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ppendix 

“Bra-ket” notation In the appendices we use special notation

o deal with column vectors, row vectors and their products. The

orrespondence between this notation, which is borrowed from

heoretical physics, and the more standard one is: 
column vector x | x 〉 
row vector w 

� 〈 w | 
scalar product w 

� x 〈 w | x 〉 
rank-one matrix x w 

� | x 〉〈 w | 
For example, the equality w 

� A x = w 

� (A x ) = (A 

� w ) � x corre-

ponds to 〈 w | A | x 〉 = 〈 w | A x 〉 = 〈 A 

� w | x 〉 in the new notation. 

ppendix A. Generic perturbations lead to the same asymptotic

eturn rate 

Here we show that the asymptotic return rates are essentially

ndependent of the perturbation direction u and of the observation

irection w . 

We begin by investigating the long-term behavior of 〈 w , x (t) 〉 =
 w , e At u 〉 . We assume that A has no degenerate eigenvalues, which

s generically the case. This ensures that its spectral decomposi-

ion exists, constructed using the eigenvalues λi and corresponding

right) eigenvectors v R 
i 

and left eigenvectors v L 
i 

(i.e., eigenvectors

f A 

� ). For simplicity we assume that the dominant eigenvalue is

eal; we discuss the case of a complex conjugate pair of dominant

igenvalues at the end of this appendix. We order the eigenvalues

uch that 

1 > � e (λ2 ) ≥ � e (λ3 ) ≥ . . . 

sing the spectral decomposition, we have 

 = 

∑ 

i

λi | v R i 〉〈 v L i | and e At = 

∑ 

i

e λi t | v R i 〉〈 v L i | , 

o that 

 w | x (t) 〉 = 〈 w | e At u 〉 = ∑ 

i

e λi t 〈 w | v R i 〉〈 v L i | u 〉 .

f 〈 w | v R 
1 
〉〈 v L 

1 
| u 〉 	 = 0 and for sufficiently large t (more precisely, for

 

−(λ1 −� e (λ2 )) t  1) , the sum in the right-hand side is dominated

y the i = 1 term, 

 w | x (t) 〉 ≈ e λ1 t 〈 w | v R 1 〉〈 v L 1 | u 〉 ,
o that (see also Appendix B ), 

ln |〈 w | x (t) 〉|
t 

≈ −λ1 −
ln |〈 w | v R 1 〉〈 v L 1 | u 〉| 

t 
≈ −λ1 

 

ins 
t ( w ) = − d

d t 
ln |〈 w | x (t) 〉| ≈ −λ1 − d

d t 
ln |〈 w | v R 1 〉〈 v L 1 | u 〉| = −λ1

 

avg 
t ( w ) = − ln |〈 w | x (t) 〉| − ln |〈 w | x (0) 〉| 

t 
≈ −λ1 . 

hese approximations, valid for large t , become exact in the limit

 → ∞ . Hence, 

 ∞ 

( w ) = lim 

t→∞
R 

ins 
t ( w ) = lim 

t→∞
R 

avg 
t ( w ) = −λ1 . 

ence, the asymptotic return rates do not depend on the pertur-

ation direction u (as long as 〈 v L 
1 
| u 〉 	 = 0 ) and on the observation

irection w (as long as 〈 w | v R 1 〉 	 = 0 ). 

Similarly, for sufficiently large t and if 〈 v L 1 | u 〉 	 = 0 ,

 x (t) ‖ ≈ e λ1 t ‖ v R i ‖ 〈 v L i | u 〉 . 
ubstituting this expression into the defintion of return rates R ∞ 

,

 

ins 
t and R 

avg 
t , we get 

 ∞ 

= lim 

t→∞
R 

ins 
t = lim 

t→∞
R 

avg 
t = −λ1 . 

