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Supplementary Tables

Supplementary Table 1 | Parameter values for simulated datasets. Datasets
were simulated considering varying degrees of overlap between factors,
increasing the numbers of simulated annotated- and unannotated
(confounding) factors, different false negative/false positive rates for the
simulated annotation (FNR/FPR), simulated swapped assignments of genes to
factors, increasing numbers of simulated cells, gene sets of different sizes, and
alternative parameter values for simulating dropout effects. The default setting
for each parameter is highlighted in bold. Parameter were varied one at a time
with the other parameters held at the default value. Left: Simulation parameters
for standard log Gaussian noise. Right: Parameter settings when dropout noise
was simulated.

Gene set Annotated Unannot FN FP Gene Cell Gene set Expression Drop
overlap factors ated [%] [%] swap count size quantile (V)]
factors [%]
0 2 0 1 1 0 50 20-50 0.01 0.4
0.1 3 1 5 2 1 100 50-100 0.02 0.6
0.3 4 2 10 3 5 200 100-200 0.04 0.8
0.5 5 3 15 5 10 500 20-950 0.1 1.0
0.7 7 4 25 10 25 0.5 1.2
9 7 50 1.5

Supplementary table 2 | GO enrichment for differentially expressed genes
between the astrocyte sub populations. Shown are the 20 most significantly
enriched GO terms (using the R package topGO and the elim algorithm) based
on the set of 1,024 significant differentially expressed genes between the
astrocyte populations (FDR<10%).

GO.ID Term Significant  p-value

1 GO:0006954 inflammatory response 28/39 0.0049
2 GO:0090092 regulation of transmembrane receptor pro...  16/21 0.0138
3 GO:0031334 positive regulation of protein complex a... 14/18 0.0161
4 GO:0030509 BMP signaling pathway 12/15 0.0183
5 GO:0071772 response to BMP 12/15 0.0183
6 GO:0071773 cellular response to BMP stimulus 12/15 0.0183
7 GO0:0032273 positive regulation of protein polymeriz... 10/12 0.0200
8 GO0:0030510 regulation of BMP signaling pathway 10/12 0.0200
9 GO0:0018107 peptidyl-threonine phosphorylation 8/9 0.0202
10 GO:0018210 peptidyl-threonine modification 8/9 0.0202
11 GO:0030514 negative regulation of BMP signaling pat... 8/9 0.0202
12 GO:0001837 epithelial to mesenchymal transition 8/9 0.0202
13 GO:0007498 mesoderm development 8/9 0.0202
14 GO:0007009 plasma membrane organization 15/20 0.0215
15 GO:0009952 anterior/posterior pattern specification 13/17 0.0255
16 GO:0032924 activin receptor signaling pathway 5/5 0.0321
17 GO:0006368 transcription elongation from RNA polyme... 5/5 0.0321
18 GO:0006970 response to osmotic stress 5/5 0.0321
19 GO:0019882 antigen processing and presentation 5/5 0.0321
20 GO:0050766 positive regulation of phagocytosis 5/5 0.0321




