Supplementary note

A brief review of the liability threshold model

Consider n independent subjects with genotyped SNPs and their relatives whose
relation with the subject and disease status and are only known. Phenotypes of

individual i and his relative j are denoted by Y; and Y respectively and further define
t t . . . oq.
a vector Y; = (Yl-, Y"i) , where Y, = (Yi ey Yini) . Similarly, the liability vector, the
t
genotype vector and any environmental effects are denoted as L; = (Ll-, Li,-) , G =

(Gi, Gij)t, and Z; = (Zi, VA l-].)t in order. Polygenic effects explain phenotypic
similarity between family members, and correlations among family members are
assumed to be constructed by kinship coefficients. We denote 7, as the kinship
coefficient between two relatives j and j' of subject i and dij as the inbreeding

coefficient for relative j of subject i. The inbreeding coefficient d;; is a parameter
quantifying the departure from HWE and ranges from 0 to 1. We denote the kinship

coefficient matrix of subject i’s relatives by
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and the corresponding kinship coefficient matrix for both subject i and his/her
relatives are defined by W;. We denote a wxXw dimensional identity matrix by /,,,, and

w dimensional column vector of which all elements are 0 and 1 by 0,, and 1,,

respectively. If we let of and 67 be variances of polygenic effect and random effect,

and Z; is assumed to include the intercept, we can assume that

Li=Za+P;+E;,P,~MVN(0,,1,0%;), E;~MVN(0y,,41,021,41).



Here we assume no main genetic effects (thus, G; is not included in the model) and
oZ = 1. If the heritability, h?, and the prevalence of the disease, g are known, then

liability threshold T and cr; can be evaluated from the standard normal distribution, i.€.,

o(- ) =1
Jog +1 e
Here we used g = 0.099. Under this liability threshold model, the conditional mean

(CM) of disease risk can be defined as,

cM =E (L,

Yy =) (SD)
Note that neither direct genotyped variables nor environmental variables (which is not

available for the relatives) were included in our liability model. However, it is

straightforward to extend the model in the existence of those variables.

Calculation of the conditional mean
Based on this liability threshold model, we can calculate the conditional mean of L;, or

CM, when conditioning on family history. To make the phenotype in liability scale, let

t
I, =1 ile-j € (T, ) and 0 otherwise. Then [}, = (ILi, el ) and the CM of for
J ni

subject i becomes E (Ll- I, = 1nz)’ which can be calculated using the truncated
]

multivariate normal distribution. Here and n; dimensional column vector of which all

elements are 1 by 1,,..

To calculate the CM, we assume a liability vector, L (hereafter we dropped the
subscripts for simplicity) follows n-dimensional multivariate normal distribution and

the probability density function (pdf) is,

F(L) = (21)72 5| "2exp (-lrtz1L) (S2)



where X = cov(L). Correspondingly, the conditional pdf of L becomes

1
£.(L) = {;fo(L), for (T, ) (S3)

otherwise

where @ = Pr(L € (T, ©)), the fraction after truncation.
The moment generating approach can be applied to the truncated density in Eq (3) and

provides the n-dimensional truncated mgf (Manjunath and Wilhelm, 2012),

o2
m(t) = a(2n’)"/2 ‘2‘1/2

1
[ exp (=3 L'EL) dL (S4)
If we let (X)x = gj), and Fy (x) be the marginal pdf of L, the CM for subject i can be

obtained by

__om(p)

i = o, = D=1 Fe (S5)

t=0
where

Fo(T) = Fy(0)  ify, =1

Fie = {Fk (=) — F,(T) otherwise (56)

The F} can be similarly derived as was done in (Manjunath and Wilhelm, 2012). First,

we partition L into two parts, L; and Ly, and then L can be rewritten as

L; 0y /1 =X
() ()2, ) ;
Ly < 0,/ \Z21 2y (57)
If we denote the lower and upper truncated bound of L respectively as a and b, i.e.,
t t
a<L<b where a= (ai,aij) , b= (birbij) . Then the truncated normal

distribution function is

fu(LipLi = x) = @ f Ly = 0f (Ly |l = x) L. (S8)



