
Supplementary note 

A brief review of the liability threshold model  

Consider 𝑛 independent subjects with genotyped SNPs and their relatives whose 

relation with the subject and disease status and are only known. Phenotypes of 

individual 𝑖 and his relative 𝑗 are denoted by 𝑌% and 𝑌%&, respectively and further define 

a vector 𝐘𝐢 = 𝑌%, 𝒀𝒊𝒋
𝒕
, where 𝒀𝒊𝒋 = 𝑌%/, … , 𝑌%12

𝒕
. Similarly, the liability vector, the 

genotype vector and any environmental effects are denoted as 𝐋𝐢 = 𝐿%, 𝑳𝒊𝒋
𝒕
, 𝐆𝐢 =

𝐺%, 𝑮𝒊𝒋
𝒕
, and 𝐙𝐢 = 𝑍%, 𝒁𝒊𝒋

𝒕
 in order. Polygenic effects explain phenotypic 

similarity between family members, and correlations among family members are 

assumed to be constructed by kinship coefficients. We denote 𝜋==> as the kinship 

coefficient between two relatives 𝑗 and 𝑗′ of subject 𝑖 and 𝑑%& as the inbreeding 

coefficient for relative 𝑗 of subject 𝑖. The inbreeding coefficient 𝑑%= is a parameter 

quantifying the departure from HWE and ranges from 0 to 1. We denote the kinship 

coefficient matrix of subject 𝑖’s relatives by 

𝚿%
BCD =

1 + 𝑑%G ⋯ 2𝜋G12
⋮ ⋱ ⋮

2𝜋12G ⋯ 1 + 𝑑%L2
, 

and the corresponding kinship coefficient matrix for both subject 𝑖 and his/her 

relatives are defined by 𝚿𝐢. We denote a 𝑤×𝑤 dimensional identity matrix by 𝐼P, and 

𝑤 dimensional column vector of which all elements are 0 and 1 by 0P and 1P 

respectively. If we let σST and σUT be variances of polygenic effect and random effect, 

and 𝑍% is assumed to include the intercept, we can assume that 

𝑳% = 𝒁%𝛼 + 𝑷% + 𝑬%, 𝑷%~𝑀𝑉𝑁 𝟎12^G, σ_
T𝚿` , 𝑬%~𝑀𝑉𝑁 𝟎12^G, σa

T𝑰12^G . 



Here we assume no main genetic effects (thus, 𝑮` is not included in the model) and 

σUT = 1. If the heritability, ℎT, and the prevalence of the disease, 𝑞 are known, then 

liability threshold 𝑇 and 𝜎_T can be evaluated from the standard normal distribution, i.e.,  

Φ −
𝑇

𝜎_T + 1
= 1 − 𝑞. 

Here we used 𝑞 = 0.099. Under this liability threshold model, the conditional mean 

(CM) of disease risk can be defined as, 

 𝐶𝑀 = 𝐸 𝑳% 𝒀𝒊𝒋 = 𝒚𝒊𝒋	  (S1) 

Note that neither direct genotyped variables nor environmental variables (which is not 

available for the relatives) were included in our liability model. However, it is 

straightforward to extend the model in the existence of those variables.  

 

Calculation of the conditional mean 

Based on this liability threshold model, we can calculate the conditional mean of Li, or 

CM, when conditioning on family history. To make the phenotype in liability scale, let 

Ip2& = 1 if 𝐿%& ∈ (𝑇,∞) and 0 otherwise. Then I𝑳𝒊 = Ip2, … , Ip2L2
u
 and the CM of for 

subject i becomes E 𝐿% I𝑳2& = 𝟏12 , which can be calculated using the truncated 

multivariate normal distribution. Here and 𝑛% dimensional column vector of which all 

elements are 1 by 𝟏12.  

