) g(ex)
—KL(Q(a)[|P(e]aq,ba)) — KL(Q(T)||P(T | ar, b)),

with ()g() denoting the expectation under the Q-distributions Q().

1.2.1 Variational update equations

Sequential updated equations for individual factors are calculated using the expectation under all remain-
ing factors using Eq. (L3)). We start with the joint variational distribution for Q(wg,x, 2¢,x), which we
rewrite by explicitly conditioning on the binary indicator z4

Q(Wgk,2gk) = Qgil|2gk)Q(2g.k)- (18)
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This allows decomposing Q(Wg i, 2¢,x) into Q(z4,x) and the Q distribution for the corresponding weight,
conditional on z4 ;. Both Q distributions retain the functional form of their respective priors (i.e. Bernoulli

and Normal; Eq.(T4)-(15))

1
Q =1) = e . 19
(Zg,k ) 1 exp( ung) ’79”“ ( )

The Q distribution for the weight conditioned on z,j follows as:

Q(igk| 296 =0) = N (wng | 0, 04;21) (20)
QUigr |z =1) = N (| 1y 03,,) (21)

with variational parameters (vg &, fa,,, 0o, ). Furthermore this decomposition also allows us to re-write
the second term in Eq. |17 as (log P(I|Z)) v z) = (log P(I|Z))q(z)- Update equations for these varia-
tional parameter are given below, where () denotes the expectation under all remaining Q distributions.

1

= ———  with 22
ook 1+ exp(—ug k) (22)
TN P () N )
k k 2 k
Ug k= log + ) log —£%— 4 0.5log ~—+ —0.5log ( (x2 )+ )
! I=m nZ::l L= pg.k (Tg) anl * (T9)
2
N _ N
() (Zn_lyn,g<xn,k> - Zm¢k<zgymwg,m>zn:1<xn,k> <xn,k>>
T N (o) >
Zn:l <x721’k> + <T:>
N _ N
anlyn,g <xn,k> - Zm¢k<2g,mwg,m,>zn:1<xn,k><xn,k>
:u’LDg,k = N 9 (o) (24)
Zn:l <xn,k> + (1g)
(rg) "
o = N 92 (o) (25)
Zn:1<x“ g+ (rg)
Taken together, this means that we can update Q (W, 24,1) using
QW 1|2g1)Q(2g.6) = N (@g,k Py Zgk > Zgk0,, + (1= Zg,k)alzl) Yo (L= g p)' 70k (26)

Consequently, the expectation of (g 1 24,%) under its Q distribution can simply be written as (g 124,1)Q =

ng,k/J”LIJg, k*
For the remaining variational factors, we can use standard update equations for a conventional varia-

tional factor analysis model, e.g. [9} 22]. The approximate posterior distribution for the factor activations
X (c.f. Eq. (@) follows as

K N

QX) =TT T Q@ns) = N (wn| pzs - 02,,) (27)

k=1n=1
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with variational parameters (g, , , af:n .). The corresponding update equations for the variational param-
eters are:

a —1
o2 = (Z M n 1) (28)

g=1 Tg
G
ey e = Uzn,k Z<zg7k“~’g,k>7'g Yn,g — Z (29, W) {Tn k) | - (29)
g=1 m#k

Similarly, the Q-distribution of the ARD factor relevance parameters a have the same functional form
as their Gamma prior (Eq. (1))

K K
= H Qag) = H Gamma(ay | Gays bay ) (30)
k=1 k=1
with variational parameters (dak,i)ak) and update equations
G
~ Z =1 ,ygvk
Aoy, = Qoy, + % (31)
) S0 (13, + 02,
bock = bak, + 2 : . (32)
Similarly, the Q-distribution of the noise precision values T can be written as
G G
= [[ @(ry) = [ ] Gamma(r,|a,, . bs,), (33)
g=1 g=1
with variational parameters (a-,, ETQ). The associated update equations follow as:
N
ar, = ar, + — (34)

g2

N

. 1 .

by, = 5 Z ((Yg,m — Z zg,kwg,kxn,k)2>~ (35)
n=1 &

1.3 Non-Gaussian noise models for (low-coverage) sequence data

The model presented so far assumes Gaussian distributed residuals. In order to appropriately account for
zero inflation, a consequence of dropout effects in sparsely sequenced single-cell data, f-scLVM can also
be used in conjunction with a Hurdle noise model, which explicitly accounts for dropout.