The case of a complex conjugate pair of dominant eigenvalues is

ore subtle. In this case also the asymptotic return to equilibrium

s governed by the dominant pair of eigenvalues (and correspond-

ng eigenvectors). The asymptotic regime has persistent oscillations

f decreasing amplitude. The rate of decrease of the amplitude is

qual to asymptotic resilience (equal to minus the real part of the

https://doi.org/10.13039/501100000781


Fig. A.1. Return to equilibrium depends on perturbation direction - case of complex conjugate pair of dominant eigenvalues. Same figure as Fig. 3 , but for different commu- 

nity matrix, A = 

(−0 . 5 −1 
5 −1 

)
. The oscillatory behavior leaves a clear imprint on the decay of the distance to equilibrium (panel C) and on the convergence of return rate R 

avg 
t 

to asymptotic resilience (panel D).
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dominant eigenvalues). However, because the return rates are com-

puted on the oscillating variables (rather than on the amplitude

of the oscillations), the return rates for large t can also oscillate,

without converging to a proper limit. The distribution of instanta-

neous return rates R 

ins 
t remains wide for large time t ( Fig. A.1 ). In

contrast, the average return rates R 

avg 
t have a distribution that be-

comes narrow for large time t , converging to asymptotic resilience.

Appendix B. Direction of observation 

In the main text we defined return rates using the Euclidean

norm ‖ x ( t ) ‖ to measure the extent of the dynamical displacement

from equilibrium, see Eqs. (3) –(5) . To compute the associated re-

turn rates, all dynamical variables x i ( t ) have to be observed. When

this is not practical or even possible, it is more convenient to use

return rates that require a limited number of dynamical variables.

Here we introduce return rates of a particular ecosystem variable

of function (e.g., total biomass, nutrient uptake). After lineariza-

tion such a variable becomes a linear combination 

∑ 

i w i x i (t) =
w 

� x = 〈 w | x 〉 , where the vector w can be interpreted as an ob-

servation direction. For instance, the direction of total biomass is

w 

� = (1 , 1 , . . . , 1) . The corresponding return rates are 

R ∞ 

( w ) = lim 

t→∞
− ln |〈 w | x (t) 〉|

t 
(B.1)

R 

ins 
t ( w ) = − d

d t 
ln |〈 w | x (t) 〉| (B.2)

R 

avg 
t ( w ) = − ln |〈 w | x (t) 〉| − ln |〈 w | x (0 

+ ) 〉|
. (B.3)
t −  
ote that we have added the dependence on the observation direc-

ion w to distinguish these return rates (e.g., R 

avg 
t ( w ) ) from those

ased on the Euclidean norm (e.g., R 

avg 
t ). 

ppendix C. Return times 

As explained in the main text, return time can be defined as

he amount of time it takes for the system to return, and remain

ithin, a specified distance to equilibrium. We denote the allowed

istance to equilibrium by c . Then, the return time T ( c ) is defined

s 

 (c) = min 

{
t 
∣∣ ‖ x (t + s ) ‖ ≤ c for all s ≥ 0

}
. (C.1)

ig. C.1 illustrates how the requirement that the displacement re-

ains within this bound for all times t ≥ T ( c ) allows us to deal

ith non-monotonous return to equilibrium. It is interesting to

ote that the inverse function T ( c ) has a simple interpretation. It

s the maximal displacement C ( t ) that occurs after time t , 

(t) = max 
s ≥t

‖ x (s ) ‖ . (C.2)

he relationship between T ( c ) and C ( t ) is explained graphically in

ig. C.1 . 

Neither T ( c ) nor C ( t ) are directly comparable to return rates

 

ins 
t and R 

avg 
t . To see this, note that T ( c ) has units of time, while

 ( t ) is unitless (recall that R 

ins 
t and R 

avg 
t have units of recipro-

al time). This shortcoming can be overcome by applying an ap-

ropriate transformation to T ( c ) and C ( t ). To find this transforma-

ion, we consider a single-species system, for which A = −α with

> 0 and R 

ins 
t = R 

avg 
t = α. We find C(t) = x (0 + ) e −αt and T (c) =(

ln c − ln x (0 + ) 
)
/α, suggesting the following transformed quanti-



Fig. B.1. Return to equilibrium depends on perturbation direction - displacement measured along a particular observation direction. Same figure as Fig. 3 , but the displace- 

ment from equilibrium is measured as the deviation of total biomass from its equilibrium value. This corresponds to projecting the trajectories on the observation direction

w 

� = (1 , 1) (dashed line in panel A). The patterns are qualitatively the same as those in Fig. 3 , but the variation around the median is larger. 

