Valid gene expression normalization by RT-qPCR in studies on hPDL fibroblasts with focus on orthodontic tooth movement and periodontitis

Christian Kirschneck^{1,*}, Sarah Batschkus², Peter Proff¹, Josef Köstler³, Gerrit Spanier⁴, and Agnes Schröder¹

¹Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
 ²Department of Orthodontics, University of Goettingen, Goettingen, D-37075, Germany
 ³Institute of Microbiology and Hygiene, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
 ⁴Department of Cranial and Maxillo-Facial Surgery, University Medical Centre of Regensburg, Regensburg, Regensburg, D-93053, Germany
 *<u>christian.kirschneck@ukr.de;</u> Tel.: +49 941 944 6093; Fac.: +49 941 944 6169

Supplementary Information

Contents Page Supplementary Table 1 – MIQE checklist Supplementary Table 2 – RNA quantity and quality Supplementary Table 3 – Raw C_a values of RT-qPCR Supplementary Table 4 – Gene stability ranking for individual experimental groups Supplementary Table 5 – Marker genes, primers and amplicons used for hPDL characterization Supplementary Figure 1 – Characterisation of hPDL fibroblasts Supplementary Figure 2 – Uncropped original gel of RT-qPCR products (amplification specifity) Supplementary Data 1 – Splice variants and secondary structure analysis of amplicons and primers Supplementary Data 2 – RNA integrity Supplementary Data 3 – Amplification plot and Melting curve analysis (RT-gPCR)

Supplementary Data 4 – qPCR primer efficiency 92 Supplementary Data 5 – TUBB RT-qPCR, specifity and efficiency 101

3

10

11

12

13

14

15

16

60

Supplementary Table 1. MIQE checklist for authors, reviewers and editors. E = essential information; D = desirable information.

Item to check	Importance	Description how item was addressed in study / article
Experimental design		
Definition of experimental and control groups	E	Control group: untreated hPDL fibroblasts (physiological conditions); Experimental groups: hPDL fibroblasts treated with compressive orthodontic force (model for orthodontic tooth movement) or bacterial lysate of Aggregatibacter actinomycetemcomitans (Agac, model for bacterial periodontitis) for 24h. For details see materials and methods and Figure 5.
Number within each group	E	n = 6
Assay carried out by the core or investigator's laboratory?	D	All assays were carried out in investigators' laboratory.
Acknowledgment of authors' contributions	D	C.K. conceived the idea of the study/study design as well as designed/validated the used primer pairs. S.B., P.P. and A.S. contributed to discussion and study design. A.S. and C.K. conducted the experiments. A.S., C.K. and S.B. analysed the results. J.K. produced and contributed the Agac bacterial lysate. G.S. provided the primary hPDL fibroblasts. C.K. and A.S. wrote the manuscript and created the figures, tables and the supplementary material. All authors reviewed the manuscript.
Sample		
Description	E	Primary human periodontal ligament fibroblasts (hPDL) were cultivated from periodontal connective tissue isolated from the middle root section of human teeth free of decay, which had been freshly extracted for medical reasons. A pool of hPDL cell lines from four different patients was used (1 male, 3 female, age: 16-23 years). Cells were identified by means of hPDL-specific marker gene expression and their spindle-shaped morphology (Supplementary Table 5 and Supplementary Figure). Ethical consent was obtained from the local ethics committee (12-170-0150).
Volume/mass of sample processed	D	Varying size of tissue sample / number of hPDL fibroblasts extracted. 70.000 cells were finally seeded per well / biological replicate for the experiments.
Microdissection or macrodissection	E	Microdissection
Processing procedure	E	Tissue samples were grown in 6-well cell culture plates until proliferation of adherently growing hPDL under normal cell culture conditions (37°C, 5% CO ₂ , water-saturated) in full media, then trypsinized and further cultivated and passaged until the 6 th passage.
If frozen, how and how quickly?	E	Until use hPDL fibroblasts were frozen in liquid nitrogen (90% FCS, 10% DMSO, freezing 1°C/minute in cryo-box with isopropanol).
If fixed, with what and how quickly?	E	Not fixed.

Sample storage conditions and duration	E	Samples were directly isolated and cultivated under cell culture conditions in cell culture flasks and plates (37°C, 5% CO ₂ , water-saturated) in full media consisting of DMEM high glucose (D5796, Sigma–Aldrich [®] , S4438, St. Louis, MI, USA), 10% FCS (P30-3306, PAN-Biotech, Aidenbach, Germany), 1% L-glutamine (SH30034.01, GE Healthcare Europe, Munich, Germany), 100 µM ascorbic acid (A8960, Sigma-Aldrich, Munich, Germany) and 1% antibiotics/antimycotics (A5955, Sigma–Aldrich [®] , S4438).					
Nucleid acid extraction							
Procedure and/or instrumentation	Е	After washing the cells twice with sterile phosphate-buffered saline, total RNA from hPDL cells was extracted by applying peqGOLD TriFast [™] and further processing according to the manufacturer's instructions. We eluted the resulting RNA pellet in nuclease-free water (25µI) with immediate ice-cooling.					
Name of kit and details of any modifications	Е	nstructions. We eluted the resulting RNA pellet in nuclease-free water (25µI) with immediate ice-coo beqGOLD TriFast™ (1 ml / well, PEQLAB Biotechnology GmbH, Erlangen, Germany). We followed manufacturer's protocol exactly. Chloroform (EMSURE [®] , 1.02445.1000; Merck KGaA, Darmstadt, Germany), 2-Propanol (20842.					
Source of additional reagents used	D	Chloroform (EMSURE [®] , 1.02445.1000; Merck KGaA, Darmstadt, Germany), 2-Propanol (20842.330, VWR International GmbH, Darmstadt, Germany), Ethanol (32205, Sigma-Aldrich, Munich, Germany); RNase-free water (T143, Bioscience-Grade, Carl Roth GmbH & Co. KG, Karlsruhe, Germany)					
Details of DNase or RNase treatment	Е	1 μ g of RNA was treated with 40 U of RNase inhibitor (EO0381, Life Technologies) in a 22 μ l final volume for cDNA synthesis. No DNAse treatment was performed.					
Contamination assessment (DNA or RNA)	E	For each primer pair and qPCR run we also tested a no-template-control (NTC) without cDNA -RT control (cDNA synthesis without enzyme reverse transcriptase added) on the same plate to e possible bias by primer dimers, contaminating or genomic DNA.					
Nucleic acid quantification	Е	RNA concentration was determined by measuring the absorbance at 260 nm UV light with 1 OD_{260nm} equalling 40 ng/µl total RNA. OD = optical density					
Instrument and method	E	NanoDrop ND-2000 UV spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA)					
Purity (A260/A280)	D	RNA purity was determined by measuring the absorbance ratio $OD_{260nm/280nm}$ as well as $OD_{260nm/230nm}$. An $OD_{260nm/280nm}$ ratio of >1.8 was considered protein-free RNA, and an $OD_{260nm/230nm}$ ratio of >2.0 phenol-/ethanol-free RNA (Supplementary Table 2).					
Yield	D	RNA yield was calculated as the amount of RNA obtained (μ g) per well. Mean yield: 358.2 ng/ μ l x 2000 μ l/well = 716.4 μ g/well; Min./Max. yield: 218.6 / 495.4 ng/ μ l x 2000 μ l/well = 437.2 / 990.8 μ g/well (Supplementary Table 2).					
RNA integrity: method/instrument	Е	RNA integrity was determined with an Agilent 2100 Bioanalyzer (Agilent Technologies Inc. Santa Clara, CA, USA) according to the manufacturer's protocol (Supplementary Data 2).					
RIN/RQI or C_q of 3 ^{\prime} and 5 ^{\prime} transcripts	E	RIN values ranged from 9.5 to 10 (mean 9.85, SD 0.15), indicating an absence of RNA degradation (Supplementary Data 2).					
Electrophoresis traces	D	Electrophoresis traces were determined with an Agilent 2100 Bioanalyzer (Agilent Technologies Inc. Santa Clara, CA, USA) according to the manufacturer's protocol (Supplementary Data 2).					

Inhibition testing (C_q dilutions, spike, or other)	E	For evaluation of qPCR and primer efficiency as well as absence of inhibitors a log_{10} serial dilution series of a random cDNA sample from the untreated group was amplified in triplet for each candidate reference gene and the limit of detection (LOD) as the highest dilution, at which 95% (all three) of the technical replicates are detectable (C _q values), was determined. A standard curve was created by linear regression of the resulting C _q values with the relative dilution within the linear dynamic range (LDR) and the coefficient of determination r^2 as well as qPCR reaction efficiencies (E) with 95% confidence intervals were determined from the slope of the standard curve: $E = (10^{-1/slope}-1) \times 100\%$. Only primer pairs with a linear relation between C _q and log-transformed cDNA copy number ($r^2 > 0.98$) were considered as possible valid reference gene candidates. In addition, only efficiencies E within the range of 90-110% were deemed acceptable. (Table 2, Supplementary Data 4)					
Reverse transcription							
Complete reaction conditions	E	To synthesize cDNA, we transcribed a standardized quantity of 1µg RNA per sample using a random hexamer primer (0.1 nmol, 1 µl, SO142, Life Technologies), an oligo-dT18 primer (0.1 nmol, 1 µl, SO131, Life Technologies, Thermo Fisher Scientific Inc.), 5× M-MLV-buffer (4 µl, M1705, Promega, Fitchburg, WI, USA) and dNTP mix (40 nmol, 1 µl, 10 nmol/dNTP, Roti [®] -Mix PCR3, L785.2) ad 20 µl nuclease-free H ₂ O (Roth BioScience Grade T143, Carl Roth GmbH & Co. KG). After incubation for 3 min at 70°C the mixture was quickly cooled on ice (RNA denaturation). We then added reverse transcriptase (200 U, 1 µl, M1705, Promega) and an RNase inhibitor (40 U, 1 µl, EO0381, Life Technologies), continued incubation at 37°C for 60 min and inactivated the reverse transcriptase by heat (95°C, 2 min). To minimize experimental variations, synthesis of cDNA, which was stored at −20°C until use, was performed concurrently for all samples.					
Amount of RNA and reaction volume	E	Amount of RNA: 1 μg; Reaction volume: 22 μl					
Priming oligonucleotide (if using GSP) and concentration	E	0.1 nmol random hexamer primer; 0.1 nmol oligo-dT18 primer					
Reverse transcriptase and concentration	E	0.1 nmol random hexamer primer; 0.1 nmol oligo-dT18 primer Reverse transcriptase (200 U, 1 μl, M1705, Promega) in a final concentration of 9.1 U/μl (200 U / 22 μl) 3 min at 70°C: 60 min at 37°C: 2 min at 95°C					
Temperature and time	E	3 min at 70°C; 60 min at 37°C; 2 min at 95°C					
Manufacturer of reagents and catalogue numbers	D	Specified in "Complete reaction conditions".					
C_q with \rightarrow without reverse transcription	D	The signal of the amplification plot without reverse transcriptase was very late and there was a high C _q value difference between the -RT control and all cDNA samples. GAPDH: 15 \rightarrow 29; PPIB: 16 \rightarrow 34; YWHAZ: 22 \rightarrow 32; POLR2A: 21 \rightarrow none; TBP: 23 \rightarrow 35; EEF1A1: 14 \rightarrow 27; RPLP0: 17 \rightarrow 32; RNA18S5: 9 \rightarrow 30; RPL22: 18 \rightarrow 30					
Storage conditions of cDNA	D	-20°C					
qPCR protocol							
Complete reaction conditions	E	For qPCR amplification we used a Mastercycler [®] ep realplex-S thermocycler (Eppendorf AG, Hamburg, Germany) in conjunction with 96 well PCR plates (TW-MT, 712282, Biozym Scientific GmbH, Hessisch Oldendorf, Germany) and BZO Seal Filmcover sheeting (712350, Biozym Scientific GmbH). Into each well SYBR [®] Green JumpStart [™] Taq ReadyMix [™] (7.5 µl, Sigma–Aldrich [®] , S4438, St. Louis, MI, USA), consisting of Tris–HCI (20 mM, pH 8.3), KCI (100 mM), MgCl ₂ (7 mM), dNTPs (0.4 mM per dATP,					