This is achieved by introducing a separate Bernoulli observation noise model for the subset of obser-
vations with zero counts in the expression matrix. For all remaining observations, the standard Gaussian
noise model on a logarithmic scale is retained (see also Section. More formally, we introduce the matrix
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factorization model on latent variables F = XW7T = | fn.gl, which is coupled to the observed expression
count data Y using the likelihood model:

P(Yn,g

_ 1/(1+ eXP(fn,g)) if yp =0
Fna) = {N (Yn,g | frng» 1/Kg) otherwise ) (36)

To achieve efficient inference in conjunction with this non-Gaussian likelihood model, we adapt prior
work by Seeger et al. [20], who have proposed using local variational bounds for non-Gaussian likelihood
functions in a different context. Briefly, additional variational parameters = = Q(X)Q(W)? = [¢,, 4] are
introduced which determine pseudo-observations Y based on the zero inflated data Y, which in turn are
modelled using a Gaussian noise model with precision x4. In the following we outline how the update
equations for these pseudo-observations and &, can be derived.

Let g(fng) = —10g(P(Ynglfng))- If g(fng) is twice differentiable and bounded by kg such that
9" (fn,g) < kg ¥n,g we can use a Taylor expansion to approximate g(fy,4)
g(fn,g) < "ig/Q(fn,g + gn,g)Q + gl(fn,g)(fn,g - §7L,g) + g(fn,g) = Qn,g(fn,g’ﬁn,g)- (37)

For non-zero observations with Gaussian noise model, this approximation is exact since ¢"(fn,q) = K4 for
all non-zero observations. For the Bernoulli noise model the Taylor approximation holds for x = 1/4 since
9" (fn.g) < 1/4 for all zero observations.

We then further follow [20] and update E = Q(X)Q(W)T = [¢, 4] with Q(W) and Q(X) denoting
the @Q-distributions of weights and latent variables as before. In order to derive the update equations for
Q(W)Q(X) we bring the Taylor approximation of g(fn.g), ¢n,g, in a quadratic form and note that

n,g(frgs&n,g) X Kg/2(fr,g — (€ng — 9(5?%9))/“9)2 =t —log N (Gn.g | frng, 1/5g) (38)

With gn.g = &ng — 9 4 (En.g)/kg. Consequently, for fixed [£, 4], the update of Q(X)Q(W) is equivalent to

f-scLVM with pseudo-data Y = [, 4] and noise precision #,.
When using the dropout-noise model, we can thus derive updates for the pseudo-observations as

(39)

~ {gmg - Kg/(l + eXp(fmg)) if Yn,g =0
Yn,g = . .
Yn,g otherwise

Note that the pseudo-observations equal the observations Y for non-zero expression values.

We update x4 - which corresponds to 7, in the case of a Gaussian noise model - using Eq.—,
using only cells with non-zero expression values

kg = max(0.25, 7). (40)

. N N, 5 -
Specifically, a,, = ar, + % and b, = b, + % ZneNg ((ygn — Y-k 29,5Wg,kTnk)?), where Ny corresponds
to the number of cells with observed expression values for gene g.

The updates for W, X and a are implemented as described in Section however with pseudo-
observations instead of Y. This allows allows us to iteratively update the pseudo-observations Y based
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on E = Q(X)Q(W)T as well as Q(X) and Q(W) using Y. The variational parameter update for the
ARD prior to identify relevant factors and the spike-and-slab prior to regularize pathway components are
unchanged. This extends the approach suggested in [20] as we allow for different forms of observation
noise gn 4 as well as gene-specific precision x4, reflecting that the variance varies highly between genes
and perform inference for x,.

