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Supplementary Note 1: Measurement setup

a b

Supplementary Figure 1. Measurement setup for the magnon-polariton system. (a) Schematic diagram of the
measurement setup with one feeding field. The microwave signal is injected into the cavity via port 1, reflected by the device,
and detected using a vector network analyzer (VNA) via a 20 dB directional coupler. (b) Schematic diagram of the measurement
setup with two feeding fields. The microwave signal generated by the VNA is divided into two copies and injected into the
cavity via ports 1 and 2. The outputs from both ports are sent back to the VNA via two 20 dB directional couplers to measure
the amplitude and phase responses of the device. In order to tune the power ratio and phase difference between the two feeding
fields for ports 1 and 2, a variable attenuator and a phase shifter are placed in path 1 and path 2, respectively.

The measurement setup for a two-port cavity with a small YIG sphere embedded is schematically shown in Sup-
plementary Figure 1. To evaluate the magnon-photon coupling strength and the damping rate of magnons, we first
place the YIG sphere at the displacement |x| = 11 mm and measure its reflection spectrum (see Fig. 1e in the main
text) with the measurement setup shown in Supplementary Figure 1a. Then, to observe polaritonic coherent perfect
absorption (CPA), two feeding fields are injected into the cavity via ports 1 and 2, and the outputs from both ports
are monitored (see Supplementary Figure 1b).

Supplementary Note 2: The Hamiltonian and spectra of the system

Effective non-Hermitian Hamiltonian of the system. According to the input-output theory1, the quantum
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Langevin equation for the annihilation operator a of a cavity mode is given, in the Markov approximation, by

ȧ (t) = −i [a (t) , Hs (t)]−

(
κint +

∑
i

κi

)
a (t) +

√
2κinta

(in)
int (t) +

∑
i

√
2κia

(in)
i (t) , (1)

with

a (t) = eiHtae−iHt, Hs (t) = eiHtHse
−iHt, (2)

where the total Hamiltonian H includes the Hamiltonian Hs of the considered system, the Hamiltonian of the external
field modes and the interaction Hamiltonian describing the couplings between them. In Supplementary Equation (1),
κint is the intrinsic loss rate of the cavity mode, κi (i = 1, 2) is the decay rate of the cavity mode due to the ith port,

and a
(in)
int (t) and a

(in)
i (t) are input fields related to the decay rates κint and κi. In our experiment, both κ1 and κ2 can

be tuned by adjusting the pin lengths of ports 1 and 2 inside the cavity. Similarly, a (t) can be related to the output

fields a
(out)
int (t) and a

(out)
i (t) as

ȧ (t) = −i [a (t) , Hs (t)] +

(
κint +

∑
i

κi

)
a (t)−

√
2κinta

(out)
int (t)−

∑
i

√
2κia

(out)
i (t) . (3)

Subtraction of Supplementary Equation (3) from Supplementary Equation (1) gives

√
2κint

[
a

(out)
int (t) + a

(in)
int (t)

]
+
∑
i

√
2κi

[
a

(out)
i (t) + a

(in)
i (t)

]
= 2

(
κint +

∑
i

κi

)
a (t) . (4)

Because the above equation is obeyed for arbitrary values of κint and κi, it follows that

a
(out)
int (t) + a

(in)
int (t) =

√
2κinta (t) , (5)

a
(out)
i (t) + a

(in)
i (t) =

√
2κia (t) (i = 1, 2) , (6)

which relate both input and output fields to the intra-cavity field.