		dCTP, dGTP, dTTP), stabilizers, Taq-DNA-polymerase (0.05 U/µl), JumpStart Taq antibody and SYBR Green I, as well as the respective cDNA-solution (1.5 µl, dilution 1:10) and the respective primer pair (7.5 pmol, 0.75 µl - 3.75 pmol/primer) were pipetted ad 15 µl nuclease-free H ₂ O (BioScience Grade T143, Carl Roth GmbH & Co. KG). A master-mix of all components except the cDNA solution was created to minimize technical errors during manual pipetting. We then amplified the cDNA in triplets (technical replicates) per candidate reference gene in 45 cycles (initial heat activation 95°C/5 min, per cycle 95°C/10 s denaturation, 60°C/8 s annealing, 72°C/8 s extension). At the end of each extension step SYBR Green I fluorescence was measured at 521 nm. For each biological replicate all genes were amplified in triplet on the same qPCR plate to minimize biasing effects of possible inter-run variations on relative reference gene stability assessment.					
Reaction volume and amount of cDNA/DNA	E	Reaction volume: 15 µl; Amount of cDNA: 1.5 µl of an 1:10 dilution of the cDNA stock solution					
Primer, (probe), Mg ₂ , and dNTP concentrations	E	3.75 pmol/primer; 3.5 mM MgCl ₂ ; 0.2 mM dNTP; 50 mM KCl					
Polymerase identity and concentration	E	Taq-DNA polymerase in a final concentration of 0.025 U/μI (SYBR [®] Green JumpStart™ Taq ReadyMix™, Sigma–Aldrich [®] , S4438, St. Louis, MI, USA)					
Buffer/kit identity and manufacturer	E	SYBR [®] Green JumpStart™ Taq ReadyMix™ (Sigma–Aldrich [®] , S4438, St. Louis, MI, USA)					
Exact chemical composition of the buffer	D	20 mM Tris-HCI, pH 8.3, final concentration 10 mM					
Additives (SYBR Green I, DMSO, and so forth)	E	20 mM Tris–HCl, pH 8.3, final concentration 10 mM SYBR Green I, stabilizers, JumpStart Taq antibody, KCl , MgCl ₂ 96 well PCR plates (TW-MT, 712282, Biozym Scientific GmbH, Hessisch Oldendorf, Germany					
Manufacturer of plates/tubes and catalogue number	D	96 well PCR plates (TW-MT, 712282, Biozym Scientific GmbH, Hessisch Oldendorf, Germ combination with BZO Seal Filmcover sheeting (712350, Biozym Scientific GmbH)					
Complete thermocycling parameters	E	Initial heat activation 95°C/5min; per cycle 95°C/10s denaturation, 60°C/8s annealing, 72°C/8s extension					
Reaction setup (manual/robotic)	D	manual					
Manufacturer of qPCR instrument	D	Mastercycler [®] ep realplex-S thermocycler (Eppendorf AG, Hamburg, Germany)					
qPCR validation							
Evidence of optimization	D	Primer optimization is evidenced by melting curve analysis and agarose gel electrophoresis (specifity), qPCR efficiency, technical reliability and in silico secondary structure analysis of primers and amplicons. Melting temperatures T_m of primers as validated by the manufacturer Eurofins MWG Operon LLC (Huntsville, AL, USA; High Purity Salt Free Purification HPSF [®]) are provided in Table 1.					
Specifity (gel, sequence, melt or digest)	E	Specific amplification of target reference genes was assessed by agarose gel electrophoreses (single band, correct size) and a specific peak in melting curve analysis (95°C for 15s, 60°C for 15s, then continuous temperature increase to 95°C and fluorescence measurement for 20 min). For each primer pair and qPCR run we also tested a no-template-control (NTC) without cDNA and a -RT control (cDNA synthesis without enzyme reverse transcriptase added) on the same plate to exclude possible bias by unspecific amplification (primer dimers, contaminating or genomic DNA). (Figure 1, Supplementary Data 3).					

For SYBR Green I, C_q of the NTC	Е	The signal of the amplification plot during efficiency analysis for standard curve generation was very late and there was a high C _q value difference between the negative control and all cDNA dilutions. GAPDH: 40; PPIB: 36; YWHAZ: none; POLR2A: 37; TBP: none; EEF1A1: none; RPLP0: 40; RNA18S5: 35; RPL22: none. (Supplementary Data 4)					
Calibration curves with slope and y intercept	E	GAPDH: $y=1E+9e^{-0.659x}$, slope: -3.480; PPIB: $y=5E+9e^{-0.651x}$, slope: -3.508; YWHAZ: $y=6E+9e^{-0.651x}$, slope: -3.488; POLR2A: $y=4E+10e^{-0.651x}$, slope: -3.520; TBP: $y=3E+12e^{-0.649x}$, slope: -3.538; EEF1A1: $y=7E+9e^{-0.685x}$, slope: -3.315; RPLP0: $y=2E+9e^{-0.646x}$, slope: -3.509; RNA18S5: $y=2E+6e^{-0.677x}$, slope: -3.319; RPL22: $y=1E+10e^{-0.671x}$, slope: -3.403. (Supplementary Data 4)					
PCR efficiency calculated from slope	Е	.319; RPL22: y=1E+10e ^{-0.671x} , slope: -3.403. (Supplementary Data 4) APDH: 93.8%; PPIB: 92.8%; YWHAZ: 93.5%; POLR2A: 92.3%; TBP: 91.7%; EEF1A1: 100.3%; PLP0: 92.7%; RNA18S5: 100.1%; RPL22: 96.7%. (Table 2, Supplementary Data 4) Els of qPCR efficiencies E were calculated for all genes tested and are given in Supplementary Data 4. APDH: 0.9998; PPIB: 0.9996; YWHAZ: 0.9993; POLR2A: 0.9984; TBP: 0.9974; EEF1A1: 0.9951; PLP0: 0.9992; RNA18S5: 0.9974; RPL22: 0.9949. (Table 2, Supplementary Data 4)					
CIs for PCR efficiency or SE	D	Cls of qPCR efficiencies E were calculated for all genes tested and are given in Supplementary Data 4.					
R ² of calibration curve	E	GAPDH: 0.9998; PPIB: 0.9996; YWHAZ: 0.9993; POLR2A: 0.9984; TBP: 0.9974; EEF1A1: 0.9951; RPLP0: 0.9992; RNA18S5: 0.9974; RPL22: 0.9949. (Table 2, Supplementary Data 4)					
Linear dynamic range (LDR)	Е	The linear dynamic range (LDR) included the used 1:10 cDNA dilution in all cases and ranged from \log_{10} (cDNA stock dilution 1:10 – 1:10 ³) to 6x \log_{10} (cDNA stock dilution 1:10 – 1:10 ⁶) for the individual genes (primer pairs), see Supplementary Data 4. Standard curves were calculated only consider dilutions within the LDR. (Supplementary Data 4)					
C _q variation at LOD	Е	GAPDH: SD=0.952; PPIB: SD=1.77; YWHAZ: SD=1.696; POLR2A: SD=1.004; TBP: SD=0.561; EEF1A1: SD=0.405; RPLP0: SD=0.176; RNA18S5: SD=0.000; RPL22: SD=0.202. (Supplementary Data 4)					
Cls throughout range	D	Cls of C_q were calculated throughout the dilution range for all genes tested and are given Supplementary Data 4.					
Evidence for LOD	Е	Not detectable C_q value for ≥ 1 of the technical replicates (triplet) at the corresponding cDNA dilution level indicates LOD at the previous, more concentrated dilution level. LOD for all genes (primer pairs) detected at a cDNA quantity equivalent to ≤ 1 pg RNA, except for TBP with an LOD of 100 pg RNA equivalent (weak signal at 10 pg and 1 pg). (Supplementary Data 4)					
If multiplex, efficiency and LOD of each assay	E	Not applicable.					
Data analysis							
qPCR analysis program (source, version)	E	Mastercycler ep realplex software, version 2.2 (Eppendorf AG, Hamburg, Germany)					
Method of C _q determination E Second derivative maximum method (CalqPlex algorithm, Automatic Baseline, Drift Cor							
Outlier identification and disposition	For analysis none of the C_q values was discarded.						
Results for NTCs	Е	The signal of the amplification plot was very late and there was a high C _q value difference between the negative control and all cDNA samples. GAPDH: 33; PPIB: 35; YWHAZ: 36; POLR2A: 36; TBP: none; EEF1A1: 35; RPLP0: none; RNA18S5: 35; RPL22: none.					

Justification of number and choice of reference genes	E	Aim of this study - identification of optimal number and choice of reference genes for hPDL fibroblasts under physiological conditions, in a model for orthodontic tooth movement and a model for bacterial periodontitis.
Description of normalization method	E	Samples were not normalized, since apart from the reference genes no target genes were quantified.
Number and concordance of biological replicates	D	N = 1 (pool of hPDL fibroblasts from 4 different patients); $n = 6$ (pool cells seeded in 6 different wells per experimental group as biological replicates).
Number and stage (RT or qPCR) of technical replicates	E	qPCR reactions were performed in triplets (technical replicates $n = 3$).
Repeatability (intraassay variation)	Е	The maximum SD (of the mean) across all biological replicates (n=18) of the means of C _q from the three technical replicates was ≤0.553 in all instances. GAPDH: 0.24; PPIB: 0.29; YWHAZ: 0.32; POLR2A: 0.35; TBP: 0.27; EEF1A1: 0.53; RPLP0: 0.36; RNA18S5: 0.20; RPL22: 0.33. (Table 2)
Reproducibility (interassay variation, CV)	D	High biological reproducibility was achieved as evidenced by the low SD of raw C_q values for all genes and experimental groups tested (see Figure 2, Supplementary Table 3).
Power analysis	D	The number of biological replicates ($n = 6$) was based on previous studies and corresponds to the number of replicates generally used in cell culture RT-qPCR experiments.
Statistical methods for results significance	E	All biological samples (n = 6) were measured in triplicate (n = 3) and an arithmetic mean of each C_q triplett used for further analysis. The stability of each candidate was calculated with four different mathematical algorithms: geNorm, NormFinder, BestKeeper and the comparative ΔC_q method. Stability calculations were done with the official Microsoft-Excel-based software applets for geNorm, NormFinder and BestKeeper according to developers' instructions. For the comparative ΔC_q method manual calculations were performed. The geNorm and NormFinder algorithms require the transformation of the raw C_q data to linear scale expression quantities Q corresponding to the qPCR efficiency (E) of each gene: $Q = E^{-(Cqmin-Cqsample)}$ with the lowest C_q value corresponding to a quantity of 1 for each candidate reference gene. The genes were ranked according to their stability values (geNorm: M, NormFinder: p_{ig}/σ_i , deltaCT: mean SD of ΔC_q ; BestKeeper: Pearson's r) for each algorithm and each experimental condition as well as combined experimental conditions (no treatment + compressive force, no treatment + Agac) and a rank sum of all algorithms calculated per gene for final stability assessment with the smallest rank sum indicating the most stable reference gene. Also a pooled overall ranking for all experimental conditions was calculated. The geNorm algorithm was used to calculate the ideal number of reference genes with one set including an additional reference gene was ≤ 0.15 , this additional gene was deemed unnecessary for normalization. To assess ranking variations between the algorithms, we used IBM SPSS Statistics [®] 23 (IBM, Armonk, NY, USA) to create a correlation matrix of bivariate correlations (Pearson's correlation coefficient r, normality confirmed by Shapiro-Wilk tests and histogram evaluation) of the overall pooled stability values as calculated by two respective algorithms. (see Figures 3 and 4, Table 3, Supplementary Table 4).
Software (source, version)	E	Microsoft Excel 2010 (Microsoft Corporation, Redmond, USA); IBM SPSS Statistics [®] 23 (IBM, Armonk, NY, USA)

Cq or raw data submission	D	Raw C_q values are provided in Figure 2 and Supplementary Table 3.
qPCR target information	•	
Gene symbol	E	Provided in Table 1. We based our primer design on the officially registered target gene nucleotide
Sequence accession number	E	sequences from the NCBI Nucleotide database (GeneBank, access: http://www.ncbi.nlm.nih.gov/nuccore).
Location of amplicon	D	Provided in Table 1.
Amplicon length	Е	Provided in Table 1. Target amplicon sequences were chosen to range from 60 to 150 bp with a GC content of 35–65%.
In silico specificity screen (BLAST, and so on)	E	Provided in Table 1. In-silico specify of constructed primers was ensured by PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primerblast; RefSeq mRNA, Splice variants allowed, Max. Product Size: 4000) and cross-checked using the UCSC in-silico-PCR Genome Browser (Dec. 2013 GRCh38/hg38; UCSC Genes; Max. Product Size: 4000; Min. Perfect Match: 15; Min. Good Match: 15; Jim Kent, http://genome-mirror.genomedk.au.dk/cgi-bin/hgPcr). Intron-flanking primer pairs were designed to prevent a co-amplification of genomic DNA and checked in silico for sufficient absence of hairpin structures and dimer formation at annealing temperature ($\Delta G \ge -3,5$ kcal/mol, BeaconDesigner TM Free Edition, Premier BioSoft International, Palo Alto, CA, USA, http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1).
Pseudogenes, retropseudogenes or other homologs	D	Sequence alignment, possible splicing and targeted transcript variants as well as absence of targeted pseudogenes, retropseudogenes or other homologs were assessed upon primer construction by NCBI PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast) and PrimerCheck (SpliceCenter der Genomics and
Sequence alignment	D	Bioinformatics Group, LMP, CCR, NCI, http://projects.insilico.us/SpliceCenter/PrimerCheck.jsp).
Secondary structure analysis of amplicon	D	Provided in Supplementary Data 1. No secondary structures present at annealing temperature (60°C) were detected as determined in silico by UNAFold (http://eu.idtdna.com/UNAFold?, Suboptimality 50%; Integrated DNA Technologies Inc., Coralville, IA, USA).
Location of each primer by exon or intron	E	Provided in Table 1. Also see Supplementary Data 1.
What splice variants are targeted	E	Provided in Table 1. Also see Supplementary Data 1.
qPCR oligonucleotides		
Primer sequences	E	Provided in Table 1.
RTPrimerDB identification number	D	Not applicable, primers were constructed and validated by the authors.
Probe sequences	D	Not applicable.
Location and identity of any modifications	E	Primers received no terminal or other modifications.
Manufacturer of oligonucleotides	D	Primers were synthesized by Eurofins MWG Operon LLC (Huntsville, AL, USA).
Purification method	D	Primers were purified by High Purity Salt Free Purification HPSF [®] (Eurofins MWG Operon LLC).

Sample ID	Nucleic Acid Concentration	Unit	A260	A280	A260/A280	Sample Type	Factor
Control K7	450.8	ng/µl	11.269	5.757	1.96	RNA	40
Control K8	495.4	ng/µl	12.385	6.415	1.93	RNA	40
Control K9	488.2	ng/µl	12.206	6.494	1.88	RNA	40
Control K10	486.2	ng/µl	12.156	6.407	1.9	RNA	40
Control K11	444.4	ng/µl	11.11	5.793	1.92	RNA	40
Control K12	472.8	ng/µl	11.82	6.125	1.93	RNA	40
Compression D7	295.1	ng/µl	7.377	3.922	1.88	RNA	40
Compression D8	291.6	ng/µl	7.29	3.826	1.91	RNA	40
Compression D9	225.2	ng/µl	5.631	3.002	1.88	RNA	40
Compression D10	225.9	ng/µl	5.647	3.098	1.82	RNA	40
Compression D11	218.6	ng/µl	5.464	2.934	1.86	RNA	40
Compression D12	298.9	ng/µl	7.473	3.952	1.89	RNA	40
Agac7	441	ng/µl	11.026	5.873	1.88	RNA	40
Agac8	245.5	ng/µl	6.138	3.262	1.88	RNA	40
Agac9	303	ng/µl	7.575	3.935	1.93	RNA	40
Agac10	456.7	ng/µl	11.417	6.052	1.89	RNA	40
Agac11	295.2	ng/μl	7.38	3.902	1.89	RNA	40
Agac12	312.6	ng/μl	7.814	4.149	1.88	RNA	40

Supplementary Table 2. Yield (quantity) and quality of extracted total RNA per biological replicate (well).