1.3.1 Poisson noise model for count data

The analogous modeling strategy can also be employed to model count observations using a Poisson noise
model. Again, variational parameters &, 4 are introduced which determine pseudo-observations Y based
on the observed count data Y, which in turn are modeled using a Gaussian noise model. In contrast to
the dropout-noise model, Y now correspond to the raw count data. More specifically, we write the Poisson
likelihood with link function \ as

P(yn,g|fn,g) = A(fn,g)%,ge_“fn'g)' (41>

As before, g(fng) = —10g(P(yn,g| fn,g)) needs to be twice differentiable and bounded. We therefore
choose a gene-specific link function Ay(fn,g) = log(l + exp(fn,q)), resulting in an upper bound of the
second derivative

wg = 1/4+01"maz,, Ymaz, = Mmax(yy). (42)
We then update the pseudo-observations Y as .4 = &ng — In.g(En.g)/wg With &, ; as defined above

W(fn-,g)(l - yn,g/)‘(fn,g))

Wy

Un,g = &n,g — ) '/T(fn,g) =1/(1+ GXp(fn,g))- (43)

Analogously to the dropout noise-model, updates for W, X and a are performed as described in Sec-
tion [[.2.1] with pseudo-observations instead of Y. However, unlike the Hurdle noise model there is no
need to infer w, (corresponding to k,) as it is determined by Eq. .

2 Relationship to existing factor analysis models

The f-scLVM model is related to a number of existing variants of factor analysis, all of which are based
on a linear additive model. These methods can be broadly grouped into parametric and non-parametric
approaches. Non-parametric methods [12] infer the number of active factors, in principle allowing an
infinite number of factors to be used in the model. In contrast, parametric models need the user to specify
the number of latent factors before inference. One strategy to mitigate the need to specify the precise
number of factors in the model is the use of an ARD prior, which was first applied in the context of
probabilistic principal component analysis [4] and later for factor analysis models, including PEER [22].
This approach is also applied in f-scLVM, where a much larger number of annotated and unannotated
factors are included in the model and the ARD prior deactivates unused ones.

A second aspect of regularization in factor analysis are sparsity priors to encourage element-wise sparse-
ness of the factor loadings. f-scLVM employs a spike and slab prior, which has previously been used to
achieve sparsity for this purpose, e.g. [8]. Our model additionally uses prior annotations to inform this
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Table 1: Feature comparison of alternative factor models related to f-scLVM. IBP=Indian Buffet Process,
TBP=Three parameter Beta Prior, EM=Expectation Maximisation, VB=Variational Bayes.

Feature
Method Elementwise sparsity Annota- Noise model Model Infer-
tions selection ence
PCA [23] - - homoscesdatic None/ARD VB
VBFA [1] - - heteroscedatic ARD VB
PEER [22] - - hetroscedatic ARD VB
f-scLVM spike-and-slab, sparse and yes heterosce- ARD VB
dense factors datic/nonGaussian
Seeger et - - homoscedatic/non- None VB
al. [20] Gaussian
ZiFA [17] - - heteroscedatic w/ None EM
zero inflation
NSFA [12] - - hetroscedatic IBP VB
Gao et al. TBP, sparse and dense - hetroscedatic TBP EM
[8] factors
Biswas et spike-and-slab yes heteroscedatic None MCMC

al. [19]

sparsity prior in conjunction with an ARD prior to infer which annotated factors are most relevant. Fac-
tor analysis with prior information has been utilized in early methods to reconstruct gene regulatory
networks [19] Additionally, f-scLVM models the annotation as observed data that scales with the size of
the expression dataset (Section , rather than using it to define a regulatory prior. This approach
yields additional robustness across a wide range of different expression datasets (Fig. [M3)).