Fig. C.1. Definition of return times. Panel A: same as Fig. 1 , but for a return to equilibrium with damped oscillations. Panel B: we define the return time T ( c ) as the smallest

time starting from which the distance to equilibrium remains smaller than a factor c of the initial displacement ‖ x (0 + ) ‖ . To construct the return time, it is convenient to 

introduce the quantity C ( t ) as the largest displacement after time t relative to the initial displacement. The function C ( t ) is monotonously decreasing; its inverse is the return

time T ( c ). Parameter values: N ∗� = (2 . 4 , 1 . 6) , A = 

(−0 . 5 −1 
5 −1

)
and u � = (0 . 9 , 0 . 4) . 
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ies, 

 t = − ln C(t) − ln ‖ x (0 

+ ) ‖
t 

and T c = − ln c − ln ‖ x (0 

+ ) ‖
T (c) 

,

(C.3) 

hich have the dimension of reciprocal time. For the purpose of

omparison, stability measure C t is of particular interest, because

t is indexed by time t like return rates R 

ins 
t and R 

avg 
t . Substituting

he definition of C ( t ), we get 

 t = − ln max s ≥t ‖ x (s ) ‖ − ln ‖ x (0 

+ ) ‖
,

t 
howing that C t is closely related to R 

avg 
t . They are equal when

ax s ≥t ‖ x (s ) ‖ = ‖ x (t) ‖ , which holds when the return to equi-

ibrium is monotonous. This indicates that our results, although

ostly expressed in terms of return rate R 

avg 
t , are also valid for

tability measures based on return times such as C t . 

ppendix D. Median return rate 

We derive approximate expressions for the median value of re-

urn rates R 

ins 
t and R 

avg 
t for a random perturbation u . The only

nformation the approximation requires about the distribution of

erturbation vectors u is a correlation matrix C . In the next section
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we compute this correlation matrix for a few simple perturbation

models. 

We start by deriving some exact expressions for averages over

the distribution of perturbation vectors. First, we consider the

squared displacement from equilibrium. Denoting by E the mean

over the distribution of vectors u , we have 

E 

(‖ x (t) ‖ 

2 
)

= E 〈 x (t) | x (t) 〉
= E 〈 e At u | e At u 〉 
= E 

(
Tr | e At u 〉〈 e At u | 

)
= Tr e At 

E 

(| u 〉〈 u | ) e A 
�t

= Tr e At C e A 
�t , (D.1)

where C = E | u 〉〈 u | is the correlation matrix of perturbation vec-

tors. 

Next, we consider the time derivative of the squared displace-

ment from equilibrium. We have 

d 

d t 
‖ x (t) ‖ 

2 = 

d 

d t 
〈 e At u | e At u 〉 

= 〈 A x (t) | x (t) 〉 + 〈 x (t) | A x (t) 〉
= 2 〈 x (t) | H(A ) x (t) 〉 ,

where H(A ) = (A + A 

� ) / 2 is the symmetric part of matrix A . Taking

the mean over the perturbation vectors u , 

E

(
d

d t 
‖ x (t) ‖ 

2
)

= 2 E 〈 x (t) | H(A ) x (t) 〉

= 2 E 

(
Tr | H(A ) e At u 〉〈 e At u |

)
= 2 Tr H(A ) e At 

E 

(| u 〉〈 u | ) e A 
�t

= 2 Tr H(A )e At C e A 
�t . (D.2)

We are interested in averages of ‖ x ( t ) ‖ , R 

ins 
t and R 

avg 
t . These

quantities can be expressed as non-linear functions of ‖ x ( t ) ‖ 2 and
d 
d t 

‖ x (t) ‖ 2 , 
‖ x (t) ‖ =

√ 

‖ x (t) ‖ 

2

R 

ins 
t = − 1 

2 ‖ x (t) ‖ 

2 

d 

d t 
‖ x (t) ‖ 

2

R 

avg 
t = − ln ‖ x (t) ‖ 

2 − ln ‖ x (0) ‖ 

2

2 t 
.

Applying these functions to the means of ‖ x ( t ) ‖ 2 and 

d 
d t 

‖ x (t) ‖ 2
(i.e., Eqs. (D.1) and (D.2) ) gives poor approximations for the means

of ‖ x ( t ) ‖ , R 

ins 
t and R 

avg 
t . Applying the same procedure to medi-

ans leads to much better approximations. Explicitly, denoting by

M the median value over the perturbation vectors u , we get from

Eqs. (D.1) and (D.2) , 

M 

(‖ x (t) ‖ 

2 
)

≈ Tr C e A 
� t e At 

M

(
d

d t 
‖ x (t) ‖ 

2
)

≈ 2 Tr C e A 
� t H(A ) e At . 