Supplementary Figures
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Supplementary Figure 1 | Analysis for the set of 182 cell-cycle staged
mouse embryonic stem cells, considering alternative normalization
strategies and different methods for inferring biological drivers of gene
expression variability. (a) Comparison of independent and joint factor
inference on mouse embryonic stem cells (MESC) staged for the cell cycle.
Shown are pair-wise correlation coefficients of inferred factors, either
considering scLVM independently applied to each of 44 gene sets derived from
the core molecular signature database (MSIGDB; left) or when considering the
subset of eight active factors identified by f-scLVM (right). While the factors
identified by the independent model were correlated (average [r|=0.45), f-
scLVM retrieved largely uncorrelated components, suggesting these factors tag
distinct biolgoical processes (average |r|=0.09). (b) Factor relevance and gene
set augmentation results from f-scLVM. Bottom pannel: size and relevance of
the 5 annotated factors identifeid by the model. Top pannel: number of genes
added to individual factors by the model. Right panel: cumulative relevance of
annotated and unannotated factors. (c-d) Results analogous to those shown in
a,b, however when considering a normalization strategy based on size factors
calculated using ERCC spike-ins, which retains absolute variation in gene
expression levels between cells. (e) Scatterplot of the G2M cell cycle factor,
comparing the factor inference of f-scLVM when applied to data normalized
using either of the two strategies. f-scLVM consistently recovered the main
drivers of gene expression heterogeneity (G2M checkpoint, P53 pathway),
irrespective of the choice of data normalization (b,d,e).
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Supplementary Figure 2 | Additional analyses for the set of 182 cell-cycle
staged mouse embryonic stem cells using PAGODA. (a) Raw factor
relevance determined using the weighted PCA approach in PAGAODA,
identifying a large number of putatively active pathways. (b) Pairwise
correlation analysis of the inferred factors, revealing strong correlations similar
to the SVD-based scLVM model (cf. Supp. Fig. 1a). (¢) Reduced set of factors
following PAGODA post-processing steps, resulting in clusters of factors that
include G2M Checkpoint and the P53 pathway as main components. (d)
Predictive accuracy to classify true G2/M cells, using either the G2M checkpoint
factor inferred when using PAGODA (cyan) or f-scLVM (red). The f-scLVM
factor more accurately discriminates the cells into two populations. (e,f)
Correlations of factors inferred using PAGODA, (e) bivariate visualization using
the G2M checkpoint and P53 factor; (f) pairwise correlation of the factors
inferred when using PAGOA. In comparison to f-scLVM (cf. Supp. Fig. 1a,c),
PAGODA vyielded factors with a clear covariance structure, which is mainly
because individual factors are inferred independently in this model. In contrast,
f-scLVM performs joint inference of annotated and unannotated factors, yielding
a smaller number of factors that capture independent components of variation.
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Supplementary Figure 3 | Additional results using simulated data. (a-e)
Performance of f-scLVM and alternative methods for recovering true simulated
drivers of gene expression heterogeneity, assessed using the area under the
receiver operating characteristics (ROC). Results are for varying simulation
parameters: (a) increasing gene set overlap between simulated pathway
factors, (b) increasing numbers of simulated annotated factors, (c) increasing
dataset sizes (number of cells), (d) varying numbers of simulated dense
unannotated (confounding) factors and (e) considering gene sets of different
size. (f,g) Performance of f-scLVM and alternative methods when simulating
dropout effects, which are typical for sparse sequencing datasets (see Supp.
Table 1). Shown are results for the same models as considered in (a-e), and
additionally a variant of scLVM with a Gaussian likelihood model that does not
account for dropout (f-scLVM-Gauss). (f) Results for increasing lower quantiles
of the expression distribution for which dropout effects are simulated. (g)
Results for increasing values of the dropout rate parameter (A1), which
determines the dependency of the dropout rate and the mean expression
values. (h) Perfromance of f-scLVM to recover the true G2M state of a staged
mESC when simulating drop-out effects (simulated droput of 50% quantile of
expressed genes) for both likelihood models for all cells in the staged mESC
dataset. As for the simulated data, f-scLVM outperforms f-scLVM Gauss. (i)
Accuracy of f-scLVM for recovering true simulated drivers when fitting
increasing numbers of unannotated factors in the model (default is 3), when two
factors are simulated. The model accuracy saturated when at least two factors
are fit, which confirms the robustness of the f-scLVM when fitting additional
unannotated dense factors. Individual bars show aggregate results from 50