A third key aspect of factor analysis models is the noise model employed, ranging from simple ho-
moscedastic Gaussian noise models [I8] 22] to more complex approaches for modeling non-Gaussian noise,
i.e. to account for over-dispersion [I7]. To the best of our knowledge there is currently no existing method
that combines non-Gaussian likelihood models and sparse factor analysis models. f-scLVM provides flex-
ible likelihood models either modeling the observed data on a log Gaussian scale, as Poisson counts or
using a Hurdle model.

Finally, factor analysis models use different inference schemes to fit model parameters. Many approaches
employ accurate but slow MCMC methods, which tend to scale poorly to larger datasets. f-scLVM employs
approximate Bayesian inference to achieve linear runtime complexity, thereby enabling its application to
large datasets. For a tabular comparison of alternative methods, see Table
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3 Practical considerations, parameters and implementation

Variational Bayesian inference can be sensitive to implementation details such as parameter initialization
and the update order. In the following we describe the specific strategy we use in f-scLVM .

3.1 Preprocessing

In the experiments we consider normalized single-cell RNA-seq dataset, following the primary analysis
used in the respective source publication; see also Online Methods. When applying f-scLVM with the
standard Gaussian noise model, we fit it on raw log count values (log(count + 1)) using mean centred
expression values (per gene). When applying f-scLVM with the dropout noise-model, we employed the
identical strategy, however without mean centring the data, such that observations with zero counts retain
their value. When using f-scLVM in conjunction with the Poisson noise model, no log transformation was
performed and the model is applied to the raw count values.

For each dataset, we reduced gene set annotations and only considered terms with at least 20 (expressed)
assigned genes (15 for the more carefully curated MSigDB). Additionally, we reduced the set of genes and
considered only expressed genes that were annotated to at least one pathway term.

3.2 Model initialisation, VB update schedule and convergence

Initialization of variational parameters The variational parameters of the regulatory weights W are
initialized randomly by sampling from a unit variance normal distribution, scaled by ﬁ, with K being

the number of factors. The variational parameters of latent factors (columns of X) that correspond to
annotated factors are initialized using the first principal component calculated on the prior gene set of the
corresponding factor. Dense unannotated factors without pathway information are initialized randomly
by sampling from the prior (unit variance normal). Sparse unannotated factors are initialised using the
first principal component of 20 randomly chosen highly variable genes (sampled from the top 100 most
variable genes, sorted by variance).

The variational parameters of the regulatory sparsity prior -y, j are initialized with the prior (Bernoulli
prior with success probability [pg ]); for sparse unannotated factors, we initialise v, 5 corresponding to
the 20 randomly chosen genes to 0.9. When a non-Gaussian noise model (dropout or Poisson noise model)
is used, the pseudo-observations (?) are initialized using the observed data Y.

Parameter update schedule The variational schedule updates Q(V~V7Z) first, followed by Q(a),Q(X)
and finally Q(7). For the non-Gaussian noise models an additional update step for the pseudo observations
Y is included. As the individual factors X.  should capture variation due to a particular biological
process, it is important to minimize the risk of label switching, whereby the factor states do not match
the regulatory annotation (see also [I0]). This problem is specific to sparse factor models that incorporate
prior information, where unlike standard FA the order of the factors is meaningful. To mitigate possible
biases, we update the Q distributions of individual factors Q. in a randomized order, using different
permutations in each model iteration. While this approach reduced ordering effects, we observed that
the final solution is still affected by the update order of individual factors in the first iteration. To
address this, we used a heuristic to determine the initial update order rather than random permutations
for the first update cycle. This initial order is determined using a pre-training approach, for which we
consider 50 update iterations: factors are ordered in increasing and decreasing order to correlation with
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the first principal component on all annotated genes and the consensus order after 50 updates is used as
initial permutation for updating f-scLVM . Empirically, we observed that this heuristics leads to improved
convergence and more accurate estimates of the final factor relevance (Fig. [M2]).
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Supp. Meth. Figure M2: Impact of pretraining to determine an initial factor update order.

