Supplemental material

Lázaro-Diéguez et al., https://doi.org/10.1083/jcb.201608065

Figure S1. Tilted metaphase spindles in LGN-depleted MDCK cells realign with the substratum during anaphase. (A–C) Immunofluorescence analysis of control and LGN-KD MDCK monolayers (A), cytokinesis profiles with quantification of the percentage of daughter cells contacting the substratum (B), and metaphase or anaphase profiles with β angle quantification (C). n = 20-25 cells/experiment were analyzed for N = 3 experiments. Error bars indicate ±SEM (dot graph) or +SD (bar graphs). **, $P \le 0.01$; ***, $P \le 0.001$; ^{§§}, $P \le 0.01$; ns, not significant, analyzed by *t* test. Note that parental control and LGN-KD cells express GFP. (D) *x-z-t* confocal time-lapse sequence of control and LGN-depleted MDCK dividing cells. Dotted lines show cell contours.

Figure S2. Adherens junctions and TJs during mitosis in MDCK-Par1b cells. (A and B) Confocal x-y and x-z sections and x-y projections $(x-y_p)$ of MDCK-Par1b cells either uninduced (+Dox) or overexpressing Par1b (–Dox) fixed and stained as indicated. (B) Arrowheads indicate E-cadherin, p120 catenin, or β -catenin at the cell apex (white) or the hepatocytic-like lateral lumina (red).

Bı	nterphase	Prophase	Prometaphase	Metaphase	Anaphase	Telophase	Cytokinesis	Anaphase
x-y (J.	Æ.			х-у
X-y _p								X-У ₂
x-z WII	Apex -B9 Non-p	olarized	X S.			β-ca	atenin ZO-1 DNA	x-z <u>10 μm</u> p120 catenin
х-у	Š.							x-y
x-y _p							0.00	X-Y ₀
x-z Wif	-B9 Hepato	ocytic		\$ \$	a gra	β-ca	10 μm tenin ZO-1 DNA	x-z 10 μm p120 catenin

Figure S3. Adherens junctions and TJs during mitosis in MDCK and WIF-B9 cells. (A and B) Confocal x-y and x-z sections and x-y projections $(x-y_p)$ of MDCK and WIF-B9 cells fixed and stained as indicated. (B) Arrowheads indicate β -catenin and p120 catenin localization at the cell apex (white) or the hepatocytic lateral lumina (red).

Figure S4. **E-cadherin binding partner IQGAP is not required for anaphase spindle realignment in LGN-KD cells.** Immunofluorescence analysis of LGN-KD (Mock) and LGN-IQGAP-KD double-depleted MDCK monolayers (A), and anaphase profiles with β angle quantification (B). Note that parental control and LGN-KD cells express GFP. n = 25 cells/experiment were analyzed for N = 3 independent experiments. Error bars indicate ±SEM (dot graph) or +SD (bar graphs). ns, not significant, analyzed by t test.

'	A Interphase	Prophase	Prometaphase	Metaphase	Anaphase	Telophase	Cytokinesis
	x-y					Ø	
	x-y		\mathbf{v}	Q,	0		
	x-yp			the second	5 Ch		
	x-z	NO CONTRACTOR		<u>A</u> DE			
	x-z						
	X-Z Apex	an and the second			read a second second		¹⁰ μm
			1 -101	LOZ -	T		
	_						
E	B Interphase	Prophase	Prometaphase	Metaphase	Anaphase	Telophase	Cytokinesis
	B Interphase	Prophase	Prometaphase	Metaphase	Anaphase	Telophase	Cytokinesis
	A Interphase	Prophase	Prometaphase	Metaphase	Anaphase	Telophase	Cytokinesis
	B Interphase	Prophase	Prometaphase	Metaphase	Anaphase	Telophase	Cytokinesis
	A Interphase	Prophase	Prometaphase	Metaphase	Anaphase	Telophase	Cytokinesis
	A Interphase	Prophase	Prometaphase	Metaphase	Anaphase	Telophase	Cytokinesis
	A Interphase	Prophase	Prometaphase	Metaphase	Anaphase	Telophase	Cytokinesis

Figure S5. Activated myosin II localization during mitosis in MDCK cells. (A and B) Confocal x-y and x-z sections and x-y projections $(x-y_p)$ of untreated (A) or Rho inhibitor-treated (B) MDCK cells fixed and stained as indicated. The P-MLC2 intensity spectrum map for the x-y and x-z views is shown. Arrowheads indicate P-MLC2 at the cell apex in prophase to anaphase cells (white) and at the base in metaphase (yellow), the hepatocytic-like lateral lumina (red), or daughter that lost substrate contact (black).

Video 1. Hepatocyte-derived WIF-B9 and HepG2 cells form bilayers in 2D cell cultures. Confocal x-z-y stacks (50 µm) of MDCK, WIF-B9, and HepG2 cells fixed and stained as indicated. Bar, 10 µm.

Video 2. **Cell divisions out of the monolayer in WIF-B9 cells.** Confocal *x-y-z* and *x-z-y* stacks of nonpolarized and hepatocytic WIF-B9 cells fixed and stained as indicated. Red arrowheads show hepatocytic lateral lumina. Black arrowheads show daughter that lost substrate contact. Bar, 10 µm.

Video 3. **Par1b overexpression generates bilayers in MDCK cell cultures.** Confocal x-z-y stacks (50 µm) of uninduced (+Dox) or overexpressing Par1b (-Dox) MDCK-Par1b cells fixed and stained as indicated. Bar, 10 µm.

Video 4. ΔEcad generates bilayers in MDCK cell cultures. Confocal x-z-y stacks (50 μm) of uninduced (+Dox) or expressing ΔEcad (-Dox) MDCK-ΔEcad cells fixed and stained as indicated. Bar, 10 μm.

Video 5. Rho inhibition promotes hepatocytic-type architecture in MDCK cell cultures. Confocal x-z-y stacks (38 µm) of untreated cells (Control) or cells exposed to Rho inhibitor MDCK fixed and stained as indicated. Bar, 10 µm.

Video 6. Rho activation promotes columnar-type architecture in WIF-B9 cell cultures. Confocal x-z-y stacks (38 µm) of untreated cells (Control) or cells exposed to Rho activator WIF-B9 fixed and stained as indicated. Bar, 10 µm.