repeat experiments per setting, with their height corresponding to the median
AUC and the error bars corresponding to 25% and 75% quantiles. In each
simulation experiments all parameters except for the parameter under
consideration were retained at their default values (see Supp. Table 1).
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Supplementary Figure 4 | f-scLVM performance for simulated errors in the
gene set annotation. (a-c) Area under the receiver operating characteristics
(ROC), comparing the performance of f-scLVM and alternative methods for
recovering true drivers of expression heterogeneity when introducing different
types of errors in the annotation that is passed to the respective methods: (a)
simulated false positive assignments of genes to gene sets, (b) simulated false
negative assignments of genes to gene sets and (c¢) permuting increasing
fractions of genes between gene sets of active factors. (d-f) Accuracy of f-
scLVM for augmenting the provided gene set annotation for the corresponding
simulations, considering the accuracy for including and excluding genes from
the corrupted annotation, based on the model posterior distribution over the
indicator variable that assigns genes to factors (Methods). Individual bars show
aggregate results from 50 simulations with their height corresponding to the
median AUC and the error bars corresponding to 25% and 75% quantiles. In
each simulation experiments all parameters except for the parameter under
consideration were retained at their default values (see Supp. Table 1).
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Supplementary Figure 5 | Additional analyses for the Zeisel dataset,
including comparative results when using PAGODA. (a) Heatmap showing
the top 30 processes identified by PAGODA after collapsing redundant factors
(Methods). (b) Corresponding Heatmap for the top annotated factors identified
by f-scLVM, which includes factors that were also identified by PAGODA, such
as Chemokine Receptors Bind Chemokines, as well as factors outside the
PAGODA set, including Innate immune system. (c) Aditional dense and sparse
unannoatated factors identified by f-scLVM for the same dataset. While
annotated factors predominantly resolved intra-cell type variation, unannotated
factors tended to capture inter-cell type variation that cannot be readily
captured by the annotated factors. Colors encode factor activity.
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Supplementary Figure 6 | Additional analyses for the Zeisel dataset,
including gene-set completion and cell state variation captured by
different factors. (a-c) t-SNE visualization of the single-cell variation catpured
by annotated factors (a), as well as dense (b) and sparse (c) unannotated
factors. While annotated factors predominantly resolved intra-cell type variation,
unannotated factors tended to capture inter-cell type differences that cannot be
readily captured by the annotated factors. (d) Relative weight of annotated and
genes added by the model for the innate immune system factor. Several genes
with a known implication in innate imunity were identified, including Apoe [1]
and Hexb [2]. (e-h) Effect of adjusting for unwanted varaition by regressing out
the most relevant dense unannotated factor. (e) t-SNE on unadjusted data. (f) t-
SNE on adjusted data, revealing additional substructure in the neuronal cell
population. The identified cell clusters (g) correspond to three well-
characterized groups of neurons [3]. An ANOVA on gene expression using the
cell clusters revealed 782 significant marker genes (FDR<10%), with Sst being
the most significant gene. Sst is a canonical marker gene for the
aforementioned subpopulations [3] (h).
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Supplementary Figure 7 | Additional results for the runtime comparisons.
(a) Considering additional methods. Comparison of the empirical runtime when
fitting f-scLVM and alternative methods based on factor analysis (RUV, SVA,
scLVM, PAGODA, ZIFA, IBP). Considered are datasets with increasing
numbers of cells and 6,000 genes. (b) Empirical runtime when fitting f-scLVM
for an increasing number of genes and 100 cells. Shown are empirical runtimes
obtained when fitting these models using 8 cores of an Intel(R) Xeon(R) CPU
E5-2660 v3 @ 2.60GHz. None of the existing methods could be applied to the
largest dataset.
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Supplementary Figure 8 | Additional results for the retina cells profiled
using drop-seq. (a) Factor relevance, for the top 20 factors (annotated and
unannotated factors) identified by f-scLVM for the subset of 2,145 cells
considered in Fig. 5b,c and in (b). The most relevant factor was a dense
unannotated factor, which was regressed out for estimating residual datasets
((b) and Fig. 5c). (b) Visualization of aforementioned subset of cells using non-
linear t-SNE embedding applied to the residual dataset (see (a)). Colors
correspond to the cell types identified in [4]. Red and blue circles annotate two
subpopulations of microglia cells that could only be detected on the adjusted
data (cf. Fig. 5c). (c) GO term enrichment for the set of 992 differentially
expressed genes (FDR<1%) between the microglia subpopulations identified in
(b). (d) Several of the most differentially expressed genes play important roles
in microglia activation, including Cd83 [5], and genes from the II-6 family such
as I-17d, 1I-17dr and 1I-23a [6-8]. The discovered gene sets were implicated in
processes related to activation of T-cells and B-cells, which are hallmarks of
microglia activation, suggesting that one subpopulation consists of activated
microglia. (e,f) Relationship between the most relevant unannotated factor
(grey box in a) used to calculated residual datasets (cf. (a)) and experimental
batch (e) and cellular detection rate (f).
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Supplementary Figure 9 | Associations between inferred unannotated
dense factors and technical covariates. (a) Left: Correlation coefficients
beween unannotaed dense factors inferred by f-scLVM and technical
covariates across different scRNA-seq datasets. Right: Cumulative variance
explained when considering all available technical covariates. Unannotated
factors were frequently associated with covariates with known relevance for
scRNA-seq, including the number of reads mapped to spike-ins (sSUmERCC),
ERCC-derived size factor (sfERCC), PC1 derived from ERCC spike-ins
(PC1ERCC), the number of expressed genes/cellular detection rate
(nExpressed), the total number of mapped reads (sumTotal) and DE-seq size
factor derived from reads mapped to endogenous genes (sfMmus). (b)
Cumulative proportion of variance explained by all unannotated factors for
individual technical covariates.
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Supplementary Figure 10 | Robustness of f-scLVM factor relevance.
Robustness was assessed using random sampling, repeatedly using a random
subset of 80% of the cells to fit the model. Shown are the mean factor
relevance and plus or minus one standard deviation confidence estimates
derived from 10 sampling repetitions. Results for the cell-cycle staged mESC
dataset (a), the mESC dataset profiled using parallel DNA-methylation and
transcriptome sequencing, (b) the T-cell dataset (¢) and the Zeisel neuron data