a,b) Comparison of the inferred factor relevance for the cell-cycle staged mESC
dataset (see also Supp. Fig. 4), using a bootstrap approach to assess robustness
of the factor relevance. Results with pre-training are shown in (a), analogous
results without pre-training in (b). In general, pre-training resulted in reduced
variability across boot strap repeats, but with overall consistent interpretation.
c) Comparison of the accuracy of f-scLVM on simulated data with default pa-
rameter settings (see Supplementary Table 1), either with or without (Rand.)
pre-training (analogous to the results reported in main paper Fig. 2b). The pre-
training approach resulted in slightly improved accuracy.

Monitoring convergence Model updates are performed until convergence, which was monitored using
the reconstruction error. Alternatively, it is also possible to monitor the variational lower bound of the
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marginal likelihood (Eq. ) However, this approach would increase the computational cost as an
explicit evaluation of the bound almost doubles the per-iteration compute cost. In practice, we observed
that monitoring the reconstruction error is sufficient. We considered up to 2,000 iterations of variational
updates or until convergence of the reconstruction error (e < 10~ for 50 consecutive iterations) was
achieved, whatever occurred first.

3.3 Learning unannotated factors

Similarly, f~scLVM has the ability to learn sparse unannotated factors, which can, for example, capture
variation between cell types, that are not readily reflected in pathway annotations provided to the model.
We model these factor by setting 7 to 0.1, reflecting our prior belief that roughly 10% of genes should be
active in a sparse hidden factor. To facilitate efficient learning, we initialize our model by seeding each
factor with 20 highly variable genes for which we set 7 to 0.99.

3.4 Applying f-scLVM to very large datasets

We implemented a series of additional measures to improve the practical performance and convergence
rate of f-scLVM. Fist, our software implementation makes use of parallel processing capacities, if executed
using a modern Python interpreter. Second, to facilitate inference on datasets with 10,000 cells or more,
as well as when using larger numbers of pathway factors (e.g. > 200 in the REACTOME database), we
provide support for a pre-scoring heuristic to reduce the number of factors that need to be fitted jointly.
Specifically, we first fit factors independently using SVD on the prior annotated gene sets per factor. We
then retain the 50 terms for which the first eigenvector explains most of the observed variance. While
this approach is likely to overestimate the importance of individual factors (cf. Supp. Fig. 1), is effective
for pruning pathways that are highly unlikely to be relevant. Third, the model allows deactivation of
individual factors once they have extremely low relevance (using ay/var(xx) > 10! as a criterion). This
early stopping approach is motivated by the observation that factors, once deactivated by the ARD prior,
are unlikely to be reactivated in later stages of training.

3.5 Hyperparameter settings

In the experiments, we considered the following hyperparameters. For the spike-and-slab prior for anno-
tated factors we choose an uninformative prior of 7 = 0.5. To model the annotation we set 1 — FPR to
99% and FNR to 0.1%, reflecting the belief that annotations are specific but include genes that are not
necessary relevant in a given study. For the Gamma prior on oy, and 7,4, we chose the hyperparameters
a =103 and b = 1073, which correspond to uninformative prior settings.

Scaling the gene set annotations with gene set size An additional parameter is nqg, which corresponds
to the effective number of cells based on which the annotation size is scaled to larger datasets. Technically,
the likelihood term for the annotations P(I|Z) (Eq. ) is scaled by N/ng. This approach is equivalent
to modeling a full set of gene set annotations for each neg cells in the dataset. In the experiments, we
use Neg, which means that the FNR and FPR settings for the prior annotations are relative to a dataset
with 200 cells. Empirically, we confirmed the expected effect of scaling the annotation likelihood with the
data likelihood (see also Sec. . When using a fixed annotation prior, the number of false positive
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augmentations of gene sets (using the posterior on Z) scaled approximately linear with the dataset size,
which reflects that the inferred factors are increasingly decoupled from the annotation. In contrast, the
likelihood scaling yielded robust and accurate results across a wider range of datast sizes (Fig. [M3)).

