
Supplementary Note 1. Calculation of lasing thresholds using transfer matrix 
method 

In this Section, we provide a derivation – based on the transfer matrix method – of the lasing 
thresholds for the structured cavity configurations compared in the main text (Fig. 2 and Table 1). 

 

Transfer matrix of the cavity 

We obtain the lasing threshold by extracting the poles of the transfer matrix of the full optical 
system. This approach assumes the poles of the transfer matrix cross the real axis of the complex 
frequency plane when transitioning from sub-lasing to lasing [1,2]. This procedure amounts to 
finding the conditions at which the transmission coefficient reaches a singularity and thus diverges.  

 

 

Supplementary Figure 1 | Structured lasing cavity configuration. We depict a schematic of the 
structured cavity as a two-port system. The mirror M1, M2 and M3 have the reflectivities 𝑅𝑅, 𝑅𝑅2 and 𝑅𝑅, 
respectively. The incoming amplitudes from the left and the right are 𝐴𝐴L and 𝐵𝐵R, respectively. The outgoing 
amplitudes to the left and the right are 𝐵𝐵L and 𝐴𝐴R, respectively. 

 

Consider a structured optical cavity comprising two coupled subcavities that contain gain 
and loss sections, as shown schematically in Supplementary Figure 1. The mirrors used are 
assumed lossless but are not necessarily symmetric, so that they may be represented in general by 
a scattering matrix of the form [3] 

𝑆𝑆 = 𝑒𝑒𝑖𝑖𝑖𝑖 � 𝑡𝑡 −𝑟𝑟𝑒𝑒𝑖𝑖(𝑖𝑖−𝛼𝛼)

𝑟𝑟𝑒𝑒−𝑖𝑖(𝑖𝑖−𝛼𝛼) 𝑡𝑡
�.      (1) 

Here 𝑡𝑡 and 𝑟𝑟 are the (real) transmission and reflection coefficients, respectively, 𝑡𝑡2 + 𝑟𝑟2 = 1, 𝛽𝛽 
and 𝛼𝛼 are the transmission and reflection phases for incidence from the left, respectively, and 𝛽𝛽 
and 2𝛽𝛽 − 𝛼𝛼 are the transmission and reflection phases for incidence from the right, respectively. 
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The scattering matrices act on incoming fields �𝐴𝐴L𝐵𝐵R
� to produce the outgoing fields �𝐴𝐴R𝐵𝐵L

�. The 

reflection and transmission coefficients for the optical power are 𝑅𝑅 = 𝑟𝑟2 and 𝑇𝑇 = 𝑡𝑡2, respectively. 
To satisfy the PT-symmetry condition, M1 and M3 must have mirror-symmetry with respect to the 
centre of the structure. If we take M1 to be represented by the 𝑆𝑆-matrix in Eq. S1.1, then this 
symmetry requirement dictates that the 𝑆𝑆-matrix for M3 has the form: 

𝑆𝑆 = 𝑒𝑒𝑖𝑖𝑖𝑖 � 𝑡𝑡 𝑟𝑟𝑒𝑒−𝑖𝑖(𝑖𝑖−𝛼𝛼)

−𝑟𝑟𝑒𝑒𝑖𝑖(𝑖𝑖−𝛼𝛼) 𝑡𝑡
�.      (2) 

Furthermore, the mirror M2 must be symmetric, which adds the constraint to its 𝑆𝑆-matrix that 𝛽𝛽 =
𝛼𝛼 − 𝜋𝜋/2, such that its S-matrix has the simple form: 

𝑆𝑆 = 𝑒𝑒𝑖𝑖𝑖𝑖 � 𝑡𝑡 𝑖𝑖𝑟𝑟
𝑖𝑖𝑟𝑟 𝑡𝑡 �.        (3) 

Exploiting the above-described scattering matrices, we obtain the corresponding transfer 

matrices that act on the forward and backward fields �𝐴𝐴R𝐵𝐵R
� on the right to produce the 

corresponding fields �𝐴𝐴L𝐵𝐵L
� on the left. The transfer matrices 𝑀𝑀1, 𝑀𝑀2, and 𝑀𝑀3 representing the 

mirrors are given by 

𝑀𝑀1 = 1
𝑡𝑡
� 𝑒𝑒−𝑖𝑖𝑖𝑖 𝑟𝑟𝑒𝑒𝑖𝑖(𝑖𝑖−𝛼𝛼)

𝑟𝑟𝑒𝑒−𝑖𝑖(𝑖𝑖−𝛼𝛼) 𝑒𝑒𝑖𝑖𝑖𝑖
�,      (4) 

𝑀𝑀2 = 1
𝑡𝑡2
�𝑒𝑒

−𝑖𝑖𝑖𝑖2 −𝑖𝑖𝑟𝑟2
𝑖𝑖𝑟𝑟2 𝑒𝑒𝑖𝑖𝑖𝑖2

�,       (5) 

𝑀𝑀3 = 1
𝑡𝑡
� 𝑒𝑒−𝑖𝑖𝑖𝑖 −𝑟𝑟𝑒𝑒−𝑖𝑖(𝑖𝑖−𝛼𝛼)

−𝑟𝑟𝑒𝑒𝑖𝑖(𝑖𝑖−𝛼𝛼) 𝑒𝑒𝑖𝑖𝑖𝑖
�.      (6) 

The parameters in these transfer matrices are not subject to statistical fluctuations, except perhaps 
the phases if the mirrors are implemented by extended fibre Bragg gratings (FBGs). 

The transfer matrices for the intervening gain and loss layers are given by 

𝑀𝑀G = �
1
√𝐺𝐺
𝑒𝑒−𝑖𝑖𝜑𝜑g 0

0 √𝐺𝐺𝑒𝑒𝑖𝑖𝜑𝜑g
�,       (7) 

𝑀𝑀ℒ = �
1
√ℒ
𝑒𝑒−𝑖𝑖𝜑𝜑ℓ 0

0 √ℒ𝑒𝑒𝑖𝑖𝜑𝜑ℓ
�,        (8) 

where 𝐺𝐺 and ℒ are single-pass amplification and attenuation factors for the power traversing the 
gain and loss layers, respectively, and 𝜑𝜑g and 𝜑𝜑ℓ are the single-pass propagation phases in the gain 
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or loss layers, respectively. In the exact PT-symmetric configuration, 𝐺𝐺ℒ = 1 and 𝜑𝜑g = 𝜑𝜑ℓ. 
However, statistical fluctuations in a macroscopic cavity precludes the realization of the latter 
condition. 