 

To calculate the CM, we assume a liability vector, 𝑳  (hereafter we dropped the 

subscripts for simplicity) follows n-dimensional multivariate normal distribution and 

the probability density function (pdf) is,  

 𝑓 𝑳 = 2𝜋 yLz 𝚺 y/zexp − G
T
𝑳u𝚺yG𝑳  (S2) 



where 𝚺 = cov 𝑳 . Correspondingly, the conditional pdf of 𝑳 becomes  

 𝑓� 𝑳 =
G
�
𝑓 𝑳 ,
0,

						 for	(𝑇,∞)
otherwise

 (S3) 

where 𝛼 = 𝑃𝑟 𝑳 ∈ (𝑇,∞) , the fraction after truncation. 

The moment generating approach can be applied to the truncated density in Eq (3) and 

provides the n-dimensional truncated mgf (Manjunath and Wilhelm, 2012), 

 𝑚 𝒕 =
C�� 𝒕�𝚺𝒕

z

� T� L/z 𝚺 //z exp − G
T
𝑳u𝚺𝑳 𝑑𝑳�  (S4) 

If we let (𝜮)jk = 𝜎=� and 𝐹�(x) be the marginal pdf of Lk, the CM for subject 𝑖 can be 

obtained by 

 𝜇% =
�� 𝒕
�u2 u��

= 𝜎%�1
��G 𝐹�∗ (S5) 

where 

 𝐹�∗ =
𝐹� 𝑇 − 𝐹�(∞) if	𝑦� = 1
𝐹� −∞ − 𝐹�(𝑇) 	otherwise (S6) 

 

The Fk can be similarly derived as was done in (Manjunath and Wilhelm, 2012). First, 

we partition 𝑳 into two parts, 𝐿% and 𝑳%&, and then 𝑳 can be rewritten as 

 𝑳 =
𝐿%
𝑳%&

~𝑀𝑉𝑁 0
𝟎1

, 1 ΣGT
ΣTG ΣTT

 (S7) 

If we denote the lower and upper truncated bound of 𝑳 respectively as 𝒂 and 𝒃, i.e., 

𝒂 < 𝑳 < 𝒃  where 𝒂 = 𝑎%, 𝒂%&
u

, 𝒃 = 𝑏%, 𝒃%&
u

. Then the truncated normal 

distribution function is 

 𝑓� 𝑳%&, 𝐿% = 𝑥 = 𝛼yG𝑓 𝐿% = 𝑥 𝑓 𝑳%&|𝐿% = 𝑥 𝐼�. (S8) 



Because a conditional distribution of a normal distribution is also normally distributed, 

𝑳%&|𝐿% = 𝑥  is normally distributed with 𝐸 	𝑳%&|𝐿% = 𝑥 = 𝚺GT𝑥  and 𝑉𝑎𝑟 	𝑳%&|𝐿% =

𝑥 = 𝚺TT − 𝚺GT𝚺TGu . Accordingly, the multivariate marginal pdf of 𝑳%& becomes 

 𝐹𝑳2& 𝑥 = 𝛼yG𝑓 𝐿% = 𝑥 𝑓 𝑳%&|𝐿% = 𝑥 𝑑𝐿%=
¥2&
¦2&

. (S8) 

The integral is over 𝐿%=  and thus 𝐹𝑳2& 𝑥  can be rewritten as 𝛼yG𝑓 𝐿% =

𝑥 𝑓 𝑳%&|𝐿% = 𝑥 𝑑𝐿%=
¥2&
¦2&

, which can be readily computed by using conventional 

statistical software. For this purpose, we used the pmvnorm() function in mtvnorm R 

package.  

 

Note that if we denote the number of relatives for subject 𝑖 by 𝑛% the convergence rate 

of the MC algorithm for subject 𝑖 and for all subjects are 𝑂( 𝑛%) and 𝑂(√𝑛G + ⋯+

√𝑛1), respectively (http://arvix.org/pdf/1206.5387.pdf). Thus, computational intensity 

is positively related with the number of relatives and subjects and if the same size is 

large and many relatives’ phenotypes are known, it can be computationally intensive. 

  



Supplementary Figures and Tables 

Figure S1. MDS plot of two datasets.  