(d).
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Supplementary Flgure 11 | f-scLVM discrminates known cell types under
noisy conditions. We assessed the ability of f-scLVM with Gaussian and
hurdle noise model to discriminate known cell types within the human pancreas
when simulating increasing rates of dropout (see also sections Supplementary
analyses and Simulation Study (main text)). Factor relevance, for the most
relevant factors (annotated and unannotated factors) identified by f-scLVM (a).
Overall, the most relevant factors were sparse unannotated (hidden) factors
that separated well the known cell types (b). The most relevant annotated
factors were KRAS signaling and Complement System, with the Complement
factor mainly separating ductal cells and the KRAS factor separating Delta and
Gamma cells (c). The ability of f-scLVM to separate cell types based on sparse
hidden factors degraded with increased dropout for both noise models; f-scLVM
with dropout noise model consistently outperformed the Gaussian noise model
with increased overall accuracies of up to 14% (for 30% dropout). Blue bars
correspond to the Gaussian noise model, red bars to the hurdle noise model.

Dashed lines represent the respective mean accuracy for Gaussian and hurdle
noise model (d-f).
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Supplementary analyses
Human preimplantation embryos

We applied f-scLVM to 1,529 human cells from 88 male and female embryos at
different developmental stages ranging from E3 to E7. Consequently, the major
drivers of expression variation are expected to be associated with
developmental processes and sex-specific effects between embryos [9]. f-
scLVM was fit using the MSigDB annotations, additional modelling unannotated
sparse factors, which were required to fully capture variation outside the gene
annotation (Methods). The most relevant annotated factors identified, such as
TGF-Beta signaling or epithelia mesenchymal transition, primarily captured
variation within developmental stages (Fig. SN1a-d). Interestingly, the factor
oxidative phosphorylation accurately differentiated cells with different sexes
(Fig. SN1a,d), which is consistent with documented differences in glucose and
amino acid utilization between female and male preimplantation embryos [10].
Notably, 8 of the top 20 genes pre-annotated to this factor (largest weights, Fig.
SN1e-f) were also identified as differentially expressed between sex in the
primary analysis of the data, including NDUFA1 (p = 5.2e-20), SLC25A5 (p =
2.6e-37) and HSD17B10 (p = 7.5e-20). Additionally, f-scLVM identified 7 genes
not in the annotation that were added to the gene set. These genes showed
consistent changes between sex and were correlated to the pre-annotated
genes. Several of these genes are known to be sex-linked genes such as XIST
(Fig. SN1f).
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Figure SN1 | Application of f-scLVM to 1,529 cells from Human
Preimplantation Embroys. (a) Relevance of individual factors as determined
by f-scLVM based on the REACTOME annotation (left) and cumulative
relevance of annotated and unannotated factors (right). (b-c) Heatmaps for
most relevant annotated (b) and unannotated (c) factors identified by the
model. The colour bar indicates developmental stages. Annotated factors
tended to resolve intra-stage variation, whereas unannotated factors primarily
captured inter-stage variation. (d,e) Bivariate visualization of cells using the
inferred annotated factor oxidative phosphorylation and a sparse unannotated
factor, considering cells labeled by sex (d) or developmental stage (e). The
Oxidative phosphorylation factor separates cells by sex while the unannotated
sparse factor separates cells by developmental stage. (e) Relative weight of
annotated and genes added by the model for the top 20 genes associated to
the oxidative phosphorylation factor, including 7 genes added by f-scLVM. (f)
Newly identified genes were correlated to pre-annotated genes, suggesting that
the factor identity related to oxidative phosphorylation is maintained (columns