A = absorbance = optical density (OD) at 260nm and 280nm; A260/A280 = absorbance ratio.

Factor = ng/ μ l total RNA per 1 unit OD_{260nm}.

RAW C _q values		Gene	Gene	Gene	Gene	Gene	Gene	Gene	Gene	Gene
Sample	Group	GAPDH	PPIB	YWHAZ	POLR2A	ТВР	RPL22	RPLP0	EEF1A1	RNA18S5
Control K7	1	15.04	16.43	21.81	20.96	23.35	18.22	16.34	14.17	8.67
Control K8	1	15.14	16.40	21.73	21.03	23.29	18.13	16.18	14.14	8.42
Control K9	1	15.14	16.36	21.51	20.77	23.30	18.00	16.33	14.09	7.91
Control K10	1	15.26	16.51	21.60	20.83	23.47	18.21	16.24	14.12	8.33
Control K11	1	15.04	16.30	21.21	21.00	23.46	17.95	16.06	14.02	8.41
Control K12	1	15.09	16.36	21.00	20.60	23.12	17.93	16.22	14.06	7.81
Compression D7	2	15.13	16.98	22.57	21.78	24.08	18.39	16.37	14.26	8.97
Compression D8	2	14.85	16.75	22.14	21.50	23.72	18.19	16.26	13.91	8.57
Compression D9	2	14.70	16.80	21.74	21.66	23.75	18.26	16.42	13.97	8.52
Compression D10	2	15.05	16.74	21.11	21.45	23.50	18.20	16.46	13.97	8.08
Compression D11	2	15.11	16.52	21.01	21.51	23.64	17.95	16.26	13.75	8.27
Compression D12	2	14.85	16.71	21.28	21.57	23.67	18.21	16.06	13.85	8.05
Agac7	3	15.58	16.43	21.84	21.07	23.32	17.82	16.19	14.15	8.76
Agac8	3	15.41	16.63	21.46	21.45	23.67	18.36	16.55	14.44	8.46
Agac9	3	15.27	16.48	20.97	21.18	23.46	18.21	16.42	14.41	7.99
Agac10	3	15.37	16.48	21.03	21.15	23.43	18.36	16.43	14.37	8.02
Agac11	3	15.58	16.71	21.04	21.36	23.69	18.41	16.83	14.57	8.32
Agac12	3	15.40	16.66	20.89	21.09	23.50	18.35	16.65	14.46	7.91
C _q SD Control	1	0.08	0.07	0.31	0.16	0.13	0.13	0.10	0.05	0.33
C _q SD Compression	2	0.17	0.15	0.62	0.12	0.19	0.14	0.15	0.17	0.35
C _q SD Agac	3	0.12	0.12	0.37	0.15	0.14	0.22	0.22	0.14	0.33

Supplementary Table 3. Raw C_q values of RT-qPCR (triplet means) for 3 experimental groups and 9 candidate reference genes.

C_q = quantification cycle; SD = standard deviation of group mean. Gene symbols see Table 1. Agac = Aggregatibacter actinomycetemcomitans (periodontitis)

Supplementary Table 4. Gene stability ranking for individual experimental groups of the nine analysed candidate reference genes according to their expression stability as calculated by the algorithms geNorm, NormFinder, comparative ΔC_q and BestKeeper.

	Tot (of 4 me	al thods)	geNo	orm	N	lormFind	er	compara	ative deltaC _q		BestKe	eper	
Rank	Ranking order	Rank sum	Ranking order	Stability value (M)	Ranking order	Stability value (ρ _{ig} /σ _i)	Standard error	Ranking order	Stability value (mean SD of mean ΔC_q)	Ranking order	Stability value (r)	SD (+/- C _q)	CV (% C _q)
Untreated co	ntrol (physiologi	cal condition	s)										
1.)	RPL22	7	EEF1A1	0.138	RPL22	0.005	0.082	EEF1A1	0.146	RNA18S5	0.915	0.266	3.216
2.)	EEF1A1	9	PPIB	0.142	EEF1A1	0.045	0.024	RPL22	0.147	RPL22	0.903	0.113	0.627
3.)	PPIB	14	RPL22	0.142	PPIB	0.055	0.025	PPIB	0.147	YWHAZ	0.890	0.248	1.154
4.)	TBP	20	GAPDH	0.164	TBP	0.070	0.028	GAPDH	0.173	POLR2A	0.771	0.132	0.631
5.)	GAPDH	23	TBP	0.165	POLR2A	0.073	0.029	TBP	0.177	EEF1A1	0.735	0.043	0.307
6.)	POLR2A	23	RPLP0	0.175	GAPDH	0.086	0.032	RPLP0	0.182	TBP	0.621	0.095	0.407
7.)	RPLP0	27	POLR2A	0.178	RPLP0	0.091	0.033	POLR2A	0.188	PPIB	0.579	0.053	0.325
8.)	YWHAZ	27	YWHAZ	0.248	YWHAZ	0.148	0.049	YWHAZ	0.266	RPLP0	0.186	0.075	0.462
9.)	RNA18S5	28	RNA18S5	0.290	RNA18S5	0.187	0.061	RNA18S5	0.290	GAPDH	0.127	0.062	0.408
Compressive	orthodontic forc	e (model for	orthodontic toot	h movement	:)								
1.)	EEF1A1	9	PPIB	0.177	EEF1A1	0.012	0.072	PPIB	0.185	RNA18S5	0.958	0.277	3.290
2.)	PPIB	10	EEF1A1	0.181	TBP	0.021	0.045	EEF1A1	0.187	RPL22	0.938	0.508	2.349
3.)	TBP	15	POLR2A	0.190	PPIB	0.036	0.034	RPL22	0.200	YWHAZ	0.913	0.126	0.529
4.)	POLR2A	17	RPL22	0.190	POLR2A	0.065	0.033	POLR2A	0.201	POLR2A	0.905	0.115	0.824
5.)	RPL22	18	TBP	0.194	RPL22	0.067	0.034	TBP	0.203	EEF1A1	0.872	0.093	0.557
6.)	RNA18S5	23	RPLP0	0.246	RPLP0	0.131	0.047	RPLP0	0.258	TBP	0.804	0.094	0.438
7.)	RPLP0	26	GAPDH	0.279	RNA18S5	0.140	0.050	RNA18S5	0.286	PPIB	0.752	0.087	0.476
8.)	YWHAZ	29	RNA18S5	0.283	GAPDH	0.166	0.057	GAPDH	0.296	RPLP0	0.390	0.112	0.685
9.)	GAPDH	32	YWHAZ	0.474	YWHAZ	0.324	0.103	YWHAZ	0.515	GAPDH	0.177	0.148	0.992
Bacterial lysa	te of Aggregatib	acter actinor	nycetemcomitan	is (Agac, mo	del for bacterial	periodon	titis)						
1.)	ТВР	7	ТВР	0.175	TBP	0.035	0.035	ТВР	0.184	POLR2A	0.742	0.126	0.592
2.)	POLR2A	10	PPIB	0.180	POLR2A	0.038	0.034	PPIB	0.187	GAPDH	0.715	0.097	0.626
3.)	PPIB	11	POLR2A	0.192	PPIB	0.038	0.033	EEF1A1	0.199	RNA18S5	0.691	0.270	3.275
4.)	GAPDH	16	EEF1A1	0.194	GAPDH	0.055	0.032	POLR2A	0.203	TBP	0.650	0.112	0.477
5.)	EEF1A1	20	GAPDH	0.218	EEF1A1	0.090	0.037	GAPDH	0.227	PPIB	0.537	0.102	0.614
6.)	RPLP0	25	RPLP0	0.223	RPLP0	0.124	0.045	RPLP0	0.236	YWHAZ	0.463	0.297	1.399
7.)	RNA18S5	27	RPL22	0.249	RPL22	0.155	0.054	RPL22	0.260	RPLP0	0.379	0.165	0.999
8.)	RPL22	30	RNA18S5	0.346	RNA18S5	0.224	0.073	RNA18S5	0.354	EEF1A1	0.222	0.093	0.648
9.)	YWHAZ	33	YWHAZ	0.386	YWHAZ	0.255	0.083	YWHAZ	0.410	RPL22	0.078	0.158	0.864

 C_q = quantification cycle; SD = standard deviation; CV = coefficient of variation; r = Pearson's correlation coefficient.

Supplementary Table 5. Marker genes, primers and amplicons used for characterization of hPDL fibroblasts.

Gene symbol	Gene name (Homo sapiens)	Accession Number (NCBI GenBank)	Chromosomal location (length)	5'-forward primer-3' (length / T _m / %GC / max. ∆G Hairpin &Self-Dimer / Self-Comp. / Self-3'-Comp.)	5'-reverse primer-3' (length / T _m / %GC / max. ∆G Hairpin &Self-Dimer / Self-Comp. / Self-3'-Comp.)	Primer Location (max. ∆G Cross-Dimer)	Amplicon (length, %GC, T _m , SSAT)	Amplicon location (bp of Start/Stop)	Intron -flanking (length)	In silico qPCR specifity	Variants targeted (Transcript /Splice)
VIM	vimentin	NM_003380.3	10p13 (2151bp)	CTGGATTCACTCCCTCTGGTTG (22bp / 62.1°C / 54.5% / -1.3 / 5 / 0)	CGTGATGCTGAGAAGTTTCGTTG (23bp / 60.6°C / 47.8% / -0.6 / 4 / 0)	exon 8/9 (-2.6)	106bp, 44.3%, 82.3%, no SSAT	1695/1800	Yes (850bp)	Yes (BLAST/ UCSC)	Yes
P4HA1	prolyl 4-hydroxylase, alpha polypeptide I	NM_000917.3	10q22.1 (2860bp)	GCTCTCTGGCTATGAAAATCCTG (23bp / 60.6°C / 47.8% / 0.0 / 2 / 2)	GTGCAAAGTCAAAATGGGGTTC (22bp / 58.4°C / 45.5% / -3.4 / 4 / 0)	exon 13/14 (-0.9)	146bp, 41.1%, 82.2°C, no SSAT	1396/1541	Yes (13371bp)	Yes (BLAST/ UCSC)	Yes
FN1	fibronectin 1	NM_212482.1	2q34 (8815bp)	GCCAGTCCTACAACCAGTATTCTC (24bp / 62.7°C / 50.0% / -0.3 / 4 / 2)	GCTTGTTCCTCTGGATTGGAAAG (23bp / 60.6°C / 47.8% / -2.5 / 4 / 1)	exon 45/46 (-3.0)	150bp, 42.7%, 83.1°C, no SSAT	7579/7728	Yes (342bp)	Yes (BLAST/ UCSC)	Yes
COL1A2	collagen, type I, alpha 2	NM_000089.3	7q22.1 (5411bp)	AGAAACACGTCTGGCTAGGAG (21bp / 59.8°C / 52.4% / -3.3 / 4 / 2)	GCATGAAGGCAAGTTGGGTAG (21bp / 59.8°C / 52.4% / -2.3 / 5 / 0)	exon 50/51 (-0.7)	105bp, 44.8%, 83.3°C no SSAT	4139/4243	Yes (710bp)	Yes (BLAST/ UCSC)	Yes
FMOD	fibromodulin	NM_002023.4	1q32 (3271bp)	AGTCAACACCAACCTGGAGAAC (22bp / 60.3°C / 50.0% / -1.5 / 3 / 0)	GAAGTTCACGACGTCCACCAC (21bp / 61.8°C / 57.1% / -6.5 / 6 / 3)	exon 2/3 (-2.8)	97bp, 51.6%, 85.7°C no SSAT	1334/1430	Yes (4797bp)	Yes (BLAST/ UCSC)	Yes
TNFRSF11B (OPG)	tumor necrosis factor receptor superfamily, member 11b (osteoprotegerin)	NM_002546.3	8q24 (2354bp)	TGTCTTTGGTCTCCTGCTAACTC (23bp / 60.6°C / 47.8% / 0.0 / 2 / 0)	CCTGAAGAATGCCTCCTCACAC (22bp / 62.1°C / 54.5% / -0.9 / 4 / 0)	exon 3/4 (-1.8)	124bp, 42.7%, 83.1°C no SSAT	824/947	Yes (2019bp)	Yes (BLAST/ UCSC)	Yes
POSTN	periostin	NM_006475.2	13q13.3 (3390bp)	AGACACACCCGTGAGGAAG (19bp / 58.8°C / 57.9% / -1.3 / 4 / 0)	GGTCAGGTTATTGACTTAGGGTTG (24bp / 61.0°C / 45.8% / -2.6 / 4 / 0)	exon 23/24 (-3.4)	136bp, 39.4%, 81.9°C no SSAT	2548/2683	Yes (1148bp)	Yes (BLAST/ UCSC)	Yes
RUNX2	runt related transcription factor 2	NM_001024630.3	6p21 (5553bp)	CAGTAGATGGACCTCGGGAAC (21bp / 61.8°C / 57.1% / 0.0 / 3 / 0)	TGAGGCGGTCAGAGAACAAAC (21bp / 59.8°C / 52.4% / -0.9 / 3 / 0)	exon 5/6 (-3.1)	81bp, 50.6%, 83.7°C no SSAT	869/949	Yes (53889bp)	Yes (BLAST/ UCSC)	Yes
SMAD1	SMAD family member 1	NM_005900.2	4q31 (3056bp)	AGCAGCACCTACCCTCACTC (20bp / 61.4°C / 60.0% / 0.0 / 3 / 0)	CTTCAGGAGGCAGGTAAGCAG (21bp / 61.8°C / 57.1% / -0.5 / 3 / 1)	exon 4/5 (-2.9)	97bp, 60.8%, 90.4°C, no SSAT	1014/1110	Yes (2520bp)	Yes (BLAST/ UCSC)	Yes
ALPL	alkaline phosphatase, liver/bone/kidney	NM_000478.4	1p36.12 (2606bp)	ACAAGCACTCCCACTTCATCTG (22bp / 60.3°C / 50.0% / -0.5 / 3 / 2)	GGTCCGTCACGTTGTTCCTG (20bp / 61.4°C / 60.0% / -3.3 / 5 / 1)	exon 7-8/9 (-2.1)	132bp, 56.1%, 89.5°C, no SSAT	1045/1176	Yes (3290bp)	Yes (BLAST/ UCSC)	Yes
SCX	scleraxis bHLH transcription factor	NM_001080514.2	8q24.3 (1027bp)	CCAGCCCAAACAGATCTGCAC (21bp / 61.8°C / 57.1% / -7.9 / 8 / 2)	TGCGAATCGCTGTCTTTCTGTC (22bp / 60.3°C / 50.0% / -4.2 / 7 / 1)	exon 1/2 (-3.8)	83bp, 54.2%, 86.6°C, no SSAT	575/657	Yes (923bp)	Yes (BLAST/ UCSC)	Yes
S100A4	S100 calcium binding protein A4	NM_002961.2	1q21 (512bp)	TCTCTACAACCCTCTCTCCTCAG (23bp / 62.4°C / 52.2% / 0.0 / 3 / 3)	GGAAGGTGGACACCATCACATC (22bp / 62.1°C / 54.5% / -3.2 / 8 / 1)	exon 1/3 (-1.5)	108bp, 54.1%, 87.8°C no SSAT	11/118	Yes (943bp)	Yes (BLAST/ UCSC)	Yes
NCAM1	neural cell adhesion molecule 1 (NCAM1)	NM_000615.6	11q23.1 (5977bp)	CTCCCACCAACCATCATCTGG (21bp / 61.8°C / 57.1% / -1.5 / 3 / 2)	CAGGATTCTGCCCTCACAGC (20bp / 61.4°C / 60.0% / -1.3 / 6 / 2)	exon 4/5 (-1.3)	150bp, 49.3%, 86.6°C no SSAT	799/948	Yes (376bp)	Yes (BLAST/ UCSC)	Yes