The total transfer matrix for the whole cavity is thus 

𝑀𝑀 = 𝑀𝑀1 𝑀𝑀G 𝑀𝑀2 𝑀𝑀ℒ  𝑀𝑀3 = �
𝑚𝑚11 𝑚𝑚12
𝑚𝑚21 𝑚𝑚22

�.     (9) 

The cavity transmission, which shares the same poles as the field transmission coefficient, is 𝑇𝑇L =
1 |𝑚𝑚11|2⁄ = 1 𝑀𝑀11⁄ , where 

𝑀𝑀11 = 1
(1−𝑅𝑅)2(1−𝑅𝑅2)

� 1
𝐺𝐺ℒ

+ 𝐺𝐺
ℒ
𝑅𝑅𝑅𝑅2 + ℒ

𝐺𝐺
𝑅𝑅𝑅𝑅2 + 𝐺𝐺ℒ𝑅𝑅2 + 2�𝑅𝑅𝑅𝑅2 �

1
ℒ

+ ℒ𝑅𝑅� cos𝜑𝜑G + 2�𝑅𝑅𝑅𝑅2 �
1
𝐺𝐺

+

𝐺𝐺𝑅𝑅� cos𝜑𝜑ℒ + 2𝑅𝑅[cos(𝜑𝜑G + 𝜑𝜑ℒ) +𝑅𝑅2 cos(𝜑𝜑G − 𝜑𝜑ℒ)]�.   (10) 

Therefore the cavity transmission is determined by the mirror reflectivities 𝑅𝑅 and 𝑅𝑅2 and the gain 
𝐺𝐺 and the loss ℒ, and (3) two phases 𝜑𝜑G and 𝜑𝜑ℒ: 

𝜑𝜑G = 2𝜑𝜑g + 2𝛽𝛽 − 𝛼𝛼 + 𝛽𝛽2 + 𝜋𝜋 2⁄ ,      (11) 

𝜑𝜑ℒ = 2𝜑𝜑ℓ + 2𝛽𝛽 − 𝛼𝛼 + 𝛽𝛽2 + 𝜋𝜋 2⁄ .      (12) 

 

Lasing thresholds 

Since the cavity length 𝐿𝐿cavity is very large with respect to the optical wavelength 𝜆𝜆, 𝐿𝐿cavity ≫ 𝜆𝜆, 
the single-pass phases may not be deterministic due to minute thermal or mechanical fluctuations 
in the optical fibres used. We thus assume that the cavity single-pass phases are random each with 
a uniform probability distribution in the interval from 0 to 2𝜋𝜋. Consequently, lasing may occur at 
any wavelength within the gain and loss bandwidth. To obtain the lasing threshold, we hold fixed 
the physical parameters related to the optical loss and mirror reflectivities, while varying the gain. 
After obtaining the lasing gain threshold, we can find the special case for the PT-symmetric 
configuration by choosing the attenuation to satisfy 𝐺𝐺ℒ = 1. 

At any value of gain, lasing is initiated whenever the cavity phases produce a zero in 𝑀𝑀11 
(a transmission pole). We therefore minimize 𝑀𝑀11 with respect to the phases, and then extract the 
zeros to find the gain corresponding to the lasing threshold. We thus first set 𝜕𝜕𝑀𝑀11

𝜕𝜕𝜑𝜑G
= 𝜕𝜕𝑀𝑀11

𝜕𝜕𝜑𝜑ℒ
= 0, 

from which we find a minimal value of 𝑀𝑀11 when 𝜑𝜑G = 0 and  𝜑𝜑ℒ = 𝜋𝜋, 

𝑀𝑀11|min = 𝑀𝑀11�𝜑𝜑G = 0,  𝜑𝜑ℒ = 𝜋𝜋� = 1
𝑇𝑇2𝑇𝑇2

1
𝐺𝐺ℒ
�𝐺𝐺�ℒ𝑅𝑅 + �𝑅𝑅𝑅𝑅2� − �1 + ℒ�𝑅𝑅𝑅𝑅2��

2
.              (13) 
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From this minimal value of 𝑀𝑀11, we obtain the zero at a threshold gain 𝐺𝐺th given by  

𝐺𝐺th = 1
√𝑅𝑅

1+ℒ�𝑅𝑅𝑅𝑅2
ℒ√𝑅𝑅+�𝑅𝑅2

.        (14) 

This general expression for the gain threshold is the minimum required gain for lasing to occur, 
while all other parameters are fixed except for the phases that are assumed to vary randomly. 

We can now obtain expressions for the gain threshold when special structures are of 
interest. First, for a pseudo-PT-symmetric structure with 𝐺𝐺ℒ = 1, the following threshold holds 
for lasing: 

𝐺𝐺PT = 1−𝑅𝑅
2�𝑅𝑅𝑅𝑅2

+ �1 + � 1−𝑅𝑅
2�𝑅𝑅𝑅𝑅2

�
2
,      (15) 

which was used in the main text (Eq. 1). Second, when we eliminate the attenuation in the loss 
subcavity ℒ = 1, the gain threshold 𝐺𝐺0 has the form 

𝐺𝐺0 = 1
√𝑅𝑅

1+�𝑅𝑅𝑅𝑅2
√𝑅𝑅+�𝑅𝑅2

.        (16) 

Finally, when the lossy subcavity is altogether open, corresponding to ℒ = 0, the gain threshold 
𝐺𝐺open has the usual form 

𝐺𝐺open = 1
�𝑅𝑅𝑅𝑅2

.         (17) 
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Supplementary Note 2. Non-Hermitian temporal coupled-mode equations 

We now introduce the temporal coupled-mode equations used as a basis for the analysis presented 
in the main text. We consider an optical-fibre-based laser cavity, comprising two coupled sub-
cavities (one including net gain and the other net loss) of length 𝐿𝐿 each and group velocity 𝑣𝑣𝑔𝑔. We 
introduce time-dependent quantities to characterize the sub-cavities: a linear background loss per 
second 𝛾𝛾1 for the field in the gain sub-cavity (which only depends on the side mirror M1 of 
reflectivity 𝑅𝑅) and a corresponding quantity 𝛾𝛾2 for the loss sub-cavity (which depends on the side 
mirror M3 of reflectivity 𝑅𝑅 in addition to the imposed attenuation). Furthermore, we define a 
temporal small-signal gain 𝑔𝑔 for the gain sub-cavity, which is dictated by the SOA amplification. 
These temporal losses and the small-signal gain are given by 

𝛾𝛾1 = 𝑣𝑣𝑔𝑔
2𝐿𝐿

 ln � 1
√𝑅𝑅
�,        (18) 

𝛾𝛾2 = 𝑣𝑣𝑔𝑔
2𝐿𝐿
�ln � 1

Γ√𝑅𝑅
��,        (19) 

𝑔𝑔 = 𝑣𝑣𝑔𝑔
2𝐿𝐿

 ln(𝐺𝐺),         (20) 

where 𝐺𝐺 and Γ are the single-pass intensity amplification and attenuation factors that are set by the 
SOA and the VOA, respectively.   

