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Figure S1. Cell line characterization and controls. (A) Immunoblot (LiCOR) analysis of all cell lines and constructs used in this study. αCat band inten-
sities were normalized to GAP DH and expressed as a fold change (FC) of endogenous αCat in DLD1 cells. Note that fluorescently tagged FLαCat and 
FLαCatKKR<3A proteins are expressed similarly to endogenous αCat. ΔNαCat and ΔNαCatKKR<3A mutant proteins are overexpressed threefold compared with 
endogenous but, importantly, are similarly expressed to each other. (B) Immunoprecipitation of ΔNαCat and ΔNαCatKKR<3A cells (treated with [+] or without 
[−] the B/B homodimerizer) with antibodies to either mCherry or β-catenin and immunoblotted for E-cadherin to show that N-terminal ΔNαCat truncation 
prevents association with the cadherin–catenin complex. Although β-catenin coimmunoprecipitates with the ΔNαCat construct, concordant association with 
E-cadherin is lost, confirming that αCat incorporation within the cadherin–catenin complex is blocked. Because the inverse immunoprecipitation of β-catenin 
does not also pull down αCat, we reason that ΔNαCat coimmunoprecipitation is more efficient and likely binds β-catenin indirectly, perhaps via APC (Choi 
et al., 2013). (C) Monomeric and dimeric forms of FLαCat and FLαCatKKR>3A show similar actin binding activities. The actin-pelleting assay was performed 
with 5 µM of actin and 5 µM of αCat. Bottom: the actin-bound fraction of αCat was determined for each reaction by densitometry analysis of SDS-PAGE 
gels stained with Coomassie blue. Bar graph reflects mean of three independent assays with SD. WT versus mutant αCat homodimers show no significantly 
different binding to F-actin by t test. (D) PI3K signaling decreases solubility of αCat pool. BN-PAGE (top) analysis of a cytosolic fraction of endogenous αCat 
isolated by detergent-free, freeze-thaw lysis (see Materials and methods) from DLD1 cells (parent to the R2/7 αCat negative line). SDS gel (bottom) analysis 
of a total, Triton X-100–soluble fraction of αCat as a control. (E) Detergent-free lysis and cytosolic fractionation (S100G) of R2/7 FLαCat and FLαCatKKR<3A 
cells treated either with DMSO or 5 µM wortmannin. Quantification of αCat densitometry ratioed to tubulin blots below. (F) Immunoprecipitation of FLαCat 
and FLαCatKKR<3A constructs and blot back for components of the cadherin–catenin–complex. (G) Migrating cells in wound front (ΔNαCat/ΔNαCatKKR<3A in 
R2/7 cells) were costained for Arp2/3 to look for potential changes in colocalization. Bar, 20 µm. Although previous studies suggest αCat homodimeriza-
tion inhibits Arp2/3 activity (Drees et al., 2005; Benjamin et al., 2010), and the slower wound closure of FLαCat relative to FLαCatKKR<3A cells in Fig. 7 
support this concept, we find no obvious evidence of αCat competition of Arp3 from the leading edge.
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Video 1. αCat forced dimerization promotes cortical recruitment and filopodia formation. Part 1: live imaging of mCherry- 
iDimerize Empty-Vector (EV) and mCherry-iDimerize-ΔNαCat-expressing R2/7 DLD1 cells treated with (+) or without (−) biden-
tate (B/B “dimerizer”) and monodentate washout (W/O) ligand in 6-h time course. Note that labels and time stamps are in-
corporated within corresponding image frames. mCherry-iDimerize-ΔNαCat is rapidly recruited to the periphery after addition 
of B/B ligand (within 10 s; red arrows). The mCherry-iDimerize EV (control construct) localizes to the nucleus and cytoplasm, 
where addition of the B/B ligand promotes nuclear exclusion rather than cortical recruitment. Part 2: live imaging of mCherry- 
iDimerize- WT-ΔNαCat– and ΔNαCatKKR<3A mutant–expressing cells (red) coinfected with GFP-LifeAct (green). Shown first: mCherry- 
iDimerize-WT-ΔNαCat before (left) and after (right) B/B treatment (40-s time course). Note formation of elongated filopodia 
within 10 s after B/B treatment. Shown second: mCherry-iDimerize- ΔNαCatKKR<3A mutant expressing cell before (left) and after 
(right) B/B treatment (60-s time course). Note no formation of elongated filopodia after B/B treatment.

Video 2. αCat forced dimerization promotes protrusion-dependent cell–cell contact. Split-screen video of mCherry-iDimerize- 
WT-ΔNαCat–expressing (left) and ΔNαCatKKR<3A mutant–expressing (right) cell couplets (red) coinfected with GFP-LifeAct (green). 
Labels and time stamps are incorporated within corresponding image frames. Note that addition of the B/B-dimerizer allows 
WT ΔNαCat-expressing couplets to close a gap between the two cells (yellow arrows) and remain in close proximity; this gap 
reappears upon addition of the wash-out (W/O) ligand. This activity is less prominent in an ΔNαCatKKR<3A mutant couplet.

Video 3. EGF promotes αCat cortical recruitment independently of the cadherin–catenin complex. Live imaging of GFP-full-
length-αCat-expressing A431D cells (cadherin–catenin negative) and stimulation with EGF (CN02; Cytoskeleton). Labels and 
time stamps are incorporated within corresponding image frames. Note that GFP–αCat is rapidly recruited to the cortex upon 
EGF stimulation (within 1  s), with concomitant decrease in cytoplasmic staining, and subsequent appearance of filopodia 
(within 5 s, red arrows).

Video 4. αCat basic patch contributes to epithelial cohesion and migration. Live imaging of part 1: mCherry-full-length-αCat-
restored R2/7 cells imaged for 12 h postwounding at 20×; WT, full-length αCat (FLαCat; shown first) and charge mutant αCat 
(FLαCatKKR<3A; shown second) are compared. Images taken every 10 s during time course. Red arrows indicate αCat enrichments 
to the lamellipodial edge, which were quantified in Fig. 7 B. Part 2: Live imaging at 40× of mCherry-full-length-αCat and mutant 
αCatKKR<3A-expressing cells (red) coinfected with GFP-LifeAct (green). Labels and time stamps are incorporated within correspond-
ing image frames. Note colocalization of αCat with LifeAct (yellow arrowheads) and formation of radial protrusions (white 
arrows) during epithelial sheet wound closure.
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