Usually, there is no input field related to the intrinsic loss of the intra-cavity field. Thus, a
(in)
int (t) = 0, and

Supplementary Equation (1) is reduced to

ȧ (t) = −i [a (t) , Hs (t)]−

(
κint +

∑
i

κi

)
a (t) +

∑
i

√
2κia

(in)
i (t) . (7)

Here we consider the perfect field-feeding case in which the incident fields injected into the cavity via ports 1 and

2 have zero output, i.e., a
(out)
1 (t) = 0 and a

(out)
2 (t) = 0. Then, from Supplementary Equation (6), it follows that

a
(in)
1 (t) =

√
2κ1a (t) , a

(in)
2 (t) =

√
2κ2a (t) . (8)

Substituting Supplementary Equation (8) into Supplementary Equation (7), we obtain

ȧ (t) = −i [a (t) , Hs (t)] + (κ1 + κ2 − κint) a (t) . (9)

For low-lying excitations of spin waves, the Hamiltonian of the cavity-magnon system is given by2–4

Hs = ωca
†a+ ωmb

†b+ gm

(
ab† + a†b

)
, (10)

where ωm is the angular frequency of the magnon mode (here we only consider the Kittel mode) and gm is the coupling
strength between the photons in the cavity and the Kittel-mode magnons in the YIG sphere. From Supplementary
Equation (10), it can be derived that

[a,Hs] = ωca+ gmb. (11)

Substituting it into Supplementary Equation (9), we have

ȧ (t) = −iωca (t)− igmb (t) + (κ1 + κ2 − κint) a (t)

= −i [ωc + i (κ1 + κ2 − κint)] a (t)− igmb (t) .
(12)
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Similarly, according to the input-output theory, the quantum Langevin equation for the annihilation operator b of
a magnon mode is given, in the Markov approximation, by

ḃ (t) = −i [b (t) , Hs (t)]− γmb (t) +
√

2γmb
(in) (t)

= −iωmb (t)− igma (t)− γmb (t) +
√

2γmb
(in) (t) .

(13)

For the intrinsic damping rate γm of the magnon mode, there is no input field related to it, so b(in) (t) = 0. Thus,
Supplementary Equation (13) is reduced to

ḃ (t) = −i (ωm − iγm) b (t)− igma (t) . (14)

The equations of motion in Supplementary Equations (12) and (14) can be rewritten as

ȧ (t) = −i [a (t) , Heff] , ḃ (t) = −i [b (t) , Heff] , (15)

where

Heff = [ωc + i (κ1 + κ2 − κint)] a
†a+ (ωm − iγm) b†b+ gm

(
ab† + a†b

)
(16)

is the effective non-Hermitian Hamiltonian of the cavity-magnon system. Note that here we consider the perfect field-
feeding case, which corresponds to the coherent perfect absorption (CPA)5. Furthermore, ωm is tuned in resonance
with ωc (i.e., ωc = ωm = ω0) and also the relation κ1 + κ2 − κint = γm is satisfied by tuning the system parameters,
so the effective non-Hermitian Hamiltonian is reduced to

Heff = (ω0 + iγm) a†a+ (ω0 − iγm) b†b+ gm

(
ab† + a†b

)
. (17)

It can be found that the Hamiltonian in Supplementary Equation (17) satisfies [PT,Heff] = 0. Thus, the system is
effectively described by a non-Hermitian PT-symmetric Hamiltonian6,7. The corresponding eigenvalues can be solved
as

ω1,2 = ω0 ±
√
g2

m − γ2
m. (18)

In Supplementary Equation (18), the two eigenfrequencies ω1,2 are functions of ω0, γm and gm. To have a real
spectrum, it requires that gm > γm. For gm = γm in particular, ω1,2 coalesce to the central frequency ω0. However,
when gm < γm, ω1,2 become complex and the PT symmetry is spontaneously broken. The spontaneous PT-symmetric
breaking point at gm = γm is also referred to as the exceptional point.