Based on these considerations, we define two temporal coupled-mode equations for the 
mean-field amplitudes 𝑎𝑎� and 𝑏𝑏� in the amplifying and attenuating fibre sub-cavities, respectively, 
which adequately capture all the essential features of the optical field dynamics in the coupled 
fibre-cavity system: 

𝑑𝑑𝑎𝑎�
𝑑𝑑𝑡𝑡

= −𝛾𝛾1𝑎𝑎� + 𝑖𝑖 Δ
2
𝑎𝑎� + � 𝑔𝑔

1+|𝑎𝑎�|2/𝐼𝐼𝑠𝑠
� 𝑎𝑎� + 𝑖𝑖𝑖𝑖𝑏𝑏�,     (21) 

𝑑𝑑𝑏𝑏�

𝑑𝑑𝑡𝑡
= −𝛾𝛾2𝑏𝑏� − 𝑖𝑖 Δ

2
𝑏𝑏� + 𝑖𝑖𝑖𝑖𝑎𝑎�.       (22) 

We have introduced into this model the nonlinear gain-saturation, the loss mechanisms, and the 
coupling between the sub-cavities, where 𝐼𝐼𝑠𝑠 is the gain-saturation intensity and Δ is used to 
phenomenologically introduce detuning between the resonances of the sub-cavities. For simplicity, 
we normalize the field amplitudes with respect to the saturation value by introducing the scaled 
amplitudes �𝑎𝑎�, 𝑏𝑏�� = �𝐼𝐼𝑠𝑠(𝑎𝑎, 𝑏𝑏), whereupon we obtain the coupled-mode equations: 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑡𝑡

= −𝛾𝛾1𝑎𝑎 + 𝑖𝑖 Δ
2
𝑎𝑎 + � 𝑔𝑔

1+|𝑎𝑎|2� 𝑎𝑎 + 𝑖𝑖𝑖𝑖𝑏𝑏,     (23) 

𝑑𝑑𝑏𝑏
𝑑𝑑𝑡𝑡

= −𝛾𝛾2𝑏𝑏 − 𝑖𝑖 Δ
2
𝑏𝑏 + 𝑖𝑖𝑖𝑖𝑎𝑎.       (24) 
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Supplementary Note 3. Extended Lamb model for coupled cavities 

In traditional configurations of coupled cavities, such as evanescently coupled micro-ring 
resonators [4], one considers time-averaged energy amplitudes in each cavity. The temporal 
coupling between the cavities is dependent on the effective interaction region between them. In 
our setup for coupled fibre cavities, their interaction is mediated by the middle mirror M2, which 
is a lumped element (Fig. 1 and Supplementary Fig. 2). The usual approach of extracting a 
distributed effective coupling is thus no longer valid. A more pertinent method was employed by 
W. E. Lamb [5,6] in treating coupled-laser configurations, in which the central mirror coupling 
two sub-cavities (Supplementary Fig. 2a) was modelled as a bump of width 𝑤𝑤 in the permittivity 
distribution in space along the cavity axis 𝑧𝑧 (Fig. S2b). The permittivity of the so-called bump is 
defined as: 

𝜀𝜀(𝑧𝑧) = 𝜀𝜀0�𝑛𝑛02 + 𝜌𝜌 𝛿𝛿(𝑧𝑧)�,       (25) 

where 𝑛𝑛0 is the refractive index of the background medium. Lamb’s well-known model thus 
connects the sought-after coupling coefficient 𝑖𝑖 (Eqs. 2-3 in the main text and Supplementary Note 
2 and Supplementary Notes 4-6 below) to the bump parameter 𝜌𝜌: 

𝑖𝑖 = 𝑣𝑣𝑔𝑔
𝑘𝑘𝑘𝑘𝐿𝐿

,         (26) 

according to Eq. 18 of reference [4]; here 𝐿𝐿 is the length of a single sub-cavity, 𝑘𝑘 = 𝑛𝑛0 2𝜋𝜋 𝜆𝜆⁄ , and 
𝑣𝑣g is the group velocity of light in the fibres. 

 

 

Supplementary Figure 2 | Extended Lamb model to extract the coupling coefficient. a, Cavity used in 
the Lamb model in which a discontinuity (a permittivity “bump”) is introduced in a laser cavity. b, Model 
for the permittivity bump of width 𝑤𝑤. The bump permittivity is represented by 𝜌𝜌 as of the Supplementary 
Equation (25). c, The PT-symmetric laser configuration used in our experiments. The middle FBG M2 
corresponds to the permittivity bump in Lamb’s model. 
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In our experiment, the bump represents the mirror M2 of reflectivity 𝑅𝑅2. By establishing a 
relationship between the bump parameter 𝜌𝜌 and the reflectivity 𝑅𝑅2, we can then express 𝑖𝑖 in terms 
of 𝑅𝑅2. This connection enables us to simulate the dynamics of our structure via coupled-mode 
theory after employing the proper coupling coefficient. 