Hence, 

M 

(‖ x (t) ‖ 

)
≈

√
Tr 

(
C e A � t e At 

)
(D.3)

M 

(
R 

ins 
t

)
≈ −

Tr
(
C e A 

� t H(A ) e At 
)

Tr 
(
C e A � t e At 

) (D.4)

M 

(
R 

avg 
t

)
≈ −

ln
(
Tr C e A 

� t e At 
)

− ln 

(
Tr C 

)
. (D.5)
2 t 
he accuracy of the approximations is excellent, as illustrated in

igs. 2–4 and A.1 (compare full line (numerically computed me-

ian) and × -marks (analytical approximation); Eq. (D.3) in panel C

nd Eq. (D.5) in panel D). 

It is interesting to consider the median of initial return rate

 

ins 
0

= lim t→ 0 R 

avg 
t . From Eq. (D.4) or (D.5) , 

 

(
R 

ins 
0

)
= lim 

t→ 0
M 

(
R 

avg 
t

)
≈ −

Tr 
(
CH(A ) 

)
Tr C 

= −
Tr 

(
CA 

)
Tr C 

.

n the simple case where C is proportional to the identity matrix

see next section), we find that 

 

(
R 

ins 
0

)
= lim 

t→ 0
M 

(
R 

avg 
t

)
= −1 

n 

Tr A = −1 

n 

n ∑ 

i =1

λi = 

1 

n 

n ∑ 

i =1

−� e (λi ) , 

here λi are the eigenvalues of A . Hence, the median initial return

ate is always positive and larger than asymptotic resilience. This is

he case even for reactive systems, for which the initial return rate

or some perturbation directions is negative (that is, the system

nitially moves away from equilibrium). 

A similar procedure as above can be used to derive approxima-

ions for the median values of | 〈 w , x ( t ) 〉 |, R 

ins 
t ( w ) and R 

avg 
t ( w ) , 

 

(|〈 w , x (t) 〉| ) ≈
√ 

〈 w | e At C e A � t w 〉 (D.6)

 

(
R 

ins 
t ( w ) 

)
≈ −

〈 w | e At 
(
A C + CA 

� ) e A 
� t w 〉 

2 〈 w | e At C e A � t w 〉 (D.7)

 

(
R 

avg 
t ( w ) 

)
≈ − ln 〈 w | e At C e A 

� t w 〉 − ln 〈 w | C w 〉
2 t 

. (D.8)

he accuracy of these approximations is illustrated in

ig. B.1 ( Eq. (D.6) in panel C and Eq. (D.8) in panel D). 

ppendix E. Correlation matrix of perturbations 

The statistics of the perturbation u acting on the system are

ummarized in the correlation matrix C . Here we derive this co-

ariance matrix for two simple random perturbation models. In

he first model we assume that all perturbation directions u are

qually probable. This implies that on average all species are

qually displaced. In the second model we allow that certain per-

urbation directions are more probable than others. In particular,

e assume that a typical perturbation will displace more, in abso-

ute terms, species with large equilibrium biomass. 

To define the first model, we specify the distribution of the ran-

om perturbation vector u . For a given perturbation direction (i.e.,

iven u / ‖ u ‖ ), the norm ‖ u ‖ of the perturbation vector has no ef-

ect on the return rates by linearity. Hence, we can choose ‖ u ‖ = 1 .

hen, because all perturbation directions are equally probable, we

ee that the perturbation vector u is uniformly distributed on the

nit sphere (i.e., the sphere defined by the condition ‖ u ‖ = 1 ). 

To generate samples from this distribution, the following proce-

ure can be used, 

1. Generate a vector v , of the same dimension as u , consisting of

independent standard Gaussian variables v i .

2. The normalized vector u = v / ‖ v ‖ gives a sample from the uni-

form distribution on the unit sphere.

Note that the components v i of vector v have to be taken from

 Gaussian distribution for this procedure to work. Hence, we have

he following relationships between the probability distributions of

 , u and r = ‖ v ‖ , 
 ( v ∈ d v ) = P (r ∈ d r) P ( u ∈ d u ) = 

∏
i

P (v i ∈ d v i ) , (E.1)
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here the distributions P (v i ∈ d v i ) are standard Gaussian. 