Polaritonic CPA conditions. For the two-port cavity with a YIG sphere embedded, the transmission and
reflection coefficients can be derived as

S21 (ω) = S12 (ω) = −
2
√
κ1κ2

i (ω − ωc)− (κ1 + κ2 + κint) +
g2m

i(ω−ωm)−γm

, (19)

S11 (ω) = −1− 2κ1

i (ω − ωc)− (κ1 + κ2 + κint) +
g2m

i(ω−ωm)−γm

, (20)

S22 (ω) = −1− 2κ2

i (ω − ωc)− (κ1 + κ2 + κint) +
g2m

i(ω−ωm)−γm

. (21)

To achieve CPA in this cavity-magnon system, besides ωc = ωm = ω0 and κ1 + κ2 − κint = γm, there is also a
constraint on the two feeding fields. We assumed that the two feeding fields have phase difference ∆φ and power ratio
q. The outgoing fields of ports 1 and 2 can be written as

S−1 =
√
qe−j∆φS11 + S12, (22)

S−2 = S22 +
√
qe−j∆φS21. (23)

The CPA requires zero output of the two ports, i.e.,∣∣S−tot

∣∣2 =
∣∣S−1 ∣∣2 +

∣∣S−2 ∣∣2 = 0. (24)
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Combining ωc = ωm = ω0, κ1 + κ2 − κint = γm, and Supplementary Equations (19–24), we obtain ∆φ = 0 and

q = κ1/κ2. More explicitly, let us see the zeros of
∣∣S−tot

∣∣2 under these specific conditions. First, Supplementary
Equations (19–21) can be reduced to

S21 (ω) = S12 (ω) = −
2
√
κ1κ2

Q− 2κint + g2
m/Q

, (25)

S11 (ω) = −1− 2κ1

Q− 2κint + g2
m/Q

, (26)

S22 (ω) = −1− 2κ2

Q− 2κint + g2
m/Q

, (27)

where Q = i(ω − ω0)− γm. Then, Supplementary Equations (22) and (23) are rewritten as

S−1 =

√
q(|Q|2 − g2

m)

Q2 − 2Qκint + g2
m

, (28)

S−2 =
|Q|2 − g2

m

Q2 − 2Qκint + g2
m

. (29)

From Supplementary Equations (28) and (29), it can be verified that the two zeros of Supplementary Equation (24)
exactly correspond to ω1,2 in Supplementary Equation (18).

Supplementary Note 3: Cavity transmission modified by the YIG sphere
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Supplementary Figure 2. Central frequency and linewidth of the cavity mode. (a) Transmission spectrum |S21|2 of
the bare cavity. (b) Central frequency ωc (red open-circle curve) and linewidth κc (blue open-triangle curve) of the cavity mode
versus the displacement of the YIG sphere.

In the main text, we have discussed and measured the decay rates for the bare cavity (see Fig. 2a in the main text).
To perform the experiment of CPA, κ1/2π and κ2/2π are tuned to be 1.72 and 1.39 MHz, respectively, for bare cavity.
The transmission spectrum of the bare cavity is displayed in Supplementary Figure 2a, where ωc/2π = 10.0317 GHz
and κc/2π = 4.66 MHz. However, when the YIG sphere is inserted into the cavity, both the central frequency and the
total decay rate of the cavity mode are slightly changed for different displacements of the YIG sphere. To consider this
effect in the analyzes and simulations, the central frequency and the cavity-mode linewidth versus the displacement
of the YIG sphere are measured and plotted in Supplementary Figure 2b. It can be seen that ωc/2π varies in the
range of 10.0230–10.0242 GHz and κc/2π in the range of 4.66–4.72 MHz when the YIG sphere is placed in the cavity.

With the measured values of κ1/2π, κ2/2π and κc/2π, the intrinsic loss rate of the bare cavity is obtained as
κint/2π = 1.55 MHz. Note that the port-induced decay rates κ1 and κ2 remain nearly unchanged when the small
YIG sphere is embedded in the cavity, but the presence of the YIG sphere at different inner places of the cavity
modifies the intrinsic loss rate κint of the cavity. From the values of κ1/2π and κ2/2π as well as the values of κc/2π
given in Supplementary Figure 2b, we obtain that the intrinsic loss rate κint/2π of the cavity varies in the range of
1.55–1.61 MHz when the YIG sphere moves along the long edge of the cavity.
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