According to the Supplementary Fig. 2b, the discontinuity in the refractive index (𝑛𝑛 =
�𝜌𝜌/𝑤𝑤) results in Fresnel reflection at each interface, 𝑅𝑅int: 

𝑅𝑅int = �𝑛𝑛−𝑛𝑛0
𝑛𝑛+𝑛𝑛0

�
2

= ��𝑘𝑘/𝑤𝑤−𝑛𝑛0
�𝑘𝑘/𝑤𝑤+𝑛𝑛0

�
2
≅ 1 − 4𝑛𝑛0�𝑤𝑤/𝜌𝜌,    (27) 

Here the subscript ‘int’ indicates interface and the approximation makes use of the fact that 𝑛𝑛 =
�𝜌𝜌/𝑤𝑤 grows in the limit 𝑤𝑤 → 0. The two interfaces of the bump define a Fabry-Pérot resonator 
with a reflection of 𝑅𝑅tot (Supplementary Fig. 2b):  

𝑅𝑅tot = 1 − 1

1+�
2�𝑅𝑅int
1−𝑅𝑅int

sin�2𝜋𝜋𝜆𝜆 𝑛𝑛𝑤𝑤��
2,      (28) 

Taking the limit 𝑤𝑤 → 0 leads to the approximation sin(𝜋𝜋𝑛𝑛𝑤𝑤/𝜆𝜆) = sin(𝜋𝜋�𝜌𝜌𝑤𝑤/𝜆𝜆) ≅ 𝜋𝜋�𝜌𝜌𝑤𝑤/𝜆𝜆, 
and substituting 𝑅𝑅int from Supplementary Equation 21 into Supplementary Equation 24, so that 
the total reflection of the bump is: 

𝑅𝑅tot ≅
1

1+�𝑛𝑛0𝜆𝜆𝜋𝜋𝜋𝜋 �
2.        (29) 

We associate the reflectivity of the mirror 𝑅𝑅2 with that of the bump-based model 𝑅𝑅tot, 𝑅𝑅tot → 𝑅𝑅2. 
Therefore 𝜌𝜌 can now be expressed in terms of 𝑅𝑅2, 

𝜌𝜌 = 𝑛𝑛0𝜆𝜆
𝜋𝜋 � 𝑅𝑅2

1−𝑅𝑅2
.        (30) 

According to Lamb’s model the coupling rate is related to 𝜌𝜌 (and thus to 𝑅𝑅2) via 

𝑖𝑖 = 𝑣𝑣𝑔𝑔
𝑘𝑘𝑘𝑘𝐿𝐿

= 𝑣𝑣𝑔𝑔
2𝑛𝑛02𝐿𝐿

�1−𝑅𝑅2
𝑅𝑅2

,       (31) 

Coupled-mode theory simulations that make use of 𝑖𝑖 defined in this last expression do not 
quite agree with our measurements. The reason is that the Lamb model assumes that the out-
coupling windows M1 and M3 are perfect, which is not the case in our configuration. In another 
seminal paper, W. E. Lamb considered the case of partially transmitting windows that radiate into 
free space [6]. The analysis revealed that for windows with a high enough reflectivity (as is the 
case in our experiment), only a small leakage and a change in the cavity free-spectral-range (FSR) 
are effectively introduced – whereas the modal profiles are left unchanged. The change in the FSR 
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means that the effective length of the cavity is now dependent upon the out-coupling mirror 
reflectivity. We model this effect in the expression for the coupling between the two sub-cavities 
of the PT-laser as follows: 

𝑖𝑖 = 𝑣𝑣𝑔𝑔
2𝑛𝑛02𝐿𝐿

(1 − 𝑅𝑅)�1−𝑅𝑅2
𝑅𝑅2

.       (32) 

This is the definition of 𝑖𝑖 used in our coupled-mode theory simulations throughout. The value of 
𝑖𝑖 obtained as such, when used to find the lasing threshold 𝑔𝑔th based on Equations (2-3) of the 
main text, agrees well with the threshold found based on a transfer matrix analysis as provided in 
section Supplementary Note 1. When one considers the scenario of 𝐺𝐺Γ = 1, 𝛾𝛾2 is always greater 
than 𝑔𝑔, in fact 𝛾𝛾2 = 𝛾𝛾1 + 𝑔𝑔 – see Supplementary Equations 19 and 20. Now the condition for lasing 
in an unbroken mode is given by, 𝑔𝑔 > (𝛾𝛾1 + 𝛾𝛾2) which can never be achieved (consider the 
imaginary part of Supplementary Equation 59). However, the lasing threshold in the broken mode 
might be surpassed. In this case when one enters the broken symmetry regime where the square 
root in Supplementary Equation 59 turns complex, the threshold can be obtained from the 

requirement: 𝛾𝛾1 − 𝑖𝑖��𝑔𝑔
𝜅𝜅
�
2
− 1 < 0. This then leads to, 

𝑔𝑔th = �𝛾𝛾12 + 𝑖𝑖2.        (33) 

Translating this into a single-pass gain value using Eq. S2.3, one obtains, 

𝐺𝐺th = exp���ln � 1
√𝑅𝑅
��
2

+ �(1−𝑅𝑅)
𝑛𝑛02

�1−𝑅𝑅2
𝑅𝑅2

�
2

�.     (34) 

The value of this threshold is compared to 𝐺𝐺𝑃𝑃𝑇𝑇 (according to Supplementary Equation 11) for 
various values of 𝑅𝑅2 in the figure below. A good agreement between the two is apparent. 
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Figure S3 | Comparison of the lasing thresholds for the two presented models. PT-symmetric lasing 
lasing thresholds are obtained from the transfer matrix method and the extended Lamb model, and are 
plotted as a function of 𝑅𝑅2 with both out-coupling mirror reflectivities assumed to be 𝑅𝑅 = 80%. 
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Supplementary Note 4. Temporal coupled-mode solutions in absence of 
detuning 

We first obtain solutions to the coupled-mode equations (Supplementary Equations 23-24) in 
absence of detuning, Δ = 0 to obtain the coupled-mode equations: 
𝑑𝑑𝑎𝑎
𝑑𝑑𝑡𝑡

= −𝛾𝛾1𝑎𝑎 + � 𝑔𝑔
1+|𝑎𝑎|2� 𝑎𝑎 + 𝑖𝑖𝑖𝑖𝑏𝑏,      (35) 

𝑑𝑑𝑏𝑏
𝑑𝑑𝑡𝑡

= −𝛾𝛾2𝑏𝑏 + 𝑖𝑖𝑖𝑖𝑎𝑎.        (36) 

We seek a harmonic solution of the form �
𝑎𝑎(𝑡𝑡)
𝑏𝑏(𝑡𝑡)� = �

𝑎𝑎0
𝑏𝑏0� 𝑒𝑒

𝑖𝑖𝜆𝜆𝑡𝑡 , where 𝜆𝜆 is real and �
𝑎𝑎0
𝑏𝑏0� is a constant 

vector. When |𝑎𝑎0| = |𝑏𝑏0|, we have a so-called unbroken PT-symmetric phase, otherwise, when 
|𝑎𝑎0| ≠ |𝑏𝑏0| we obtain a broken phase. By substituting this solution into Supplementary Equations 
35-36 we obtain 

𝑖𝑖𝜆𝜆 + 𝛾𝛾1 − 𝑔𝑔𝑠𝑠 = 𝑖𝑖𝑖𝑖 𝑏𝑏0
𝑎𝑎0

,        (37) 

𝑖𝑖𝜆𝜆 + 𝛾𝛾2 = 𝑖𝑖𝑖𝑖 𝑎𝑎0
𝑏𝑏0

,        (38) 

where, as before, 𝑔𝑔s = 𝑔𝑔
1+|𝑎𝑎0|2 for the saturated gain, and we assume that |𝑎𝑎0|, |𝑏𝑏0| ≠ 0. 