T_m = melting temperature of primer/specific qPCR product (amplicon); %GC = guanine/cytosine content; bp = base pairs; Comp. = Complementarity; SSAT = secondary structure at annealing temperature.

Supplementary Figure 1. Characterization of human PDL fibroblasts. (a) Cell morphology of isolated hPDL cells. All cells show a spindle-shaped cell morphology. (b) Specific gene expression profile of hPDL markers (western blot of PCR products): untreated control samples of individual patients and of final hPDL cell pool (experimental groups). Abbreviations see Supplementary Table 5.

Supplementary Figure 2. Uncropped original gel of RT-qPCR products (amplification specifity). For each candidate reference gene / primer pair we found a single fluorescent band at the expected amplicon size. bp = base pairs. Gene names see Table 1. All RT-qPCR products were run concurrently and adjacently on the same gel, which was recorded with the gel documentation system Genoplex 2 (VWR International GmbH, Darmstadt, Germany) and its software GenoCapture (version 7.01, Synoptics Ltd., Cambridge, UK - automatic exposure, exposure time 80 ms, no binning, transillumination) as secure gel data (*.sgd) and exported as TIF image, which was inverted and cropped to encompass the relevant gel area.

Supplementary Data 1. Splice variants and secondary structure analysis of amplicons and primers of the nine evaluated candidate reference genes.

GAPDH PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast)

Primer pair 1										
<u></u>	Se	quence (5'->3')	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	TG	CCCTCAACGACCACTTTG	Plus	20	1091	1110	63.28	55.00	3.00	2.00
Reverse primer	CC	ACCACCCTGTTGCTGTAG	Minus	20	1164	1145	63.08	60.00	4.00	2.00
Product length	74									
Total intron size	104 (between pos 6527996 and 6528101 on NT 009759 17)									
			,							
Products on intende	ed targe	t								
> <u>NM_002046.5</u> Homo	sapiens	s glyceraldehyde-3-phosphate deh	nydrogenase (GAPDH), transcrip	t variant 1, mRI	NA					
product length	= 74		20							
Torward primer	1001	TGUUUTUAAUGAUUAUTTTG	20							
Temprate	1091		1110							
Reverse primer	1	CCACCACCCTGTTGCTGTAG	20							
Template	1164		1145							
-										
Products on allowed	d transc	ript variants								
> <u>NM 001289746.1</u> H	omo sap	iens glyceraldenyde-3-phosphate	denydrogenase (GAPDH), trans	script variant 4,	MRNA					
Forward primer	- 74	тессстсалсалстатте	20							
Template	1077	10000104400400401110	1096							
Tempideo	1077		1000							
Reverse primer	1	CCACCACCCTGTTGCTGTAG	20							
Template	1150		1131							
> <u>NM_001289745.1</u> H	omo sap	iens glyceraldehyde-3-phosphate	dehydrogenase (GAPDH), trans	script variant 3, i	mRNA					
product length	= /4		20							
Forward primer	1102	TGUUTUAAUGAUUAUTTTG	20							
Tempiace	1103		1202							
Reverse primer	1	CCACCACCCTGTTGCTGTAG	20							
Template	1256		1237							
-										
> <u>NM_001256799.2</u> He	omo sap	iens glyceraldehyde-3-phosphate	dehydrogenase (GAPDH), trans	cript variant 2,	mRNA					
product length	= 74									
Forward primer	1	TGCCCTCAACGACCACTTTG	20							
Template	1125	•••••	1144							
Reverse primor	1	CCACCACCCTCTTCTTCCTTC	20							
Template	1198	CCACCACCCIGIIGCTGTAG	1179							
Temprace	1100		11,7							

GAPDH PrimerCheck (SpliceCenter der Genomics and Bioinformatics Group, LMP, CCR, NCI, http://projects.insilico.us/SpliceCenter/PrimerCheck.jsp)

GAPDH

GAPDH UNAFold (Integrated DNA Technologies Inc., Coralville, IA, USA, http://eu.idtdna.com/UNAFold?, Suboptimality 50%)

GAPDH Amplicon Sequence

5' TGCCCTCAACGACCACTTTGTCAAGCTCATTTCCTGGTATGACAACGAATTTGGCTACAGCAACAGGGTGGTGG 3'

Structures

Structure Name	Image	ΔG (kcal.mole ⁻¹)	T _M (⁰C)	ΔH (kcal.mole ⁻¹)	∆S (cal.K ⁻¹ mole ⁻¹)	Output
1	\bigcirc	1.04	47	-25.6	-79.96	Ct Det
2	ŝ	1.33	49.9	-42.7	-132.17	Ct Det
3	Ô	1.49	41.3	-25	-79.51	Ct Det
4	\bigcirc	1.58	47.1	-39.2	-122.4	Ct Det
5	Q	1.66	41.2	-27.8	-88.44	Ct Det
6	\bigcirc	1.82	-30.4	-4.9	-20.19	Ct Det
7	\bigcirc	1.92	-28.6	-5.3	-21.67	Ct Det
8	Ô	1.98	34.3	-23.6	-76.77	Ct Det

dG = 1,978 jegsbu5e5c5eo5upf1pkmx3vE635669675255342741

GAPDH UCSC In-silico-PCR Genome Browser (Dec. 2013 GRCh38/hg38; UCSC Genes; Max. Product Size: 4000; Min. Perfect Match: 15; Min. Good Match: 15; Jim Kent, http://genome-mirror.genomedk.au.dk/cgi-bin/hgPcr)

UCSC In-Silico PCR

The sequences and coordinates shown below are from UCSC Genes, not from the genome assembly. The links lead to the Genome Browser at the position of the entire target sequence.

>uc001qop.3_GAPDH:1091+1164 74bp TGCCCTCAACGACCACTTTG CCACCACCTGTTGCTGTAG TGCCCTCAACGACCACTTTGtcaagctcatttcctggtatgacaacgaat ttggCTACAGCAACAGGGTGGTGG >uc031qfw.2 GAPDH:1125+1198 74bp TGCCCTCAACGACCACTTTG CCACCACCTGTGCTGTAG TGCCCTCAACGACCACTTTGtcaagtcatttcctggtatgacaacgaat ttggCTACAGCAACAGGGTGGGTGG

>uc031yrl.1__GAPDH:1183+1256 74bp TGCCCTCAACGACCACTTTG CCACCACCTGTTGCTGTAG TGCCCTCAACGACCACTTTGtcaagctcatttcctggtatgacaacgaat ttggCTACAGCAACAGGGTGGTGG

>uc031yrm.1__GAPDH:1077+1150 74bp TGCCCTCAACGACCACTTTG CCACCACCCTGTTGCTGTAG TGCCCTCAACGACCACTTTGtcaagctcatttcctggtatgacaacgaat ttggCTACAGCAACAGGGTGGTGG

GAPDH BeaconDesigner™ Free Edition (Premier BioSoft International, Palo Alto, CA, USA, <u>http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1</u>)

Secondary Structures for Sense Primer	
Dimer:-	
5' TGCCCTCAACGACCACTTTG 3' III : : ::: 3' GTTTCACCAGCAACTCCCGT 5' -0.7	
Hairpin:-	
/CAGCAACTCCCGT 5' \CACTTTG 3' -0.7	
Secondary Structures for Anti-sense Primer	Cross Dimer
Dimer:- Not Found	Cross Dimer between Sense Primer and Anti-sense Primer:-
Hairpin:-	5' TGCCCTCAACGACCACTTTG 3' ; ; ; 3' GATGTCGTTGTCCCACCACC 5' -2.4

PPIB PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast)

Primer pair 1									
	Sequence (5'->3')	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	TTCCATCGTGTAATCAAGGACTTC	Plus	24	446	469	61.33	41.67	4.00	2.00
Reverse primer	GCTCACCGTAGATGCTCTTTC	Minus	21	533	51 3	61.22	52.38	4.00	0.00
Product length	88								
Total intron size	3194 (between pos. 40883230 and 40880035 on NT	010194.18)							
Products on intended > <u>NM 000942.4</u> Homos product length = Forward primer Template Reverse primer Template	I target sapiens peptidylprolyl isomerase B (cyclophilin B) (PPIE 88 1 TTCCATCGTGTAATCAAGGACTTC 446 469 1 GCTCACCGTAGATGCTCTTTC 21 533	3), mRNA							

PPIB PrimerCheck (SpliceCenter der Genomics and Bioinformatics Group, LMP, CCR, NCI, http://projects.insilico.us/SpliceCenter/PrimerCheck.jsp)

PPIB

PPIB UCSC In-silico-PCR Genome Browser (Dec. 2013 GRCh38/hg38; UCSC Genes; Max. Product Size: 4000; Min. Perfect Match: 15; Min. Good Match: 15; Jim Kent, <u>http://genome-mirror.genomedk.au.dk/cgi-bin/hgPcr</u>)

UCSC In-Silico PCR

The sequences and coordinates shown below are from UCSC Genes, not from the genome assembly. The links lead to the Genome Browser at the position of the entire target sequence.

```
>uc002and.3 PPIB:446+533 88bp TTCCATCGTGTAATCAAGGACTTC GCTCACCGTAGATGCTCTTTC
TTCCATCGTGTAATCAAGGACTTCatgatccagggcggagacttcaccag
gggagatggcacaggagGAAAGAGCATCTACGGTGAGC
```

PPIB UNAFold (Integrated DNA Technologies Inc., Coralville, IA, USA, <u>http://eu.idtdna.com/UNAFold</u>?, Suboptimality 50%)

PPIB Amplicon Sequence 5' TTCCATCGTGTAATCAAGGACTTCATGATCCAGGGCGGAGACTTCACCAGGGGGAGATGGCACAGGAGGAAAGAGCATCTACGGTGAGC 3'

Structures

Structure Name	Image	ΔG (kcal.mole ⁻¹)	T _M (⁰C)	ΔH (kcal.mole ⁻¹)	ΔS (cal.K ⁻¹ mole ⁻¹)	Output
1	\bigcirc	0.45	49	-13.1	-40.66	Ct Det
2	\bigcirc	0.64	47.3	-16.1	-50.24	Ct Det
3	Ċ	0.66	41.5	-11.2	-35.6	Ct Det
4	Ċ^	1.25	49	-36.6	-113.63	Ct Det
5	Ö	1.32	35.1	-16.4	-53.2	Ct Det

dG = 1,256 05yowyjasmejeika02necwf#E635665950283600020 dG = 1,325 05yowyjasmejeika02necwf#E635665950283600020

PPIB BeaconDesigner[™] Free Edition (Premier BioSoft International, Palo Alto, CA, USA, http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1)

YWHAZ PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast)