To compute the corresponding correlation matrix C , we start

rom the equality 

 = E | u 〉〈 u | = 

∫ 
| u 〉〈 u | P ( u ∈ d u ) . (E.2)

e multiply both sides of the equation by r 2 and integrate with

espect to distribution of r = ‖ v ‖ . For the left-hand side, we get 
 

C r 2 P (r ∈ d r) = C 

∫ 
r 2 P (r ∈ d r) 

= C 

∫ 
‖ v ‖ 

2 
P ( v ∈ d v )

= C 

∫ ∑ 

i 

v 2 i 

∏
i

P (v i ∈ d v i )

= C 
∑ 

i

∫ 
v 2 i P (v i ∈ d v i ) = n C,

here n is the dimension of u and v . For the right-hand side, we

et 
 

| u 〉〈 u | P ( u ∈ d u ) r 2 P (r ∈ d r) =
∫ 

| v 〉〈 v | P ( v ∈ d v ) .

ence, we find that 

 = 

1

n 

∫ 
| v 〉〈 v | P ( v ∈ d v ) . (E.3)

he integral in the right-hand side is equal to the correlation ma-

rix of the random variables v i . They are independent and have

ariance 1, so that 

 = 

1

n 

1 , (E.4) 

here 1 denotes the n × n identity matrix. 

To define the second model, we give the procedure to sample

andom perturbations u . The procedure is a slightly modified ver-

ion of the previous sampling procedure, 

1. Generate a vector v , of the same dimension as u , consisting of

independent standard Gaussian variables v i .

2. Multiply the vector v by D , the diagonal matrix containing the

equilibrium species biomass, giving w = D v .
3. The normalized vector u = w / ‖ w ‖ gives a sample from the dis-

tribution of perturbation u .

Note that this is again a distribution on the unit sphere (defined

y ‖ u ‖ = 1 ). However, this distribution is not uniform due to the

ultiplication by matrix D . 

We compute the corresponding correlation matrix C . First, we

ote that the components of vector w are independent Gaussian

ariables. Their distributions are not identical; component w i has

ariance D 

2 
ii 

(and mean 0). Introducing the variable r = ‖ w ‖ , we

ave the following relationships, 

 ( w ∈ d w ) = P (r ∈ d r) P ( u ∈ d u ) = 

∏ 

i

P (w i ∈ d w i ) , (E.5)

hen, we can apply a similar computation as for the first model.

sing that 
 

r 2 P (r ∈ d r) = 

∑ 

i

∫ 
w 

2 
i P (w i ∈ d w i ) = 

∑ 

i

D 

2 
ii , 

e get 

 = 

1∑ 

i D 

2 
ii 

∫ 
| w 〉〈 w | P ( w ∈ d w ) . (E.6)

he integral in the right-hand side is the covariance matrix of the

andom variables w . Substituting their variances and covariances,
i 
 

e find that 

 = 

1∑ 

i D 

2 
ii 

D 

2 . (E.7) 

his result show that, on average, species with larger biomass are

ffected more strongly by the perturbation. The standard deviation

f the displacement of species i is proportional to D ii . Hence, the

isplacement strength relative to species biomass does not differ

etween species. Note that also for this second model the pertur-

ation affects species in an uncorrelated way. 

ppendix F. Effect of rare species on asymptotic resilience 

Here we illustrate a simple mechanism of how a rare species

an determine asymptotic resilience. We assume that the rare

pecies is present in the community without significantly affect-

ng the other species, but is kept at low abundance by interactions

ith the core community (a satellite species). We consider two

ases: one in which the rare species can persist in the commu-

ity without immigration, and another in which the rare species is

aintained by immigration (a sink population). 