Multiplying Supplementary Equations 37 and Supplementary Equations 37, we obtain a quadratic 
equation in 𝜆𝜆, 

𝜆𝜆2 − 𝑖𝑖(𝛾𝛾1 + 𝛾𝛾2 − 𝑔𝑔s)𝜆𝜆 − 𝑖𝑖2 − 𝛾𝛾2(𝛾𝛾1 − 𝑔𝑔s) = 0.    (39) 

This quadratic equation has a real solution for 𝜆𝜆 only when 𝛾𝛾1 + 𝛾𝛾2 = 𝑔𝑔s, whereupon 

|𝑎𝑎0|2 = 𝑔𝑔
𝛾𝛾1+𝛾𝛾2

− 1,        (40) 

and the solutions for 𝜆𝜆 take the simple form: 

𝜆𝜆2 = 𝑖𝑖2 − 𝛾𝛾22 → 𝜆𝜆1,2 =  ±𝑖𝑖�1 − �𝛾𝛾2
𝜅𝜅
�
2
,     (41) 

which applies when 𝛾𝛾2 ≤ 𝑖𝑖. By defining 𝛾𝛾2 = 𝑖𝑖 sin𝜃𝜃, we obtain a concise expression for the 
eigenvalues: 𝜆𝜆1,2 = ±𝑖𝑖 cos 𝜃𝜃. 

To obtain the complex ratio between 𝑏𝑏0 and 𝑎𝑎0, we define 𝑏𝑏0 = 𝑎𝑎0𝛼𝛼𝑒𝑒𝑖𝑖𝑖𝑖 and subtract 
Supplementary Equation 38 from Supplementary Equation 37, 

−2𝛾𝛾2 = 𝑖𝑖𝑖𝑖 �𝛼𝛼𝑒𝑒𝑖𝑖𝑖𝑖 − 1
𝛼𝛼𝑒𝑒𝑖𝑖𝑖𝑖

�,       (42) 

which leads to 

2𝑖𝑖 sin𝜃𝜃 = 𝛼𝛼 cos𝜙𝜙 + 𝑖𝑖𝛼𝛼 sin𝜙𝜙 − 1
𝛼𝛼

cos𝜙𝜙 + 𝑖𝑖 1
𝛼𝛼

sin𝜙𝜙.    (43) 
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Comparing the real parts of Supplementary Equation 43 yields 

𝛼𝛼 cos𝜙𝜙 = 1
𝛼𝛼

cos𝜙𝜙  →   𝛼𝛼 = ±1.      (44) 

Now, comparing the imaginary parts of Eq. Supplementary Equation 43 we have 

2 sin𝜃𝜃 =𝛼𝛼 sin𝜙𝜙 + 1
𝛼𝛼

sin𝜙𝜙.       (45) 

We now have a pair of conditions 𝛼𝛼 = 1 → 𝜙𝜙 = 𝜃𝜃 and 𝛼𝛼 = −1 → 𝜙𝜙 = −𝜃𝜃. Hence, the steady-
state solution is given by 

�𝑎𝑎𝑏𝑏� = �
𝑔𝑔

𝛾𝛾1+𝛾𝛾2
− 1 � 1

±𝑒𝑒±𝑖𝑖𝑖𝑖�  𝑒𝑒±𝑖𝑖(𝜅𝜅 cos𝑖𝑖)𝑡𝑡,     (46) 

where 𝜃𝜃 is obtained from sin  𝜃𝜃 = 𝛾𝛾2/𝑖𝑖. We therefore obtain a pure unbroken PT-symmetric phase 
when there is no detuning, that is valid when 𝛾𝛾2 ≤ 𝑖𝑖 and 𝑔𝑔 > 𝛾𝛾1 + 𝛾𝛾2. The latter restriction is 
inferred from Supplementary Equation 40. On the other hand, if 𝛾𝛾2 > 𝑖𝑖, we have stationary steady-
state solutions 𝜆𝜆 = 0 in Supplementary Equation 37-38, 

0 = −𝛾𝛾1 + 𝑔𝑔
1+|𝑎𝑎0|2 + 𝑖𝑖𝑖𝑖 𝑏𝑏0

𝑎𝑎0
,       (47) 

0 = −𝛾𝛾2 + 𝑖𝑖𝑖𝑖 𝑎𝑎0
𝑏𝑏0

.        (48) 

Supplementary Equation 48 implies that 𝑏𝑏0 = 𝑖𝑖 𝜅𝜅
𝛾𝛾2
𝑎𝑎0, which we substitute in Supplementary 

Equation 47 to obtain 

|𝑎𝑎0|2 = 𝑔𝑔
𝛾𝛾1+𝜅𝜅2/𝛾𝛾2

− 1.        (49) 

The solution within this regime is thus given by, 

�𝑎𝑎𝑏𝑏� = �
𝑔𝑔

𝛾𝛾1+𝜅𝜅2/𝛾𝛾2
− 1 � 1

𝑖𝑖𝑖𝑖/𝛾𝛾2 �,      (50) 

which corresponds to a PT-symmetry-broken phase solution that is valid when 𝛾𝛾2 > 𝑖𝑖 and 𝑔𝑔 >
𝛾𝛾1 + 𝑖𝑖2/𝛾𝛾2. The last condition is a consequence of having a positive absolute value |𝑎𝑎0|2 in 
Supplementary Equation 49.  