 

  



Figure	S2.	MAF	scatter	plot.	SNPs	MAFs	(~300k)	in	SNUH	and	KARE	datasets	are	
plotted. 

 
  



Figure S3. Characteristics of selected SNPs. To find the most effective set of SNPs, 
we selected SNPs based on the p-value obtained from the logistic regression and the 
BLUP obtained by the mixed effects model. Since the selected set of SNPs should be 
applied in penalized regression, we expected that the selection procedure would be 
more effective if the set of SNPs was uniformly distributed across the genome. Toward 
this end, we divided the whole genome into 3,233 windows of size 5M and counted the 
frequency of SNPs in each window. With a varying number of SNPs (0.1k – 20k). 

 



Figure S4. Proportion of variation explained by each variable in the final model.  
 

 
  



Figure S5. Proportion of variation explained by each variable in the final model 
without CM variable. For five clinical variables (age, sex, BMI, SBP, DBP) except 
CM variable, the individual proportions of the variation are shown, whereas the 
variation explained by the 5,000 SNPs is shown according to their summed proportion. 

 

  



Table S1 Model comparison with different family history measures (AUC) 
Family History # of SNPs RIDGE LASSO EN SCAD T.RIDGE 

None 

100 
0.611 

(0.023) 
0.602 

(0.025) 
0.602 

(0.023) 
0.585 

(0.023) 
0.612 

(0.024) 

500 
0.614 

(0.029) 
0.600 

(0.031) 
0.600 

(0.028) 
0.594 

(0.031) 
0.614 

(0.030) 

1,000 
0.626 

(0.029) 
0.611 

(0.029) 
0.611 

(0.031) 
0.601 

(0.032) 
0.628 

(0.029) 

5,000 
0.689 

(0.032) 
0.647 

(0.030) 
0.647 

(0.030) 
- 

0.689 
(0.031) 

10,000 
0.672 

(0.028) 
0.626 

(0.029) 
0.626 

(0.030) 
- 

0.672 
(0.030) 

20,000 
0.674 

(0.030) 
0.639 

(0.031) 
0.639 

(0.029) 
- 

0.674 
(0.031 

Weighted 
Mean 

100 
0.669 

(0.028) 
0.605 

(0.030) 
0.605 

(0.030) 
- 

0.615 
(0.030) 

500 
0.617 

(0.028) 
0.602 

(0.026) 
0.602 

(0.026) 
- 

0.617 
(0.020) 

1,000 
0.629 

(0.028) 
0.615 

(0.026) 
0.615 

(0.026) 
- 

0.630 
(0.031) 

5,000 
0.692 

(0.028) 
0.650 

(0.024) 
0.650 

(0.024) 
- 

0.692 
(0.012) 

10,000 
0.676 

(0.032) 
0.630 

(0.035) 
0.630 

(0.035) 
- 

0.676 
(0.012) 

20,000 
0.683 

(0.033) 
0.647 

(0.037) 
0.647 

(0.037) 
- 

0.683 
(0.012) 

Conditional 
Mean 

100 
0.669 

(0.023) 
0.659 

(0.024) 
0.659 

(0.024) 
0.643 

(0.021) 
0.669 

(0.021) 

500 
0.659 

(0.030) 
0.642 

(0.031) 
0.642 

(0.031) 
0.639 

(0.030) 
0.659 

(0.031) 

1,000 
0.670 

(0.029) 
0.651 

(0.029) 
0.651 

(0.029) 
0.645 

(0.028) 
0.670 

(0.030) 

5,000 
0.736 

(0.030) 
0.691 

(0.031) 
0.691 

(0.031) 
- 

0.736 
(0.027) 

10,000 
0.721 

(0.029) 
0.673 

(0.030) 
0.673 

(0.029) 
- 

0.721 
(0.031) 

20,000 
0.725 

(0.034) 
0.689 

(0.031) 
0.689 

(0.031) 
- 

0.725 
(0.030) 



Table S2 Model comparison with different SNP filtering criteria (without CM 
variable) 

 
  



Table S3 Model comparison with different SNP filtering criteria (with CM variable) 

 

 
	