We focus on the dynamics of the satellite species, which we

escribe by logistic growth with immigration. Denoting its biomass

y N 1 , the dynamical equation reads, 

d N 1 

d t 
= r 1 N 1 

(
1 − N 1 + β10 N 0

K 1 

)
+ c 1 , (F.1)

ith r 1 the intrinsic growth rate, K 1 the carrying capacity, and c 1 
he immigration rate of the satellite species. Variable N 0 aggregates

he biomass of the core species. Because the effect of the satellite

pecies on the core species is assumed to be negligible, the dy-

amics of N 0 are autonomous, converging to an equilibrium value

 

∗
0 

. Competition coefficient β10 quantifies the negative effect of the

ore species on the satellite species, effectively reducing its intrin-

ic growth rate, 

 1 → r 1 

(
1 − β10 N 

∗
0 

K 1 

)
= α1 r 1 with α1 = 1 − β10 N 

∗
0 

K 1 

. (F.2)

he factor α1 is smaller than one, and can even be negative. The

ffective growth rate α1 r 1 is equal to the invasion fitness of the

atellite species (without immigration). 

First, assume the satellite species has positive invasion fitness,

1 > 0, so that it can persist in the community without immi-

ration. Neglecting immigration, c 1 = 0 , we find that the equilib-

ium biomass is N 

∗
1 

= α1 K 1 and that the corresponding eigenvalue

s −α1 r 1 (recall that the other eigenvalues of the community dy-

amics are basically unaffected by the satellite species). Hence, for

mall α1 , the satellite species contributes a small eigenvalue (in

bsolute value). The eigenvalue might be smaller than the other

igenvalues of the community dynamics, in which case the satel-

ite species determines asymptotic resilience. 

Second, assume the satellite species has negative invasion fit-

ess, α1 < 0, so that it is maintained in the community by im-

igration. Neglecting intraspecific competition (i.e., dropping the

 

2 
1 term in Eq. (F.1) ), we obtain the equilibrium biomass N 

∗
1 

= 

 1 / (| α1 | r 1 ) and the corresponding eigenvalue α1 r 1 . If immigration

s very weak (very small c 1 ), both biomass and eigenvalue can be

mall. Hence, the satellite species can contribute a weakly negative

igenvalue to the community dynamics, and might even determine

symptotic resilience. 

The two cases (positive and negative invasion fitness) are illus-

rated in Fig. 5 . For concreteness, we complement Eq. (F.1) with a

imple dynamical equation for the aggregate biomass N 0 , 

d N 0 

d t 
= r 0 N 0 

(
1 − N 0

K 0 

)
. (F.3)



Fig. F.1. Rare species determine asymptotic resilience in random community model.

Same model as in Fig. 6 , but here we look at a single realization. Black line: recov- 

ery trajectory for full community (averaged over perturbation directions). Red line:

recovery trajectory for community from which the rarest species has been removed.

Inset: zoom of the recovery trajectories for shorter times.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We take r 0 = 1 . 0 and K 0 = 1 . 0 , so that N 

∗
0 

= 1 . 0 and the associated

eigenvalue λ0 = −1 . 0 . For the satellite species we set r 1 = 1 . 0 and

β10 = 0 . 8 . 

In case A of Fig. 5 , we take K 1 = 0 . 77 and c 1 = 0 , so that α1 =
−0 . 039 . Hence, the satellite species cannot persist and the commu-

nity dynamics are not affected. 

In case B of Fig. 5 , we take K 1 = 0 . 83 and c 1 = 0 , so that

α1 = 0 . 036 . Hence, the satellite species can persist and its equi-

librium biomass is N 

∗
1 

= 0 . 030 . This introduces a new eigenvalue

in the community dynamics, equal to −0 . 036 = 0 . 036 λ0 , which is

strongly dominant. This illustrates the first case discussed above. 

In case C of Fig. 5 , we take K 1 = 0 . 77 and c 1 = 0 . 002 . The

satellite species is maintained by immigration and its equilibrium

biomass is N 

∗
1 

= 0 . 027 . The associated eigenvalue −0 . 11 = 0 . 11 λ0

is strongly dominant. This illustrates the second case discussed

above. 

The previous observations can be generalized to many-species

communities, as shown in Fig. 6 . Here we look more closely at a

single model realization ( Fig. F.1 ). In this example, asymptotic re-

silience can be linked to a single species, because the left eigen-

vector associated with the dominant eigenvalue is strongly concen-

trated on a single component. This species is the rarest of the com-

munity. When removing this species, asymptotic resilience changes

drastically, but the short-term recovery dynamics do not (see inset

in Fig. F.1 ). The same phenomena are observed in a majority of

model realizations. In other cases, asymptotic resilience is not as

clearly associated with a single rare species. 
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