 In summary, steady-state solutions of the coupled-mode equations Supplementary 
Equation 35-36 have been found in two different regimes: 

(I) Unbroken: when 𝑔𝑔 > 𝛾𝛾1 + 𝛾𝛾2 and ≥ 𝛾𝛾2 → �𝑎𝑎𝑏𝑏� = �
𝑔𝑔

𝛾𝛾1+𝛾𝛾2
− 1 � 1

±𝑒𝑒±𝑖𝑖𝑖𝑖�  𝑒𝑒±𝑖𝑖(𝜅𝜅 cos𝑖𝑖)𝑡𝑡; 

(II) Broken: when 𝑔𝑔 > 𝛾𝛾1 + 𝑖𝑖2/𝛾𝛾2 and < 𝛾𝛾2 → �𝑎𝑎𝑏𝑏� = �
𝑔𝑔

𝛾𝛾1+𝜅𝜅2/𝛾𝛾2
− 1 � 1

𝑖𝑖𝑖𝑖/𝛾𝛾2 �. 
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Supplementary Note 5. Proof for the absence of a pure unbroken-symmetry 
mode in presence of detuning 

In the presence of detuning Δ ≠ 0, it can be shown that a formal unbroken PT-symmetric phase 
(that is, one with equal intensities of harmonic fields at the two output ports |𝑎𝑎0| = |𝑏𝑏0|) cannot 
be realized. This fact can be deduced from Supplementary Equation 23-24 where a harmonic 

solution �𝑎𝑎𝑏𝑏� = �
𝑎𝑎0
𝑏𝑏0� 𝑒𝑒

𝑖𝑖𝜆𝜆𝑡𝑡 with 𝜆𝜆 ∈ 𝐑𝐑 results in the following equations: 

𝜆𝜆 = 𝑖𝑖𝛾𝛾1 + Δ
2
− 𝑖𝑖𝑔𝑔s + 𝑖𝑖 𝑏𝑏0

𝑎𝑎0
 ,       (51) 

𝜆𝜆 = 𝑖𝑖𝛾𝛾2 −
Δ
2

+ 𝑖𝑖 𝑎𝑎0
𝑏𝑏0

 ,        (52) 

where 𝑔𝑔s = 𝑔𝑔/(1 + |𝑎𝑎0|2). From Supplementary Equation 52, we obtain the ratio between 𝑎𝑎0 and 
𝑏𝑏0, 

𝑏𝑏0 = 𝑖𝑖 𝜅𝜅
𝛾𝛾2+𝑖𝑖𝑖𝑖

𝑎𝑎0,        (53) 

where 𝛿𝛿 = 𝜆𝜆 + Δ
2
. Substituting in Supplementary Equation 51, and assuming that 𝑎𝑎0 ≠ 0, we 

obtain 

�𝛾𝛾1 − 𝑔𝑔𝑠𝑠 + 𝜅𝜅2𝛾𝛾2
𝛾𝛾22+𝑖𝑖2

� + 𝑖𝑖 �𝛿𝛿 − Δ − 𝜅𝜅2𝑖𝑖
𝛾𝛾22+𝑖𝑖2

� = 0.     (54) 

The imaginary part of this equation implies that 

𝛾𝛾22+𝑖𝑖2

𝜅𝜅2
= 𝑖𝑖

𝑖𝑖−Δ
.         (55) 

Achieving the unbroken PT-symmetric phase requires |𝑏𝑏0| = |𝑎𝑎0|, which necessitates (via 
Supplementary Equation 53) that 

𝜅𝜅2

𝛾𝛾22+𝑖𝑖2
= 1   →      𝑖𝑖−Δ

𝑖𝑖
= 1       (56) 

Such a result is only possible in one of two scenarios: (1) Δ = 0, that is, no detuning; or (2) 𝛿𝛿 →
∞. Hence for a non-zero detuning, the exact unbroken PT phase in the two coupled sub-cavities 
never appears. 
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Supplementary Note 6. Linear analysis in the presence of detuning 

Before the onset of lasing in the coupled-cavity structure, a linear analysis of the field dynamics 
can be carried out because the intensities are small. Under these conditions, the dynamical 
equations can be cast in the form: 
𝑑𝑑𝑎𝑎
𝑑𝑑𝑡𝑡

= −𝛾𝛾1𝑎𝑎 + 𝑖𝑖 Δ
2
𝑎𝑎 + 𝑔𝑔𝑎𝑎 + 𝑖𝑖𝑖𝑖𝑏𝑏,      (57) 

𝑑𝑑𝑏𝑏
𝑑𝑑𝑡𝑡

= −𝛾𝛾2𝑏𝑏 − 𝑖𝑖 Δ
2
𝑏𝑏 + 𝑖𝑖𝑖𝑖𝑎𝑎.       (58) 

Detuning leads to an avoided eigenvalue-coalescence, as we proceed to show. First, we consider 

the harmonic ansatz �
𝑎𝑎(𝑡𝑡)
𝑏𝑏(𝑡𝑡)� = �

𝑎𝑎0
𝑏𝑏0� 𝑒𝑒

𝑖𝑖𝜆𝜆𝑡𝑡 in absence of detuning, i.e. Δ = 0, to obtain: 

𝜆𝜆1,2 = − 𝑖𝑖
2

(𝑔𝑔 − 𝛾𝛾1 − 𝛾𝛾2) ± 𝑖𝑖�1 − �𝑔𝑔−𝛾𝛾1+𝛾𝛾2
2𝜅𝜅

�
2
.    (59) 

whereupon a second order bifurcation takes place in the imaginary parts  of the eigenvalue 𝜆𝜆 at 
𝑔𝑔 = 2𝑖𝑖 + 𝛾𝛾1 − 𝛾𝛾2 by gradually increasing the gain from a small value. The system is said to enter 
a PT-symmetry broken regime when the amount of gain increases beyond this point. That is, the 
unbroken PT-symmetry regime occurs when 𝑔𝑔 < 𝛾𝛾1 − 𝛾𝛾2 + 2𝑖𝑖 (the eigenvalues have not 
undergone a bifurcation) and the broken PT-symmetry regime when 𝑔𝑔 > 𝛾𝛾1 − 𝛾𝛾2 + 2𝑖𝑖 (the 
eigenvalues have bifurcated). This transition point between broken and unbroken PT-symmetry 
regimes is better known as an exceptional point (EP) [7-9]. At this point, the two eigenvalues and 
associated eigenvectors (𝑎𝑎0, 𝑏𝑏0)T coalesce: 

𝜆𝜆1,2 = 𝑖𝑖(𝛾𝛾2 − 𝑖𝑖),     |1,2⟩ = �1
𝑖𝑖 �.      (60) 