Determining the number of unannotated factors The number of unannotated factors to include in the
model is in principle a hyperparameter that needs to be set by the user. First, for unannotated dense
factors, we observe that the model is insensitive to the total number of such factors included. This is
because the ARD prior is able to deactivate those factors that are not needed, leading to results that are
robust across a larger range (see also Supp. Fig. 3h). In the experiments, we include 3 unannotated dense
factors throughout.

The number of unannotated sparse factors requires further considerations, however. Because these
factors are sparse and there exists no prior annotation to constrain the gene sets they effect, we find that
the ARD prior less effectively regularizes their relevance. Consequently, sparse unannotated factors should
only be activated if they are needed to explain the variation in the data. Empirically, we observed that
if larger numbers of genes are activated in the annotated factors (more than 100%, see Sec. , this
indicates that the annotation is not able to appropriately capture the variation in the data. This situation
applied to the Zeisel data set as well as the human preimplentation Embroys (Supp. analyses Fig. SN1).
To address this we fit 5 sparse hidden factors for these two datasets. Sparse hidden factors tend to capture
variation between cell types, which are typically not well captured by annotated factors (Supp. Fig. 6).

3.6 Downstream analyses

The trained f-scLVM model can be used for different downstream analyses.

Factor relevance First, the posterior mean of the ARD score (factor-wise precision) o’ is used as a
measure for the relevance of an individual factor to drive expression variability. The inverse of this ARD
score can be interpreted as the expected explained variance of the factor for the subset of genes with a
regulatory effect. Larger values of 1/dy, which correspond to the expected variance explained by factor
k, indicate larger relevance of factor k. When analysing the drivers of variability for selected subsets of
cells only, the factor relevance can be mapped onto this subset without the need to recompute the model.
This is achieved by re-weighting 1/, with the relative variance of the corresponding factor k within the
subset of cells under consideration. To exclude factors that may be driven by outlying cells, we filtered
the reconstructed factors based on the mean absolute deviation (mad) and excluded factors with mad less
than .4 before calculating the relevance score. For the retina and Zeisel datasets, no such filtering was
applied, due to the known presence of very small cell populations.

Visualization Second, the posterior distribution over annotated and unannotated factors X, can be
used to visualize cell states.

Gene set refinement By comparing the posterior distribution over the gene assignment to factors z, . to
the prior annotation I x, it is possible to identify individual genes that were added to or removed from a
given pathway factor k. In practice, we consider the posterior threshold .5 for annotating genes to factors.
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Supp. Meth. Figure M3: Impact of the scaling of the annotation likelihood by the number of
cells in the data. Shown are results for different models using simulated path-
way corruptions as shown in Supp. Fig. 4, considering increasing dataset sizes
(cell count). (a,b) Number of false positive (a) and true positive (b) augmen-
tations to pathway annotations without rescaling. (c,d) Analogous results when
using the annotation likelihood rescaling described in Sec. [[.1.1] Without scal-
ing the annotation likelihood, the inferred factors become decoupled for large
dataset, which results in large numbers of false positive augmentations to the
annotation ((a)). In contrast, the scaled annotation likelihood retains its rele-
vance across datasets of different size, yielding decreased false positive (c) and
increased true positive (d) augmentations for larger datasets.

Model residuals Finally, the inferred annotated and unannotated factors can also be used to estimate
residual dataset. Residual data adjusted for the effect of a given factor k are derived using Y esiqual =
Y — X:,kWE When the model was trained using the dropout noise model, the residuals were calculated
using the pseudo-counts Y. This approach performs an implicit imputation of zero count values.
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