Primer pair 1									
	Sequence (5'->3')	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	AGGAGATTACTACCGTTACTTGGC	Plus	24	504	527	62.43	45.83	4.00	2.00
Reverse primer	AGCTTCTTGGTATGCTTGTTGTG	Minus	23	594	572	62.24	43.48	4.00	0.00
Product length	91								
Total intron size	617 (between pos. 15210694 and 15210076 on <u>NT</u>	008046.17)							
Products on intende	l target								
>NM 003406.3 Homo	sapiens tyrosine 3-monooxygenase/tryptophan 5-mon	ooxygenase activation prot	ein, zeta (Y)	WHAZ), t	ranscrip	ot variant	1, mRN/	۹.	
product length :	= 91								
Forward primer	1 AGGAGATTACTACCGTTACTTGGC 24								
Template	504 527								
Reverse primer	1 AGCTTCTTGGTATGCTTGTTGTG 23								
Template	594 572								
1									
Products on allowed	transcrint variants								
>XM 011517289 1 PR	EDICTED: Homo saniens tyrosine 3-monooyygenase/	tryptophan 5-monooxygen	ase activatio	n proteir	zeta ()		transcri	nt variant X4 mRNA	
product length	= 91	a prophan o monooxygon		in proton	, 2014 (aunoon	pr vanancy r, nn a v r	
Forward primer	1 AGGAGATTACTACCGTTACTTGGC 24								
Template	809 832								
D									
Reverse primer	AGCTTCTTGGTATGCTTGTTGTG 23								
Tempiate	699 6/7								
> <u>XM_005251063.2</u> PR	EDICTED: Homo sapiens tyrosine 3-monooxygenase/	tryptophan 5-monooxygen	ase activatio	n proteir	n, zeta (YWHAZ)	, transcri	pt variant X3, mRNA	
product length =	= 91								
Forward primer	1 AGGAGATTACTACCGTTACTTGGC 24								
Template	663 686								
Reverse primer	1 AGCTTCTTGGTATGCTTGTTGTG 23								
Template	753 731								
÷									
>XM 005251062.2 PR	EDICTED: Homo sapiens tyrosine 3-monooxygenase	tryptophan 5-monooxygen	ase activatio	n proteir	n, zeta (*	YWHAZ)	, transcri	pt variant X2, mRNA	
product length =									
Forward primer	I AGGAGATTACTACCGTTACTTGGC 24								
тещртасе	0/0								
Reverse primer	1 AGCTTCTTGGTATGCTTGTTGTG 23								
Template	766 744								

>XM 005251061.2 PREDICTED: Homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), transcript variant X1, mRNA product length = 91Forward primer 1 AGGAGATTACTACCGTTACTTGGC 24 Template 901 924 Reverse primer 1 AGCTTCTTGGTATGCTTGTTGTG 23 Template 991 969 >NM 001135702.1 Homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), transcript variant 6, mRNA product length = 91Forward primer 1 AGGAGATTACTACCGTTACTTGGC 24 Template 543 566 Reverse primer 1 AGCTTCTTGGTATGCTTGTTGTG 23 Template 633 611 > NM 001135701.1 Homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), transcript variant 5, mRNA product length = 91Forward primer 1 AGGAGATTACTACCGTTACTTGGC 24 Template 524 547 Reverse primer 1 AGCTTCTTGGTATGCTTGTTGTG 23 Template 614 592 >NM 001135700.1 Homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), transcript variant 4, mRNA product length = 91Forward primer 1 AGGAGATTACTACCGTTACTTGGC 24 Template 475 498 Reverse primer 1 AGCTTCTTGGTATGCTTGTTGTG 23 Template 565 543 > MM 001135699.1 Homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), transcript variant 3, mRNA product length = 91 Forward primer 1 AGGAGATTACTACCGTTACTTGGC 24 Template 521 544 Reverse primer 1 AGCTTCTTGGTATGCTTGTTGTG 23 Template 611 589 >NM 145690.2 Homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), transcript variant 2, mRNA product length = 91Forward primer 1 AGGAGATTACTACCGTTACTTGGC 24 Template 578 601 Reverse primer 1 AGCTTCTTGGTATGCTTGTTGTG 23 Template 668 646

YWHAZ PrimerCheck (SpliceCenter der Genomics and Bioinformatics Group, LMP, CCR, NCI, http://projects.insilico.us/SpliceCenter/PrimerCheck.jsp)

YWHAZ

YWHAZ UCSC In-silico-PCR Genome Browser (Dec. 2013 GRCh38/hg38; UCSC Genes; Max. Product Size: 4000; Min. Perfect Match: 15; Min. Good Match: 15; Jim Kent, <u>http://genome-mirror.genomedk.au.dk/cgi-bin/hgPcr</u>)

UCSC In-Silico PCR

The sequences and coordinates shown below are from UCSC Genes, not from the genome assembly. The links lead to the Genome Browser at the position of the entire target sequence.

>uc011lhe.1 YWHAZ:543+633 91bp AGGAGATTACTACCGTTACTTGGC AGCTTCTTGGTATGCTTGTTGTG AGGAGATTACTACCGTTACTTGGCtgaggttgccgctggtgatgacaaga aagggattgtcgatcagtCACAACAAGCATACCAAGAAGCT

>uc011lhf.1 YWHAZ:524+614 91bp AGGAGATTACTACCGTTACTTGGC AGCTTCTTGGTATGCTTGTTGTG AGGAGATTACTACCGTTACTTGGCtgaggttgccgctggtgatgacaaga aagggattgtcgatcagtCACAACAAGCATACCAAGAAGCT

>uc011lhg.1 YWHAZ:273+363 91bp AGGAGATTACTACCGTTACTTGGC AGCTTCTTGGTATGCTTGTTGTG AGGAGATTACTACCGTTACTTGGCtgaggttgccgctggtgatgacaaga aagggattgtcgatcagtCACAACAAGCATACCAAGAAGCT

>uc003yjv.2 YWHAZ:475+565 91bp AGGAGATTACTACCGTTACTTGGC AGCTTCTTGGTATGCTTGTTGTG AGGAGATTACTACCGTTACTTGGCtgaggttgccgctggtgatgacaaga aagggattgtcgatcagtCACAACAAGCATACCAAGAAGCT

>uc010mbg.2 YWHAZ:410+500 91bp AGGAGATTACTACCGTTACTTGGC AGCTTCTTGGTATGCTTGTTGTG AGGAGATTACTACCGTTACTTGGCtgaggttgccgctggtgatgacaaga aagggattgtcgatcagtCACAACAAGCATACCAAGAAGCT

>uc003yjw.2 YWHAZ:578+668 91bp AGGAGATTACTACCGTTACTTGGC AGCTTCTTGGTATGCTTGTTGTG AGGAGATTACTACCGTTACTTGGCtgaggttgccgctggtgatgacaaga aagggattgtcgatcagtCACAACAAGCATACCAAGAAGCT

>uc010mbr.2 YWHAZ:521+611 91bp AGGAGATTACTACCGTTACTTGGC AGCTTCTTGGTATGCTTGTTGTG AGGAGATTACTACCGTTACTTGGCtgaggttgccgctggtgatgacaaga aagggattgtcgatcagtCACAACAAGCATACCAAGAAGCT

>uc003yjx.2 YWHAZ:504+594 91bp AGGAGATTACTACCGTTACTTGGC AGCTTCTTGGTATGCTTGTTGTG AGGAGATTACTACCGTTACTTGGCtgaggttgccgctggtgatgacaaga aagggattgtcgatcagtCACAACAAGCATACCAAGAAGCT YWHAZ UNAFold (Integrated DNA Technologies Inc., Coralville, IA, USA, <u>http://eu.idtdna.com/UNAFold</u>?, Suboptimality 50%)

YWHAZ Amplicon Sequence

5' AGGAGATTACTACCGTTACTTGGCTGAGGTTGCCGCTGGTGATGACAAGAAAGGGATTGTCGATCAGTCACAACAAGCATACCAAGAAGCT 3'

Structures

Structure Name	Image	ΔG (kcal.mole ⁻¹)	T _M (⁰C)	ΔH (kcal.mole ⁻¹)	∆S (cal.K ⁻¹ mole ⁻¹)	Output
1	\bigcirc	0.98	32.5	-10.9	-35.66	Ct Det
2	\bigcirc	1.03	41.9	-18	-57.14	Ct Det
3	Ó	1.06	46.6	-25.3	-79.13	Ct Det
4	Õ	1.3	41.4	-22	-69.94	Ct Det
5	Q	1.47	35.7	-18.6	-60.23	Ct Det
6	\bigcirc	1.52	26	-13.4	-44.79	Ct Det
7	Q	1.57	39	-23.3	-74.64	Ct Det
8	Ŏ	1.74	41.1	-28.9	-91.96	Ct Det
9	O	1.88	18.8	-13.3	-45.56	Ct Det

Created Tue Nay 5 11:55:05 2015 Output of sir_graph (C) afold_util 4.5 Dreated Tue Hay 5 11:55:05 2015

dG = 1,737 uvekx15t2w20h40wcusybukdE635664417035961837

dG = 1,879 uvekxi5t2w20h40wcusybukdE635664417035961837

YWHAZ BeaconDesigner™ Free Edition (Premier BioSoft International, Palo Alto, CA, USA, http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1)

Secondary Structures for Sense Primer			
Dimer:-			
Not Found			
Hairpin:-			
Not Found			
Secondary Structures for Anti-sense Drimer			
Secondary Structures for Anti-sense Primer			
Dimer:-		Cross Dimer	
5' AGCTICTIGGTAIGCTIGITGIG 3' 3' GIGTIGITCGTAIGGTICTICGA 5'	-3.0	Cross Dimer between Sense Primer and Anti-sense Primer:-	
5' AGCTICITGGTATGCITGTIGIG 3' : : ::: 3' GIGTIGITCGTATGGTICITCGA 5'	-1.8	5' AGGAGATTACTACCGTTACTTGGC 3' ; ; ; IIII ; 3' GTGTTGTTCGTATGGTTCTTCGA 5'	-2.2
		3' GTGTTGTTCGTATGGTTCTTCGA 5'	-0.7
Hairpin:-		5' AGGAGATTACTACCGTTACTTGGC 3' 3' GTGTTGTTCGTATGGTTCTTCGA 5'	-0.3
/TTCTTCGA 5' : \GGTATGCTTGTTGTG 3'	-1.8	5' AGGAGATTACTACCGTTACTTGGC 3' 3' GTGTTGTTCGTATGGTTCTTCGA 5'	-0.3

POLR2A PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast)

	Sequence (5'->3')	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	TCGCTTACTGTCTTCCTGTTGG	Plus	22	3798	3819	62.77	50.00	3.00	0.00
Reverse primer	TGTGTTGGCAGTCACCTTCC	Minus	20	3905	3886	62.95	55.00	3.00	3.00
Product length	108								
Total intron size	468 (between pos. 7019488 and 7019957 (on <u>NT_010718.17</u>)							
Products on intend	ed target								
Products on intend >NM 000937.4 Home product length Forward primer Template	ed target p sapiens polymerase (RNA) II (DNA directed) p = 108 1 TCGCTTACTGTCTTCCTGTTGG 3798	olypeptide A, 220kDa (POLR2 22 3819	A), mRNA						

POLR2A PrimerCheck (SpliceCenter der Genomics and Bioinformatics Group, LMP, CCR, NCI, http://projects.insilico.us/SpliceCenter/PrimerCheck.jsp)

POLR2A UCSC In-silico-PCR Genome Browser (Dec. 2013 GRCh38/hg38; UCSC Genes; Max. Product Size: 4000; Min. Perfect Match: 15; Min. Good Match: 15; Jim Kent, <u>http://genome-mirror.genomedk.au.dk/cgi-bin/hgPcr</u>)

UCSC In-Silico PCR

The sequences and coordinates shown below are from UCSC Genes, not from the genome assembly. The links lead to the Genome Browser at the position of the entire target sequence.

```
>uc032eso.1 POLR2A:3798+3905 108bp TCGCTTACTGTCTTCCTGTTGG TGTGTTGGCAGTCACCTTCC
TCGCTTACTGTCTTCCTGTTGGgccagtccgctcgagatgctgagagagc
caaggatattctgtgccgtctggagcatacaacgttgaGGAAGGTGACTG
CCAACACA
```

POLR2A UNAFold (Integrated DNA Technologies Inc., Coralville, IA, USA, http://eu.idtdna.com/UNAFold?, Suboptimality 50%)

POLR2A Amplicon Sequence

5' TCGCTTACTGTCTTCCTGTTGGGCCAGTCCGCTCGAGATGCTGAGAGAGCCAAGGATATTCTGTGCCGTCTGGAGCATACAACGTTGAGGAAGGTGACTGCCAACACA 3'

Structures						
Structure Name	Image	∆G (kcal.mole ⁻¹)	T _M (⁰C)	ΔH (kcal.mole ⁻¹)	∆S (cal.K ⁻¹ mole ⁻¹)	Output
1	\bigcirc	0.11	58.7	-28	-84.38	Ct Det
2	\bigcirc	0.63	48.7	-18.1	-56.23	Ct Det
3	\bigcirc	0.64	50.7	-22.2	-68.55	Ct Det
4	\bigcirc	0.83	49.9	-26.6	-82.35	Ct Det

dG = 0,836 1piufr3jjj5hfb1qwe1xsiroE635665319550488703
POLR2A BeaconDesigner™ Free Edition (Premier BioSoft International, Palo Alto, CA, USA, <u>http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1</u>)

Secondary Structures for Sense Primer		
Dimer:-		
Not Found		
Hairpin:-		
Not Found		
Secondary Structures for Anti-sense Primer		
Dimer:-		Cross Dimer
5' TGTGTTGGCAGTCACCTTCC 3' 111 11 111 3' CCTTCCACTGACGGTTGTGT 5'	1.3	Cross Dimer between Sense Primer and Anti-sense Primer:-
Hairpin:-		5' TCGCTTACTGTCTTCCTGTTGG 3'
-		
		5' TCGCTTACTGTCTCCTGTTGG 3'
/GGTTGTGT 5'		5' TCGCTTACTGTCTTCCTGTTGG 3' 3' CCTTCCACTGACGGTTGTGT 5' -1.1

TBP PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast)