In general, lasing occurs once the sign of the imaginary part of one of the eigenvalues 𝜆𝜆1,2 
becomes negative, Im{𝜆𝜆} < 0, per our harmonic ansatz. Because the imaginary parts of the 
eigenvalues drop monotonically with 𝑔𝑔 prior to the EP (Supplementary Equation 59), the 
expression for the eigenvalues at the EP (Supplementary Equation S60) dictates whether lasing is 
initiated in the unbroken or broken PT-symmetry regimes. If Im{𝜆𝜆} < 0 at the EP because 𝑖𝑖 > 𝛾𝛾2, 
this indicates that lasing has already started before the EP was reached. In other words, lasing 
initiates here in the unbroken PT-symmetry regime. On the other hand if Im{𝜆𝜆} > 0 at the EP 
because 𝑖𝑖 < 𝛾𝛾2, then lasing has not started when the EP is reached. Therefore, lasing initiates after 
the EP in the broken PT-symmetry regime. These two scenarios of lasing occurring in the unbroken 
and broken PT-symmetric phases are depicted in Supplementary Fig. 4. 

 This picture of pure unbroken- and broken-symmetry regimes is true only for a zero-
detuned system (Δ = 0). Once detuning is introduced (Δ ≠ 0), the eigenvalues do not coalesce, as 
shown in Supplementary Fig. 5. In other words, an exact EP does not occur. Nevertheless, two 
regimes are still identifiable, one in which the eigenvalues approach each other (unbroken PT-
symmetry) and the other where they diverge (broken PT-symmetry). In the presence of detuning 
Δ ≠ 0, the eigenvalues are 
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𝜆𝜆1,2 = − 𝑖𝑖
2

(𝑔𝑔 − 𝛾𝛾1 − 𝛾𝛾2) ± 𝑖𝑖�1 − �𝑔𝑔−𝛾𝛾1+𝛾𝛾2+𝑖𝑖Δ
2𝜅𝜅

�
2
.    (61) 

We can infer from the expression under the square root in Supplementary Equation 61 that 𝜆𝜆1 ≠
𝜆𝜆2 when Δ ≠ 0 because the parameters 𝑔𝑔, 𝛾𝛾, and 𝑖𝑖 are all real. Using 𝑔𝑔 − 𝛾𝛾1 + 𝛾𝛾2 + 𝑖𝑖Δ = 2𝑖𝑖 sin𝜃𝜃, 
where 𝜃𝜃 is now a complex angle, the eigenvectors associated with these eigenvalues are 

|1⟩ = � 1
𝑒𝑒𝑖𝑖𝑖𝑖� , |2⟩ = � 1

−𝑒𝑒−𝑖𝑖𝑖𝑖�.       (62) 

Note that the EP in the zero-detuning scenario corresponds to 𝜃𝜃 = 𝜋𝜋/2. 

 
Supplementary Figure 4 | Eigenvalue dynamics, EPs, and lasing in two coupled sub-cavities at zero-
detuning. a-d, Trajectories of the two eigenvalues 𝜆𝜆1 and 𝜆𝜆2 of the harmonic solutions to the temporal 
coupled-mode theory treatment in absence of detuning. The real parts are depicted in the top row and the 
imaginary parts in the bottom row. The light and dark backgrounds identify the unbroken (U) and broken 
(‘B’) PT-symmetric regimes, respectively. EP is depicted as a yellow triangle (where 𝑔𝑔 = 2𝑖𝑖 + 𝛾𝛾1 − 𝛾𝛾2) 
and the green circle indicates the point where lasing occurs. In all cases, we use the parameter values 𝛾𝛾1 =
1 and 𝑖𝑖 = 5. a-b, When the loss 𝛾𝛾2 = 3 is less than the coupling strength 𝑖𝑖, lasing occurs in the unbroken 
regime. c-d, When the loss 𝛾𝛾2 = 7 is larger than the coupling strength 𝑖𝑖, lasing is initiated in the broken 
regime instead.  
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Supplementary Figure 5 | Eigenvalue dynamics, EPs, and lasing in two coupled sub-cavities in 
presence of detuning. a-d, Trajectories of the two eigenvalues 𝜆𝜆1 and 𝜆𝜆2 of the harmonic solutions to the 
temporal coupled-mode theory treatment for ∆≠ 0. The real parts are depicted in (a) and (c) and the 
imaginary parts in (b) and (d). Dashed and solid curves correspond to the eigenvalues in absence and 
presence of detuning, respectively. The light and dark backgrounds identify the unbroken (U) and broken 
(B) PT-symmetric regimes, respectively. EP is depicted as a yellow circle and the green circle indicates the 
point where lasing occurs in the corresponding zero-detuning case In all cases, we use the parameter values 
𝛾𝛾1 = 1, 𝑖𝑖 = 5, and 𝐷𝐷 = 1. a-b, When the loss 𝛾𝛾2 = 3 is less than the coupling strength 𝑖𝑖, lasing occurs in 
the unbroken regime. c-d, When the loss 𝛾𝛾2 = 7 is larger than the coupling strength 𝑖𝑖, lasing is initiated in 
the broken regime instead. 

 

The real parts of the two eigenvalues are plotted in Supplementary Fig. 4 and 
Supplementary Fig. 5 against gain 𝑔𝑔 in the case where 𝛾𝛾2 is kept fixed at 𝛾𝛾2 = 3, the coupling is 
𝑖𝑖 = 5, and the loss is 𝛾𝛾1 = 1. The two eigenvalues are initially well apart – but with increasing 𝑔𝑔 
they gradually coalesce at the exceptional point (EP) where 𝑔𝑔 = 2𝑖𝑖 − 𝛾𝛾2 + 𝛾𝛾1. In contrast, the 
imaginary components of the eigenvalues stay together before the EP and only bifurcate 
afterwards. If we choose a value of 𝛾𝛾2 higher than 𝑖𝑖, 𝛾𝛾2 = 7, the location of the EP now shifts to 
the positive imaginary half. In Supplementary Fig. 4c, the initial separation between Re{𝜆𝜆} is now 
smaller whereas in Supplementary Fig. 4d, the final distance between Im{𝜆𝜆} is now much larger 
compared to the previous case. Indeed, Im{𝜆𝜆} crossing the zero value and switching sign (the green 
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circle) heralds the onset of lasing which takes place in the unbroken symmetry mode (U) in 
Supplementary Fig. 4a-b while in Supplementary Fig. 4c-d it instead occurs in the broken 
symmetry mode (B). 