correspond to cells ordered by sex: red = male, blue = female; rows correspond
to members of the relevant gene set: black = pre-annotated, red = added by f-
ScLVM).
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Parallel DNA-methylation and transcriptome profiled mouse ES cells

We applied f-scLVM to a set of 61 serum-cultured mESCs in GO/G1 phase
profiled using parallel DNA methylation and transcriptome sequencing (scM&T-
seq) [11]. We followed the preprocessing, QC and normalization described in
the primary publication [11] and considered log-transformed normalized gene
expression data of 61 cells for analysis using f-scLVM. Following the primary
analysis, we included a set of 86 literature-curated pluripotency genes as an
additional candidate gene set to augment the MSigDB annotation. The model-
based factor relevance of f-scLVM identified this pluripotency factor as the most
relevant diver of expression variation (Fig. SN2a). This is consistent with the
expected cell-to-cell heterogeneity in pluripotency of serum-grown mESCs,
manifesting in heterogeneous expression of key pluripotency marker genes [12,
13]. Next, we explored links between the inferred pluripotency factor and DNA
methylation in the same set of cells. We observed a clear correlation between
pluripotency and genome-wide methylation rate (P<1e-5, Fig. SN2b). This
global effect is consistent with previous studies based on ensembles of cells,
which reported an association between genome-wide methylation rate and
pluripotency [14]. Additionally, we considered using the inferred pluripotency
factor to test for associations with gene body methylation of individual genes
genome-wide, which is conceptually similar to the approaches taken in
epigenome-wide association analyses in population studies [15]. This revealed
8,124 genes where gene body methylation was significantly associated with
pluripotency (FDR < 10%, Fig. SN2c). For comparison, we also considered
associations with the first PC on gene expression levels (3,907 associations;
FDR 10%, Fig. SN2d) as well as a single-gene methylation-expression
association as in [11] (43 associations; FDR<10%, Fig. SN1e). These
alternative strategies yielded markedly fewer significant associations. We also
considered alternative genomic contexts (Fig. SN2g) and observed similar
trends. The increase in power when using the inferred factor in association
analyses shows that using latent variables is an effective approach for reducing
noise in the experimental assay. This has clear advantages when analyzing
single-cell transcriptome data, which are inherently prone to noise and technical
sources of variation [16, 17]. At the same time, the inferred factors have a clear
interpretation, unlike factors such as those derived using conventional SVD-
based methods.
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Figure SN2 | Application of f-scLVM to 61 mouse embryonic stem cells
profiled using parallel DNA methylation & transcriptome sequencing. (a)
Factor relevance of individual factors as determined by f-scLVM. (b) Scatter
plot between the inferred pluripotency factor (Pluripotency) and genome-wide
methylation rate in the same cells. The black solid line denotes a linear trend.
(c) Genome-wide analysis of associations between gene-body methylation of
individual genes and the inferred pluripotency factor, resulting in 8,124
significant associations (FDR<10%). Annotated pluripotency genes are marked
in red. (d,e) Analogous association analysis when either considering the first
PC on gene expression (d) or the expression level of the corresponding genes
individually (e), resulting in 3,907 and 43 significant associations respectively.
The blue line corresponds to the 10% FDR threshold. (f) Association between
methylation rate and PC1 and PC2 were weaker than those with the
pluripotency factor. (g) Significant associations between methylation and
expression for different genomic contexts. Applying f-scLVM consistently
yielded the highest number of associations.
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T-cells