	Sequence (5'->3')	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	CGGCTGTTTAACTTCGCTTCC	Plus	21	79	99	62.54	52.38	5.00	0.00
Reverse primer	TGGGTTATCTTCACACGCCAAG	Minus	22	164	143	63.37	50.00	3.00	2.00
Product length	86								
Total intron size	2418 (between pos. 110324529 and 110326	948 on <u>NT_025741.16</u>)							
P <u>NM 003194.4</u> Homo product length Forward primer Template	sapiens TATA box binding protein (TBP), transc = 86 1 CGGCTGTTTAACTTCGCTTCC 79 99	npi vanant 1, mkna							
Reverse primer Template	1 TGGGTTATCTTCACACGCCAAG 22 16414	3							

TBP UCSC In-silico-PCR Genome Browser (Dec. 2013 GRCh38/hg38; UCSC Genes; Max. Product Size: 4000; Min. Perfect Match: 15; Min. Good Match: 15; Jim Kent, <u>http://genome-mirror.genomedk.au.dk/cgi-bin/hgPcr</u>)

UCSC In-Silico PCR

The sequences and coordinates shown below are from UCSC Genes, not from the genome assembly. The links lead to the Genome Browser at the position of the entire target sequence.

```
>uc003qxu.3 TBP:79+164 86bp CGGCTGTTTAACTTCGCTTCC TGGGTTATCTTCACACGCCAAG
CGGCTGTTTAACTTCGCTTCCgctggcccatagtgatctttgcagtgacc
cagcatcactgtttCTTGGCGTGTGAAGATAACCCA
```

>uc003qxt.3 TBP:79+167 89bp CGGCTGTTTAACTTCGCTTCC TGGGTTATCTTCACACGCCAAG CGGCTGTTTAACTTCGCTTCCgctggcccatagtgatctttgcagtgacc cagcagcatcactgtttCTTGGCGTGTGAAGATAACCCA

TBP PrimerCheck (SpliceCenter der Genomics and Bioinformatics Group, LMP, CCR, NCI, http://projects.insilico.us/SpliceCenter/PrimerCheck.jsp)

TBP

TBP UNAFold (Integrated DNA Technologies Inc., Coralville, IA, USA, <u>http://eu.idtdna.com/UNAFold</u>?, Suboptimality 50%)

TBP Amplicon Sequence

5' CGGCTGTTTAACTTCGCTTCCGCTGGCCCATAGTGATCTTTGCAGTGACCCAGCATCACTGTTTCTTGGCGTGTGAAGATAACCCA 3'

Structures

Structure Name	Image	ΔG (kcal.mole ⁻¹)	T _M (⁰C)	ΔH (kcal.mole ⁻¹)	ΔS (cal.K ⁻¹ mole ⁻¹)	Output
1	Ç	0.26	58.1	-46.1	-139.16	Ct Det
2	B	0.89	53.2	-42.5	-130.23	Ct Det
3	\bigcirc	1.15	44.4	-23.5	-74	Ct Det

Secondary Structures for Sense Primer			
Dimer:-			
5' CGGCTGTTTAACTTCGCTTCC 3' ; ; 3' CCTTCGCTTCAATTTGTCGGC 5'	-0.8		
5' CGCCTGTTTAACTTCCCTTCC 3' 3' CCTTCGCTTCAATTTGTCGGC 5'	-0.7	Cross Dimer	
Hairpin:-		Cross Dimer between Sense Primer and Anti-sense Primer:-	
Not Found			
Secondary Structures for Anti-sense Primer		5' CGGCTGTTTAACTTCGCTTCC 3' ; ;; ; ; 3' GAACCGCACACTTCTATTGGGT 5'	
Dimer:-			-2.4
5' TGGGTTATCTTCACACGCCAAG 3' : : : ::: 3' GAACCGCACACTTCTATTGGGT 5'	-1.5	5' CGGCTGTTTAACTTCGCTTCC 3' ; 3' GAACCGCACACTTCTATTGGGT 5'	
5' TGGGTTATCTCACGCCAAG 3' : : :!: 3' GAACCGCACACTTCTATTGGGT 5'	-0.5	5' CGGCTGTTTAACTTCGCTTCC 3'	-1.4
		3' GAACCGCACACTTCTATTGGGT 5'	-1.0
Hairpin:-		5' CGGCTGTTTAACTTCGCTTCC 3'	
/TCTATTGGGT 5' : : \TCACACGCCAAG 3'	1.5	3' GAACCGCACACTTCTATTGGGT 5'	-0.5
/ACACTTCTATTGGGT 5'	-1.5	5' CGGCTGTTTAACTTCGCTTCC 3'	
\csccaag 3'	-0.5	3' GAACCGCACACTTCTATTGGGT 5'	-0.5

TBP BeaconDesigner[™] Free Edition (Premier BioSoft International, Palo Alto, CA, USA, <u>http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1</u>)

RPL22 PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast)

Primer pair 1											
	Sequence (5'->3')	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity		
Forward primer	TGATTGCACCCACCCTGTAG	Plus	20	115	134	62.18	55.00	4.00	2.00		
Reverse primer	GGTTCCCAGCTTTTCCGTTC	Minus	20	212	193	61.84	55.00	4.00	0.00		
Product length	98										
Total intron size	4597 (between pos. 5611664 and 5607	7066 on <u>NT_032977.10</u>)									
<pre>Products on intended >NM 000983.3 Homo s product length = Forward primer Template Reverse primer Template</pre>	I target sapiens ribosomal protein L22 (RPL22), mf 98 1 TGATTGCACCCACCCTGTAG 115	RNA 0 34 93									

RPL22 UCSC In-silico-PCR Genome Browser (Dec. 2013 GRCh38/hg38; UCSC Genes; Max. Product Size: 4000; Min. Perfect Match: 15; Min. Good Match: 15; Jim Kent, <u>http://genome-mirror.genomedk.au.dk/cgi-bin/hgPcr</u>).

UCSC In-Silico PCR

The sequences and coordinates shown below are from UCSC Genes, not from the genome assembly. The links lead to the Genome Browser at the position of the entire target sequence.

>uc001ame.3_RPL22:115+212 98bp TGATTGCACCCACCTGTAG GGTTCCCAGCTTTTCCGTTC TGATTGCACCCACCCTGTAGaagatggaatcatggatgctgccaattttg agcagtttttgcaagaaaggatcaaagtGAACGGAAAGCTGGGAACC

RPL22 PrimerCheck (SpliceCenter der Genomics and Bioinformatics Group, LMP, CCR, NCI, http://projects.insilico.us/SpliceCenter/PrimerCheck.jsp)

RPL22 UNAFold (Integrated DNA Technologies Inc., Coralville, IA, USA, <u>http://eu.idtdna.com/UNAFold</u>?, Suboptimality 50%)

RPL22 Amplicon Sequence

5' TGATTGCACCCACCCTGTAGAAGATGGAATCATGGATGCTGCCAATTTTGAGCAGTTTTTGCAAGAAAGGATCAAAGTGAACGGAAAAGCTGGGAACC 3'

Structures										
Structure Name	Image	ΔG (kcal.mole ⁻¹)	T _M (⁰C)	ΔH (kcal.mole ⁻¹)	ΔS (cal.K ⁻¹ mole ⁻¹)	Output				
1	\bigcirc	0.34	56.4	-30.8	-93.47	Ct Det				
2	\bigcirc	0.34	52.5	-14.9	-45.75	Ct Det				
3	Õ	0.68	52.9	-31	-95.09	Ct Det				
4	\bigcirc	1.17	44.3	-23.8	-74.97	Ct Det				

dG = 1,176 bsofenlofkbyxtpkwwpvpgnhE635670118072100775

RPL22 BeaconDesigner[™] Free Edition (Premier BioSoft International, Palo Alto, CA, USA, <u>http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1</u>)

EEF1A1 PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast)

Primer pair 1												
	Seq	uence (5'->3')	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity		
Forward primer	CCT	GCCTCTCCAGGATGTCTAC	Plus	22	804	825	64.13	59.09	5.00	2.00		
Reverse primer	GG/	AGCAAAGGTGACCACCATAC	Minus	22	908	887	63.70	54.55	6.00	2.00		
Product length	105											
Total intron size	87 (87 (between pos. 13288764 and 13288676 on <u>NT_025741.16)</u>										
Deaducts as intended toward												
NIM 001402 5 Homo		u aukonyotia translation alangation fast	or 1 olpho 1 (EEE1A1) mDNA									
product length	= 105	eukaryouc translation elongation lact	or Faipha T (EEFTAT), IIIRNA									
Forward primer	1	CCTGCCTCTCCAGGATGTCTAC	22									
Template	804	8	25									
-												
Reverse primer	1	GGAGCAAAGGTGACCACCATAC	22									
Template	908	8	187									
Products on allowed	d transc	ript variants										
> <u>XM_011535514.1</u> PF	REDICTE	ED: Homo sapiens eukaryotic translati	on elongation factor 1 alpha 1 (El	EF1A1), trans	script var	iant X1,	mRNA					
product length	= 105											
Forward primer	1	CCTGCCTCTCCAGGATGTCTAC	22									
Template	1349		1370									
Reverse primer	1	GGAGCAAAGGTGACCACCATAC	22									
Template	1453		1432									
<u>-</u>												

EEF1A1 UCSC In-silico-PCR Genome Browser (Dec. 2013 GRCh38/hg38; UCSC Genes; Max. Product Size: 4000; Min. Perfect Match: 15; Min. Good Match: 15; Jim Kent, <u>http://genome-mirror.genomedk.au.dk/cgi-bin/hgPcr</u>)

UCSC In-Silico PCR

The sequences and coordinates shown below are from UCSC Genes, not from the genome assembly. The links lead to the Genome Browser at the position of the entire target sequence.

>uc003phi.3 EFF1A1:1733+1837 105bp CCTGCCTCTCCAGGATGTCTAC GGAGCAAAGGTGACCACCATAC CCTGCCTCCAGGATGTCTACaaaattggtggtattggtactgttcctg ttggccgagtggagactggtgttctcaaacccgGTATGGTGGTCACCTTT GCTCC >uc033djt.1 EEF1A1:794+898 105bp CCTGCCTCTCCAGGATGTCTAC GGAGCAAAGGTGACCACCATAC CCTGCCTTCCAGGATGTCTACaaaattggtggtattggtactgttcctg ttggccgagtgggagctggtgttctcaaacccgGTATGGTGGTCACCTTT GCTCC >uc003phj.3 EEF1A1:804+908 105bp CCTGCCTCTCCAGGATGTCTAC GGAGCAAAGGTGACCACCATAC CCTGCCTCCCAGGATGTCTACaaaattggtggtattggtactgttcctg ttggccgagtggagactggtgttccaaacccgGTATGGTGGTCACCTTT GCTCC

EEF1A1 PrimerCheck (SpliceCenter der Genomics and Bioinformatics Group, LMP, CCR, NCI, http://projects.insilico.us/SpliceCenter/PrimerCheck.jsp)

EEF1A1

EEF1A1 UNAFold (Integrated DNA Technologies Inc., Coralville, IA, USA, <u>http://eu.idtdna.com/UNAFold</u>?, Suboptimality 50%)

EEF1A1 Amplicon Sequence

5' CCTGCCTCTCCAGGATGTCTACAAAATTGGTGGTATTGGTACTGTTCCTGTTGGCCGAGTGGAGACTGGTGTTCTCAAACCCGGTATGGTGGTCACCTTTGCTCC 3'

Structures

Structure Name	Image	∆G (kcal.mole ⁻¹)	T _M (⁰C)	ΔH (kcal.mole ⁻¹)	ΔS (cal.K ⁻¹ mole ⁻¹)	Output
1	\bigcirc	0.5	54.3	-28.9	-88.25	Ct Det
2	\bigcirc	0.59	49.7	.7 -18.5 -57.3		Ct Det
3	Õ	0.63	48.7	-18.1	-56.23	Ct Det
1	Q	0.84	45.1	-18	-56.56	Ct Det
5	Q	0.87	51.3	-32.5	-100.18	Ct Det
5	Õ	1.12	40.6	-18.2	-58.01	Ct Det
7	Ċ	1.33	43.5	-25.4	-80.22	Ct Det
8	Õ	1.39	18.4	-9.7	-33.28	Ct Det
)	\bigcirc	1.44	15.8	-9.4	-32.53	Ct Det

Secondary Structures for Sense Primer	Cross Dimer
Dimer:-	
5' CCTGCCTCTCCAGGAIGTCTAC 3' 1111 1111 3' CATCTGTAGGACCTCTCCGTCC 5' -3.0 5' CCTGCCTCTCCAGGAIGTCTAC 3'	Cross Dimer between Sense Primer and Anti-sense Primer:-
3' CATCTGTAGGACCTCTCCGTCC 5' -1.3 5' CCTGCCTCTCCAGGATGTCTAC 3' i catcataggaTGTCTAC 3' i catcataggaCTCTCCGTCC 5'	5' CCTGCCTCTCCAGGATGTCTAC 3'
-1.3	-2.9
Hairpin:-	5' CCTGCCTCTCCAGGATGTCTAC 3' : 3' CATACCACCAGTGGAAACGAGG 5'
/TCCGTCC 5' \CTCCAGGATGTCTAC 3' -3.0	5' CCTGCCTCTCCAGGATGTCTAC 3'
/TCTCCGTCC 5' ; \CCAGGATGTCTAC 3' -1.3	3' CATACCACCAGTGGAAACGAGG 5' -1.3
Secondary Structures for Anti-sense Primer	5' CCTGCCTCTCCAGGATGTCTAC 3' 3' CATACCACCAGTGGAAACGAGG 5'
Dimer:-	-1.5
5' GGAGCAAAGGTGACCACCATAC 3' : !!!! !!!: 3' CATACCACCASTGGAAACGAGG 5' -3.2	5' CCTGCCTCTCCAGGATGTCTAC 3' 3' CATACCACCAGTGGAAACGAGG 5' -1.1
5' GEAGCAAAGGTGACCACCATAC 3' ; : 3' CATACCACCAGTGGAAACGAGG 5' -1.5	5' CCTGCCTCTCCAGGATGTCTAC 3' 3' CATACCACCAGTGGAAACGAGG 5' -1.0
Hairpin:-	5' CCTGCCTCTCCAGGATGTCTAC 3'
/AGTEGAAACGAGG 5' : \CCACCATAC 3' -1.5	3' CATACCACCAGTGGAAACGAGG 5' -0.5