Interestingly, the transition point between these behaviours is still the same value of gain 
as the EP, i.e. 𝑔𝑔 = 2𝑖𝑖 + 𝛾𝛾1 − 𝛾𝛾2, when detuning is introduced (Supplementary Fig. 5). We 
conclude that, even in the presence of detuning, lasing can be either initiated in an unbroken PT-
like mode if the loss in the attenuating component of the coupled cavity configuration is less than 
the effective coupling, i.e. 𝛾𝛾2 < 𝑖𝑖; or in an a broken PT-like mode for the case 𝛾𝛾2 > 𝑖𝑖. More 
importantly, the two PT-symmetric phases have a physical significance in the following sense: 
Unbroken symmetry implies that the fields in both components of the system behave in a similar 
fashion, i.e. with increasing gain (loss), |𝑎𝑎|2 and |𝑏𝑏|2 increase (decrease) in synchrony. However, 
in the broken symmetry domain, a disparity exists between the behaviours of the fields in the two 
components. Specifically, the ratio between the field intensity in the amplifying and lossy 
components |𝑎𝑎|2/|𝑏𝑏|2 starts to increase with gain. The bifurcation in the imaginary parts of the 
eigenvalues after the EP indicates this, as shown in Supplementary Fig. 5. 

The scope of the linear analysis presented in this section is not just limited to determining 
the lasing conditions, but also has important ramifications on the full nonlinear response of the 
system. The two distinct regimes of unbroken and broken PT-symmetry still manifest themselves 
in the presence of random frequency detuning and gain saturation. Remarkably, the transition 
between the two still arises at the point where the loss in the attenuating cavity equals the coupling 
strength 𝛾𝛾2 = 𝑖𝑖. This behaviour is depicted in Fig. 5 of the main text where instead of gain, the 
loss 𝛾𝛾2 is gradually increased from a low to a very high value including a passage through the point 
𝛾𝛾2 = 𝑖𝑖. In affirmation of this statement, the intensity emitted from the amplifying sub-cavity 
displays a dip at this point. 
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Supplementary Note 7. Probability distribution for detuning 

The term that describes the resonance detuning between the coupled subcavities (that is, Δ in 
Supplementary Equations 23-24) occurs because of random perturbations in the fibres that have 
their origin in thermal or mechanical fluctuations. Since the fibres are relatively long (> 6 m), 
length expansions or contractions can easily lead to changes in the path length on the order of a 
micrometre, which in turn can cause a phase accumulation of 2𝜋𝜋. This would result in a frequency 
detuning equivalent to half the free spectral range (𝜔𝜔FSR) of a single fibre subcavity, as shown in 
Fig. S6. 

 
Supplementary Figure 6 | Resonances of the sub-cavities in absence and presence of detuning. a, The 
resonances of the two sub-cavities are aligned identically in absence of detuning. The cavity free spectral 
range is 𝜔𝜔FSR. b, In presence of detuning Δ, the resonance frequencies of the two coupled sub-cavities do 
not align.  

In principle, Δ can span the entire range −𝜔𝜔FSR/2 ≤ Δ ≤ 𝜔𝜔FSR/2. Two possible 
probability distributions for Δ are the uniform (Fig. S7a) and Gaussian (Fig. S7b) distributions. 
Because the detuning-phase-accumulation spans the range (−∞,∞) in the Gaussian distribution, 
we fold the probability distribution function after each period of 𝜋𝜋 equivalent to 𝜔𝜔FSR/2.    

          

 

Supplementary Figure 7 | Probability distributions 𝑷𝑷(∆) for the detuning ∆ between the two 
coupled sub-cavities. a, A uniform probability distribution of width 𝜔𝜔FSR. b, A folded Gaussian 
probability distribution.  
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The Gaussian probability distribution function is 𝑃𝑃(Δ) = 1/�𝜎𝜎√2𝜋𝜋� exp(−Δ2 /2𝜎𝜎2), 
where the full width half maximum (FWHM) is given by 2𝜎𝜎√2 ln 2. To obtain solutions of the 
system of Equations (2-3) of the main text, we take an ensemble average of the steady state 
intensities over all the values of Δ, taking into account the relevant probability distribution, 

〈𝐼𝐼a,b
(ss)〉 = ∫ 𝐼𝐼a,b

(ss)(Δ)𝑃𝑃(Δ)𝑑𝑑Δ𝜔𝜔FSR 2⁄
−𝜔𝜔FSR 2⁄ ,      (63) 

In Supplementary Equation 63, 𝐼𝐼a,b
(ss)(Δ) is the steady-state (ss) intensity value obtained from a 

Runge-Kutta simulation for a given set of parameters (𝛾𝛾1, 𝛾𝛾2,𝑔𝑔, 𝑖𝑖,Δ), i.e. while Δ is considered 
deterministic. It is only after we obtain 𝐼𝐼a,b

(ss)(Δ) for all values of Δ, that the averaging is carried out 
according to Supplementary Equation 63. For computational convenience, this integral can also 
be approximated by a summation after considering a finite number of sampling points for Δ in the 
interval [−𝜔𝜔FSR/2,𝜔𝜔FSR/2]. Upon analyzing the numerical results and the experimental data, we 
found the Gaussian distribution to be a significantly better match when compared with the uniform 
distribution. Moreover, the standard deviation was also found to be small, i.e. 𝜎𝜎 ~ 0.1𝜔𝜔FSR. The 
main text shows results that correspond only to the Gaussian distribution, e.g. Fig. 5. A figure 
similar to that when one considers a uniform distribution for Δ, is shown in Supplementary Fig. 8. 
Qualitatively, the uniform distribution leads to a larger split in the gain and loss cavity intensities 
since the two cavities are in essence decoupled from each other most of the time. On the other 
hand, a phase transition around the exceptional point more clearly visible in the case of a narrow 
Gaussian distribution as shown in Fig. 5 of the main text. 

 

 
 

Supplementary Figure 8 | Output lasing powers assuming a uniform distribution for the detuning 
𝚫𝚫. a, Simulations for 𝐼𝐼Gain at different values of 𝐺𝐺 obtained from Equations 2-3 of the main text, based on 
a uniform probability distribution for Δ. b, Same as (a) but for power from the loss port 𝐼𝐼Loss.  
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