We considered a dataset of differentiating T-cells, where the cell cycle is known
to influence heterogeneity in gene expression [18]. The data were normalized
as described previously in [18], resulting in 7,073 variable genes, which were
used for analysis. We augmented the MSigDB gene sets with the set of 121
Th2 marker genes introduced in the primary publication [18]. f-scLVM was
applied using the log-transformed normalized gene expression matrix for 81
cells. Again f-scLVM, identified factors with plausible annotations (Fig. SN3a),
including processes related to the cell cycle (G2M Checkpoint and E2F targets)
and to T-cell development (IL2/Stat5 signaling, Myc targets and Th2 genes).
Reassuringly, the Th2 factor differentiated two previously identified
subpopulations [18] of differentiating Th2 cells (Fig. SN3b).
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Figure SN3 | Application of f-scLVM to 81 Th2 cells. (a) Pathway factor
relevance as identified by the f-scLVM model (using MSIGDB and an additional
Th2 factor based on the gene set considered in Buettner et al., 2015[18]). The
top ranked factors were the cell cycle (G2M checkpoints and E2F targets) and
factors related to Th2 differentiation (Myc targets and Th2 differentiation). (b)
Bivariate visualization of all cells using the inferred factors G2M checkpoint (cell
cycle) and Th2 differentiation. The Th2 factor separated two cell populations
that correspond to less differentiated cells (blue, GATA 3 low) and further
differentiated cells (grey, GATA 3 high). These annotated differentiation states
are taken from the analysis reported in Buettner et al., 2015 [18].

Pancreas data

We applied f-scLVM to 269 cells extracted from a human pancreas [19,20]. We
filtered all non-low-quality cells from one individual (HP1502401) and used
ERCC spike-ins to identify a set of 5,787 highly variable genes. The major
drivers of variability were three hidden factors (sparse and dense), followed by
Kras signaling and Complement System (Supp. Fig. 11a). The former is an
important signaling pathway in the pancreas, both in health and disease [21],
the latter known to be associated with ductal cells [22]. The Complement factor
mainly separated ductal cells and the KRAS factor separated Delta and
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Gamma cells (Supp. Fig. 11c). As for the Zeisel et al. data, the sparse hidden
factors discriminated well known cell types (Supp. Fig. 11c). We quantified the
discriminative power of the sparse hidden factors by training a naive Bayes
classifier on the active sparse hidden factors and computing the accuracy for
predicting the correct cell type for each cell type (Supp. Fig. 11d).

We then assessed the ability of f-scLVM with Gaussian and hurdle noise model
to discriminate known cell types with increasing dropout. To this end, we used a
combination of the same two dropout mechanisms described in the section
Simulation Study in the main text. To simulate a 20% and 30% dropout, we
chose simulation parameters of 0.1 for the drop parameter (both settings) and a
limit of detection of 4 and 8 in log-space, respectively. We ran 50 simulations of
for each setting and compared the discriminative power of f-scLVM by again
training a naive Bayes classifier on the active sparse hidden factors for each
noise model. The ability of f-scLVM to separate cell types based on sparse
hidden factors degraded with increased dropout for both noise models; f-scLVM
with dropout noise model consistently outperformed the Gaussian noise model
with increased overall accuracies of up to 14% (for 30% dropout; Supp. Fig.
11d-f).
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