EEF1A1 BeaconDesigner[™] Free Edition (Premier BioSoft International, Palo Alto, CA, USA, http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1)

RPLP0 PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast)

- · · ·											
Primer pair 1		auenee (El >21)	Tomplete strend	Longth	Ctort	Ston	Tan	CC%	Solf complementarity	Solf 2' complementarity	
	30		Template strand	Lengin	Start	Stop		GC %	Sell complementanty	Sen 3 complementanty	
Forward primer	GA	AACTCIGCATICICGCTICC	Plus	22	802	823	62.34	50.00	4.00	0.00	
Reverse primer	GA	CTCGTTTGTACCCGTTGATG	Minus	22	921	900	62.01	50.00	4.00	0.00	
Product length	12	D									
Total intron size	10	91 (between pos. 82963302 and 8296	2210 on <u>NT_029419.13</u>)								
Products on intended target											
>NM 001002.3 Homo	sapien	s ribosomal protein, large, P0 (RPLP0), transcript variant 1, mRNA								
product length	- 120)									
Forward primer	1	GAAACTCTGCATTCTCGCTTCC	22								
Template	802		823								
Reverse primer	1	GACTCGTTTGTACCCGTTGATG	22								
Template	921		900								
Products on allowed	d trans	cript variants									
> <u>NM 053275.3</u> Homo product length	sapien = 120	s ribosomal protein, large, P0 (RPLP0))), transcript variant 2, mRNA								
Forward primer	1	GAAACTCTGCATTCTCGCTTCC	22								
Template	862		883								
			22								
Reverse primer	1	GACTCGTTTGTACCCGTTGATG									

RPLP0 UCSC In-silico-PCR Genome Browser (Dec. 2013 GRCh38/hg38; UCSC Genes; Max. Product Size: 4000; Min. Perfect Match: 15; Min. Good Match: 15; Jim Kent, <u>http://genome-mirror.genomedk.au.dk/cgi-bin/hgPcr</u>).

UCSC In-Silico PCR

The sequences and coordinates shown below are from UCSC Genes, not from the genome assembly. The links lead to the Genome Browser at the position of the entire target sequence.

>uc001txp.3 __RPLP0:862+981 120bp GAAACTCTGCATTCTGCCTTCC GACTCGTTTGTACCCGTTGATG GAAACTCTGCATTCTGCTTCCtggagggtgtccgcaatgttgccagtgt ctgtctgcaggattgctacccaactgttgcatcagtaccccattctatCA TCAACGGGTACAAACGAGTC >uc001txq.3 __RPLP0:802+921 120bp GAAACTCTGCATTCTGCGTTCC GACTCGTTTGTACCCGTTGATG GAAACTCTGCATTCTGCGTTCCtggagggtgtccgcaatgttgccagtgt ctgtctgcagattggctacccaactgttgcatcagtaccccattctatCA TCCAACGGTACAAACGAGTC RPLP0 PrimerCheck (SpliceCenter der Genomics and Bioinformatics Group, LMP, CCR, NCI, http://projects.insilico.us/SpliceCenter/PrimerCheck.jsp)

RPLP0

RPLP0 UNAFold (Integrated DNA Technologies Inc., Coralville, IA, USA, <u>http://eu.idtdna.com/UNAFold</u>?, Suboptimality 50%)

RPLP0 Amplicon Sequence

5' GAAACTCTGCATTCTCGCTTCCTGGAGGGTGTCCGCAATGTTGCCAGTGTCTGCAGATTGGCTACCCAACTGTTGCATCAGTACCCCATTCTATCATCAACGGGTACAAACGAGTC 3'

Structures

Structure Name	Image	ΔG (kcal.mole ⁻¹)	T _M (⁰C)	ΔH (kcal.mole ⁻¹)	ΔS (cal.K ⁻¹ mole ⁻¹)	Outpu	it
1	Q.	0.15	59	-51	-153.54	Ct I	Det
2	Õ	0.67	52.1	-27.6	-84.86	Ct I	Det
3	Ŏ	0.69	52.3	-29.1	-89.41	Ct I	Det
4	\bigcirc	0.76	50.8	-26.9	-83.03	Ct I	Det
5	Ô	0.85	49.4	-25.9	-80.29	Ct I	Det
6	ð	0.95	55.1	-63.5	-193.46	Ct I	Det
7	Q	1.12	42.1	-19.7	-62.49	Ct I	Det

RPLP0 BeaconDesigner[™] Free Edition (Premier BioSoft International, Palo Alto, CA, USA, <u>http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1</u>)

RNA18S5 PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast)

Primer pair 1									
	Sequence (5'->3')	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	AACTGCGAATGGCTCATTAAATC	Plus	23	84	106	60.55	39.13	6.00	3.00
Reverse primer	GCCCGTCGGCATGTATTAG	Minus	19	186	168	60.86	57.89	5.00	1.00
Product length	103								
Product length	103								

RNA18S5 UCSC In-silico-PCR Genome Browser (Dec. 2013 GRCh38/hg38; UCSC Genes; Max. Product Size: 4000; Min. Perfect Match: 15; Min. Good Match: 15; Jim Kent, <u>http://genome-mirror.genomedk.au.dk/cgi-bin/hgPcr</u>).

UCSC In-Silico PCR
The sequences and coordinates shown below are from UCSC Genes, not from the genome assembly. The links lead to the Genome Browser at the position of the entire target sequence.
> <u>uc032qts.1_RNA4555:3742+3844</u> 103bp AACTGCGAATGGCTCATTAAATC GCCCGTCGGCATGTATTAG AACTGCGAATGGCTCATTAAATCagttatggttcctttggtcgctcgctc ctctcctacttggataactgtggtaattctagagCTAATACATGCCGACG GGC
> <u>uc032ptn.1_RNA18955:84+186</u> 103bp_AACTGCGAATGGCTCATTAAATC_GCCCGTCGGCATGTATTAG AACTGCGAATGGCTCATTAAATCagttatggttcetttggtegetegete eteteetaettggataaetgtggtaattetagagCTAATACATGCCGACG GGC
> <u>uc032ptu.1_RNA4585:3738+3840</u> 103bp AACTGCGAATGGCTCATTAAATC GCCCGTCGGCATGTATTAG AACTGCGAATGGCTCATTAAATCagttatggttcetttggtcgetcgctc ctctcctacttggataactgtggtaattetagagCTAATACATGCCGACG GGC
> <u>uc033dni.1_RNA1885:84+186</u> 103bp_AACTGCGAATGGCTCATTAAATC_GCCCGTCGGCATGTATTAG AACTGCGAATGGCTCATTAAATCagttatggttcetttggtegetegete eteteetaettggataaetgtggtaattetagagCTAATACATGCCGACG GGC
> <u>uc032pst.1_RNA18855:84+186</u> 103bp_AACTGCGAATGGCTCATTAAATC_GCCCGTCGGCATGTATTAG AACTGCGAATGGCTCATTAAATCagttatggttcctttggtcgctcgctc ctctcctacttggataactgtggtaattctagagCTAATACATGCCGACG GGC
>uc032qty.1 RNA1885:84+186 103bp AACTGCGAATGGCTCATTAAATC GCCCGTCGGCATGTATTAG AACTGCGAATGGCTCATTAAATCagttatggttcctttggtcgctcgctc ctctcctacttggataactgtggtaattctagagCTAATACATGCCGACG GGC
>uc033dng.1_RNA4585:3738+3840_103bp_AACTGCGAATGGCTCATTAAATC_GCCCGTCGGCATGTATTAG AACTGCGATGGCTCATTAAATCagttatggttactttggtogetcgctc ctctcctacttggataactgtggtaattctagagCTAATACATGCCGACG GGC

RNA18S5 UNAFold (Integrated DNA Technologies Inc., Coralville, IA, USA, http://eu.idtdna.com/UNAFold?, Suboptimality 50%)

RNA18S5 Amplicon Sequence

Structures

Structure Name	Image	ΔG (kcal.mole ⁻¹)	T _M (⁰C)	ΔH (kcal.mole ⁻¹)	ΔS (cal.K ⁻¹ mole ⁻¹)	Output
1	\bigcirc	0.08	58.9	-25.6	-77.09	Ct Det
2	Ó	0.77	47.2	-19.4	-60.55	Ct Det
3	\bigcirc	0.99	46.1	-22.8	-71.42	Ct Det

Secondary Structures for Sense Primer	Cross Dimer	
Dimer:-		
5' AACTGCGAATGGCTCATTAAATC 3' 3' CTAAATTACTCGGTAAGCGTCAA 5' -1.7	Cross Dimer between Sense Primer and Anti-sense Primer:-	
S' AACTGCGAATGGCTCATTAARTC 3' 3' CTAARTTACTCGGTAAGCGTCAA 5' 5' AACTGCGAATGGCTCATTAARTC 3' 111 ;;; 3' CTAARTTACTCGGTAAGCGTCAA 5' 0.0	5' AACTGCGAATGGCTCATTAAATC 3' 3' GATTATGTACGGCTGCCCG 5'	-2.4
Hairpin:- /ggtaagggtgaa 5' C \TCAITAAATC 3' -1.7	5' AACTGCGAATGGCTCATTAAATC 3' 3' GATTATGTACGGCTGCCCG 5' 5' AACTGCGAATGGCTCATTAAATC 3' 	-2.0
	3' GATTATGTACGGCTGCCCG 5'	-0.5
Secondary Structures for Anti-sense Primer Dimer:- 51 GCCCSTCGSCATGTATIAG 31	5' AACTGCGAATGGCTCATTAAATC 3' ¦ 3' GATTATGTACGGCTGCCCG 5'	
3' GATTATGTACGGCTGCCCG 5' -2.4 5' GCCCGTCGGCATGTATTAG 3' 111 111	5' AACTGCGAATGGCTCATTAAATC 3'	-0.5
3' GATTATGTACGGCTGCCCG 5' -2.4 5' GCCCGTCGGCATGTATTAG 3'	3' GATTATGTACGGCTGCCCG 5'	0.0
3' GATTATGTACGGCTGCCCG 5' -2.3	5' AACTGCGAATGGCTCATTAAATC 3' 3' GATTATGTACGGCTGCCCG 5'	0.0
Hairpin:-	5' AACTGCGAATGGCTCATTAAATC 3'	
/GCCCG 5' \TCGGCATGTATTAG 3' -2.4	3' GATTATGTACGGCTGCCCG 5'	0.3

RNA18S5 BeaconDesigner[™] Free Edition (Premier BioSoft International, Palo Alto, USA, <u>http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1</u>)

Supplementary Data 2. RNA integrity analysis. Experimental groups: K7-K12 = control; D7-D12 = compressive orthodontic force; Agac7-Agac12 = bacterial lysate (periodontitis).

08.03.2017 10:01:40 08.03.2017 10:25:31

Created: Modified:

Assay Class: Eukaryote Total RNA Nano Data Path: E:\...Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-01-40.xad

Electrophoresis File Run Summary (Chip Summary)

Sample Name	Sample Comment	Status	Result Label	Result Color
58 Z2 K		~	RIN:10	
58 Z2 D		~	RIN:10	
60 Z2 K		~	RIN: 9.70	
60 Z2 D		~	RIN: 9.60	
62 Z2 K		~	RIN:10	
62 Z2 D		~	RIN: 9.80	
К7		~	RIN:10	
K8		~	RIN: 9.90	
К9		~	RIN:10	
K10		×	RIN:10	
K11		~	RIN: 9.90	
K12		~	RIN: 9.90	
Ladder		×	All Other Samples	

Chip Lot #

Reagent Kit Lot #

Chip Comments :

Electrophoresis Assay Details

General Analysis Settings

Number of Available Sample and Ladder Wells (Max.) : 13 Minimum Visible Range [s] : 17 Maximum Visible Range [s] : 70 Start Analysis Time Range [s] : 19 End Analysis Time Range [s] : 69 Ladder Concentration $[ng/\mu I]$: 150 Lower Marker Concentration $[ng/\mu I]$: 0 Upper Marker Concentration $[ng/\mu I]$: 0 Upper Marker for Quantitation Standard Curve Fit is Logarithmic Show Data Aligned to Lower Marker

Integrator Settings

Integration Start Time [s] : 19 Integration End Time [s] : 69 Slope Threshold : 0,6 Height Threshold [FU] : 0,5 Area Threshold : 0,2 Width Threshold [s] : 0,5 Baseline Plateau [s] : 6

Filter Settings

Filter Width [s] : 0,5 Polynomial Order : 4

Ladder

Ladder Peak	Size
1	25
2	200
3	500
4	1000
5	2000
6	4000

Created: 08.03.2017 10:01:40 Modified: 08.03.2017 10:25:31

 Assay Class:
 Eukaryote Total RNA Nano
 Created:
 08.03.2017 10:01:40

 Data Path:
 E:\...Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-01-40.xad
 Modified:
 08.03.2017 10:25:31

 Electropherogram Summary Continued ...
 Electropherogram Summary Continued ...
 Electropherogram Summary Continued ...
 08.03.2017 10:25:31

Nome	Chart Time [e]	End Time [e]		0/ of total Aven
name	Start Time [S]	End Time [S]	Агеа	% of total Area
18S	41,44	42,97	298,3	22,1
28S	47,40	50,59	547,4	40,6

Assay Class:	Eukaryote Total RNA Nano	Created:	08.03.2017 10:01:40
Data Path:	E:\Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-01-40.xad	Modified:	08.03.2017 10:25:31
Electrophero	ogram Summary Continued		

Fragment table for sample 8 : <u>K8</u>						
Name	Start Time [s]	End Time [s]	Area	% of total Area		
18S	41,39	42,92	424,1	22,4		
28S	47,31	50,51	757,6	40,0		

© Copyright 2003 - 2009 Agilent Technologies, Inc.