Because a conditional distribution of a normal distribution is also normally distributed,

Ly |L; = x is normally distributed with E ( L; |L; = x ) = E3,x and Var  L;|L; =
x) = X,, — X,,X5,. Accordingly, the multivariate marginal pdf of L;; becomes
Fy, () = [} a ™ f (L = 0)f (Ly)|L; = x) dL; (S8)
Lij ai; 14 ijl=i Lj
The integral is over L;; and thus Fy, (x) can be rewritten as a™'f(L; =
J
x) f;ii f (Lij|Li = x) dLl-j, which can be readily computed by using conventional
L

statistical software. For this purpose, we used the pmvnorm() function in mtvnorm R

package.

Note that if we denote the number of relatives for subject i by n; the convergence rate
of the MC algorithm for subject i and for all subjects are O(\/E) and 0(Vny + -+

Vn,,), respectively (http:/arvix.org/pdf/1206.5387.pdf). Thus, computational intensity

is positively related with the number of relatives and subjects and if the same size is

large and many relatives’ phenotypes are known, it can be computationally intensive.



Supplementary Figures and Tables

Figure S1. MDS plot of two datasets.
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Figure S2. MAF scatter plot. SNPs MAFs (~300k) in SNUH and KARE datasets are
plotted.
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Figure S3. Characteristics of selected SNPs. To find the most effective set of SNPs,
we selected SNPs based on the p-value obtained from the logistic regression and the
BLUP obtained by the mixed effects model. Since the selected set of SNPs should be
applied in penalized regression, we expected that the selection procedure would be
more effective if the set of SNPs was uniformly distributed across the genome. Toward
this end, we divided the whole genome into 3,233 windows of size 5M and counted the
frequency of SNPs in each window. With a varying number of SNPs (0.1k — 20k).




Figure S4. Proportion of variation explained by each variable in the final model.
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Figure S5. Proportion of variation explained by each variable in the final model
without CM variable. For five clinical variables (age, sex, BMI, SBP, DBP) except
CM variable, the individual proportions of the variation are shown, whereas the
variation explained by the 5,000 SNPs is shown according to their summed proportion.
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Table S1 Model comparison with different family history measures (AUC)

Family History #0fSNPs RIDGE LASSO EN  SCAD TRIDGE
100 0611 0602 0602  0.585 0.612
(0.023)  (0.025) (0.023) (0.023)  (0.024)
0614  0.600 0600  0.594 0.614
500 (0.029)  (0.031) (0.028) (0.031)  (0.030)
1000 0626 0611 0611  0.601 0.628
None ’ (0.029)  (0.029) (0.031) (0.032)  (0.029)
5000 0689  0.647  0.647 ] 0.689
’ (0.032)  (0.030)  (0.030) (0.031)
10,000 0672  0.626  0.626 ] 0.672
(0.028)  (0.029)  (0.030) (0.030)
20,000 0674  0.639  0.639 ] 0.674
(0.030)  (0.031)  (0.029) (0.031
100 0669  0.605  0.605 ] 0.615
(0.028)  (0.030)  (0.030) (0.030)
500 0617 0602  0.602 ] 0.617
(0.028)  (0.026)  (0.026) (0.020)
1000 0629 0615 0615 ] 0.630
Weighted ’ (0.028)  (0.026)  (0.026) (0.031)
Mean 5.000 0692  0.650  0.650 ] 0.692
’ (0.028)  (0.024)  (0.024) (0.012)
10,000 0676  0.630  0.630 ] 0.676
(0.032)  (0.035) (0.035) (0.012)
20,000 0683  0.647  0.647 ] 0.683
(0.033)  (0.037)  (0.037) (0.012)
100 0669  0.659  0.659  0.643 0.669
(0.023)  (0.024) (0.024) (0.021)  (0.021)
500 0659  0.642 0642  0.639 0.659
(0.030)  (0.031) (0.031) (0.030)  (0.031)
1000 0670  0.651 0651  0.645 0.670
Conditional ’ (0.029)  (0.029) (0.029) (0.028)  (0.030)
Mean 5.000 0736  0.691  0.691 ] 0.736
’ (0.030)  (0.031)  (0.031) (0.027)
10,000 0721 0673 0673 ] 0.721
(0.029)  (0.030)  (0.029) (0.031)
0725  0.689  0.689 0.725
200000 034y (0.031)  (0.031) . (0.030)




Table S2 Model comparison with different SNP filtering criteria (without CM

variable)
RIDGE LASSO EN SCAD  TRIDGE
CRITERIA  #of SNPs "\ op) SD) (SD) =D) SD)
300 0.642 0.637 0637 0616 0.641
(0.024)  (0.022) (0.022) (0.026)  (0.021)
=00 0.640 0.626 0626 0608 0.640
(0.032)  (0.031)  (0.031) (0.032)  (0.031)
1000 0.640 0.624 0624 0608 0.640
’ (0.027)  (0.028)  (0.028) (0.029)  (0.026)
P-value
=000 0.660 0635 0635 i 0.660
: (0.029)  (0.029)  (0.029) (0.027)
10.000 0.668 0.640 0.640 i 0.668
: (0.028)  (0.030)  (0.030) (0.030)
20,000 0.674 0.640 0.640 ) 0.674
: (0.031)  (0.026)  (0.026) (0.028)
300 0.611 0.602 0602 0585 0.612
(0.023)  (0.025)  (0.023) (0.023)  (0.024)
S0 0.614 0.600 0600 0594 0.614
(0.029)  (0.031)  (0.028) (0.031)  (0.030)
1.000 0.626 0.611 0611 0601 0.626
’ 0.029 0.029 0.031) (0.032 0.029
BLUP ( )| ) ) ) )
51000 0.689 0.647 0.647 ) 0.689
: (0.032)  (0.030)  (0.031) (0.031)
P 0.672 0.626 0.626 i 0.672
: (0.028)  (0.029)  (0.030) (0.030)
20,000 0.674 0.639 0.639 ) 0.674
: (0.030)  (0.031)  (0.029) (0.031)




Table S3 Model comparison with different SNP filtering criteria (with CM variable)

RDGE LASSO EN  SCAD TRIDGE
cRTERA #ofswPs  NooE MR OB S e
100 0693 0687 0688 0676 0693
(0025) (0.024) (0.023) (0.025)  (0.023)
500 0687 0672 0672 0665 0687
(0031)  (0.030) (0.031) (0.032)  (0.034)
000 0685 0669 0669 0664 0685
’ (0028) (0.029) (0.031) (0.029)  (0.029)
P-value
o0 0709 0687 0687 ] 0.709
’ (0030)  (0.031)  (0.027) (0.031)
o0 0717 0690 0690 ) 0.717
’ (0029)  (0.027)  (0.029) (0.028)
0721 0689 0689 0.721
20000 5030y (0031) (0027) (0.030)
100 0669 0659 0659 0643 0669
(0023) (0.024) (0.024) (0.021)  (0.021)
500 0659 0642 0642 0639 0659
(0030) (0.031) (0.031) (0.030)  (0.031)
000 0670 0651 0651 0645 0670
’ 0029) (0.029) (0.029) (0.028)  (0.030
BLUP ( ) ) ) | ) )
o0 073 0691 0691 ] 0.736
’ (0030)  (0.031)  (0.031) (0.027)
o000 0721 0673 0673 ] 0.721
’ (0029)  (0.030)  (0.029) (0.031)
0000 0725 0689 0689 ] 0.725
(0034) (0.031) (0.032) (0.030)