Printed: 08.03.2017 10:13:43

Assay Class:Eukaryote Total RNA NanoCreated:08.03.2017 10:01:40Data Path:E:\...Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-01-40.xadModified:08.03.2017 10:25:31Electropherogram Summary Continued ...Electropherogram Summary Continued ...Electropherogram Summary Continued ...Electropherogram Summary Continued ...

Electropherogram Summary Continued ...

18S	41,34	42,87	312,2	22,1	
285	47,23	50,47	568,9	40,2	

Assay Class: Created: Eukaryote Total RNA Nano 08.03.2017 10:01:40 Data Path: E:\...Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-01-40.xad Modified: 08.03.2017 10:25:31

Electropherogram Summary Continued ...

Name	Start Time [s]	End Time [s]	Area	% of total Are
18S	41,27	42,76	358,9	21,6
28S	47,14	50,36	652,4	39,3

Assay Class: Data Path: Eukaryote Total RNA Nano E:\...Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-01-40.xad 08.03.2017 10:01:40 08.03.2017 10:25:31 Created: Modified:

Electropherogram Summary Continued ...

Fragment table for sample 11 : <u>K11</u>						
Name	Start Time [s]	End Time [s]	Area	% of total Area		
18S	41,26	42,75	306,4	21,5		
285	47,15	50,19	555,1	38,9		

Assay Class:Eukaryote Total RNA NanoCreated:08.03.2017 10:01:40Data Path:E:\...Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-01-40.xadModified:08.03.2017 10:25:31Electropherogram Summary Continued ...Electropherogram Summary Continued ...Electropherogram Summary Continued ...Electropherogram Summary Continued ...

K12 [FU] 350 300 250 200-150-100-50-1582 0 20 25 30 35 40 45 50 55 60 [s]

RNA Area:	1.415,8	RNA Integrity Number (RIN):	9.9 (B.02.08)
RNA Concentration:	495 ng/µl	Result Flagging Color:	
rRNA Ratio [28s / 18s]:	1,7	Result Flagging Label:	RIN: 9.90

Fragme	nt table for sampl	e 12 : <u>K12</u>		
Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	40,54	42,93	318,9	22,5
285	47,21	50,50	528,1	37,3

<u>K12</u>

Overall Results for sample 12 :

Assay Cla Data Pat Gel Ima	ass: h: age	Eukaryote E:\Eukar	Total RNA yote Total	Nano RNA Nano <u>-</u>	_DE72901	710_2017-	03-08_10-0	01-40.xad		Cre Mo	eated: dified:	08.03.201 08.03.201	17 10:01:40 17 10:25:31
[\$]	Ladder	58 Z2 K	58 Z2 D	60 Z2 K	60 Z2 D	62 Z2 K	62 Z2 D	K7	K8	К9	K10	KII	K12
67 -	٠												
66 —													
65 -													
63 -													
62 -													
61 — 60 —													
59 —													
58 -													
56 -													
55 —													
54 53													
52 -													
51 -													
49 -		_	_		_				_	_	_		_
48 —		-											
47													
45 —													
44 -													
42 -	_					_		_	_				_
41 —													
40 — 39 —													
38 -	_												
37 -													
35 -													
34 —													
33 — 32 —	_												
31 -													
30 -													
28 -	_												
27 —													
26													
24 -													
23 -		_											
22													
20 -													
19 — 18 —													
17 —													
16 -			,	2	4	5	6	7	0	0	10		17

2100 Expert (B.02.08.SI648)

50 55 60 65 [s]

[FU] 100

50

0

20 25 30 35 40 45

Printed: 08.03.2017 10:39:38

100

0

20 25 30 35 40 45 50 55 60 65 [s]

08.03.2017 10:30:01 08.03.2017 10:53:07

Created: Modified:

Assay Class: Eukaryote Total RNA Nano Data Path: E:\...Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-30-01.xad

Electrophoresis File Run Summary (Chip Summary)

Sample Name	Sample Comment	Status	Result Label	Result Color
D7		~	RIN: 9.50	
D8		~	RIN: 9.80	
D9		~	RIN:10	
D10		~	RIN: 9.80	
D11		~	RIN: 9.80	
D12		~	RIN: 9.80	
Agac7		~	RIN: 9.90	
Agac8		~	RIN:10	
Agac9		~	RIN: 9.80	
Agac10		~	RIN: 9.80	
Agac11		~	RIN: 9.50	
Agac12		~	RIN: 9.90	
Ladder		~	All Other Samples	

Chip Lot #

Reagent Kit Lot #

Chip Comments :

2100 Expert (B.02.08.SI648)

 $\ensuremath{\textcircled{C}}$ Copyright 2003 - 2009 Agilent Technologies, Inc.

Assay Class: Eukaryote Total RNA Nano Data Path: E:\...Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-30-01.xad

Electrophoresis Assay Details

General Analysis Settings

Number of Available Sample and Ladder Wells (Max.) : 13 Minimum Visible Range [s] : 17 Maximum Visible Range [s] : 70 Start Analysis Time Range [s] : 19 End Analysis Time Range [s] : 69 Ladder Concentration $[ng/\mu I]$: 150 Lower Marker Concentration $[ng/\mu I]$: 0 Upper Marker Concentration $[ng/\mu I]$: 0 Used Lower Marker for Quantitation Standard Curve Fit is Logarithmic Show Data Aligned to Lower Marker

Integrator Settings

Integration Start Time [s] : 19 Integration End Time [s] : 69 Slope Threshold : 0,6 Height Threshold [FU] : 0,5 Area Threshold : 0,2 Width Threshold [s] : 0,5 Baseline Plateau [s] : 6

Filter Settings

Filter Width [s] : 0,5 Polynomial Order : 4

Ladder

Ladder Peak	Size		
1	25		
2	200		
3	500		
4	1000		
5	2000		
6	4000		

Created: 08.03.2017 10:30:01 Modified: 08.03.2017 10:53:07
Assay Class: Eukaryote Total RNA Nano Data Path: Created: 08.03.2017 10:30:01 Modified: 08.03.2017 10:30:01 08.03.2017 10:53:07 Electropherogram Summary D7

Overall Results for sample 1 : <u>D7</u>				
RNA Area:	479,7	RNA Integrity Number (RIN):	9.5 (B.02.08)	
RNA Concentration:	201 ng/µl	Result Flagging Color:		
rRNA Ratio [28s / 18s]:	1,6	Result Flagging Label:	RIN: 9.50	

Fragment table for sample 1 : <u>D7</u>				
Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	40,71	42,91	97,1	20,2
28S	47,39	50,41	156,1	32,5

Assay Class: Data Path: Eukaryote Total RNA Nano E:\...Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-30-01.xad 08.03.2017 10:30:01 08.03.2017 10:53:07 Created: Modified: Electropherogram Summary Continued ... D8 [FU] 140-120-100-80-60-40-20-0. 500 30 35 40 60 20 25 45 50 55 65 [s] **Overall Results for sample 2 :** D8 RNA Area: 718,9 RNA Integrity Number (RIN): 9.8 (B.02.08) **RNA** Concentration: Result Flagging Color: 302 ng/µl rRNA Ratio [28s / 18s]: 1,7 Result Flagging Label: RIN: 9.80 Fragment table for sample 2 : D8

Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	41,32	42,92	153,6	21,4
28S	47,13	50,61	267,8	37,2

Assay Class: Data Path: Eukaryote Total RNA Nano E:\...Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-30-01.xad 08.03.2017 10:30:01 08.03.2017 10:53:07 Created: Modified:

Electropherogram Summary Continued ...

RNA Area:	520,9	RNA Integrity Number (RIN):	10 (B.
RNA Concentration:	219 ng/µl	Result Flagging Color:	
rRNA Ratio [28s / 18s]:	1,6	Result Flagging Label:	RIN:10

inagine	Taginene able for sample 5 : <u>b5</u>					
Name	Start Time [s]	End Time [s]	Area	% of total Area		
18S	40,72	42,93	120,5	23,1		
285	47,60	50,58	196,5	37,7		

DO

Fragment table for sample 3

Eukaryote Total RNA Nano E:\...Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-30-01.xad 08.03.2017 10:30:01 08.03.2017 10:53:07 Assay Class: Created: Data Path: Modified: Electropherogram Summary Continued ... D10 [FU] 120 100-80-60-40. 20-1582 0. 20 30 35 25 40 45 50 55 60 65 [s] **Overall Results for sample 4 :** D10 RNA Area: 534,3 RNA Integrity Number (RIN): 9.8 (B.02.08) **RNA** Concentration: 224 ng/µl Result Flagging Color: rRNA Ratio [28s / 18s]: 1,6 **Result Flagging Label:** RIN: 9.80 Fragment table for sample 4 : D10 Name Start Time [s] End Time [s] % of total Area Area

185

285

40,84

47,35

43,04

50,60

122,9

197,5

23,0

37,0

Electrophere	ogram Summary Continued		
Data Path:	E:\Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-30-01.xad	Modified:	08.03.2017 10:53:07
Assay Class:	Eukaryote Total RNA Nano	Created:	08.03.2017 10:30:01

RNA Area:	687,2	RNA Integrity Number (RIN):	9.8 (B.02.08)
RNA Concentration:	289 ng/µl	Result Flagging Color:	
rRNA Ratio [28s / 18s]:	1,6	Result Flagging Label:	RIN: 9.80

Fragment table for sample 5 : <u>D11</u>					
Name	Start Time [s]	End Time [s]	Area	% of total Area	
18S	40,69	43,09	156,2	22,7	
28S	47,39	50,65	247,1	36,0	

Assay Class: Data Path: Eukaryote Total RNA Nano E:\...Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-30-01.xad 08.03.2017 10:30:01 08.03.2017 10:53:07 Created: Modified: Electropherogram Summary Continued ...

Fragment table for sample 6 : <u>D12</u>				
Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	41,31	42,89	207,1	22,0
285	47,15	50,55	357,4	37,9

 Assay Class:
 Eukaryote Total RNA Nano
 Created:

 Data Path:
 E:\...Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-30-01.xad
 Modified:

Electropherogram Summary Continued ...

Name	Start Time [s]	End Time [s]	Area	% of total
18S	41,26	42,79	341,8	21,8
285	47,01	50,37	595,8	38,1

Assay Class:Eukaryote Total RNA NanoCreated:08.03.2017 10:30:01Data Path:E:\...Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-30-01.xadCreated:08.03.2017 10:30:01Modified:08.03.2017 10:53:07

Electropherogram Summary Continued ...

Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	41,25	42,84	147,8	20,7
28S	47,36	50,34	267,2	37,5

Created: Assay Class: Eukaryote Total RNA Nano 08.03.2017 10:30:01 E:\...Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-30-01.xad Data Path: Modified: 08.03.2017 10:53:07

Electropherogram Summary Continued ...

18S 41,23 285 46,98 186,9

50,21

333,0

19,8 35,3 Assay Class:Eukaryote Total RNA NanoCreated:08.03.2017 10:30:01Data Path:E:\...Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-30-01.xadModified:08.03.2017 10:53:07

Electropherogram Summary Continued ...

RNA Area:	1.401,0	RNA Integrity Number (RIN):	9.8 (B.02.08)
RNA Concentration:	588 ng/µl	Result Flagging Color:	
rRNA Ratio [28s / 18s]:	1,8	Result Flagging Label:	RIN: 9.80

Fragment table for sample 10 : <u>Agac10</u>								
Name	Start Time [s]	End Time [s]	Area	% of total Area				
18S	41,12	42,62	294,2	21,0				
28S	46,21	50,14	527,0	37,6				

Assay Class:Eukaryote Total RNA NanoCreated:08.03.2017 10:30:01Data Path:E:\...Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-30-01.xadModified:08.03.2017 10:53:07

Electropherogram Summary Continued ...

RNA Area:	705,5	RNA Integrity Number (RIN):	9.5 (B.02.08)
RNA Concentration:	296 ng/µl	Result Flagging Color:	
rRNA Ratio [28s / 18s]:	1,6	Result Flagging Label:	RIN: 9.50

Fragment table for sample 11 : <u>Agac11</u>								
Name	Start Time [s]	End Time [s]	Area	% of total Area				
18S	40,32	42,76	133,9	19,0				
28S	47,14	50,36	218,9	31,0				

Assay Class: Data Path: Eukaryote Total RNA Nano E:\...Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-30-01.xad Created: Modified: 08.03.2017 10:30:01 08.03.2017 10:53:07

Electropherogram Summary Continued ...

RNA Area:	985,1	RNA Integrity Number (RIN):	9.9 (B.02.08)
RNA Concentration:	414 ng/µl	Result Flagging Color:	
rRNA Ratio [28s / 18s]:	1,6	Result Flagging Label:	RIN: 9.90

Fragment table for sample 12 : <u>Agac12</u>								
Name	Start Time [s]	End Time [s]	Area	% of total Area				
18S	40,52	42,71	216,0	21,9				
285	47,09	50,26	354,0	35,9				

© Copyright 2003 - 2009 Agilent Technologies, Inc.

08.03.2017 10:39:38 Printed:

E:\Éuka									accu.	00,00,20.	1/ 10.00.0
	E:\Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-30-01.xad Modified:					lified:	08.03.2017 10:53:0				
01	38	60	010	11	012	lac7	lac8	lac9	ac 10	ac11	ac 12
-	_	-			-	1	Ac	Ac.	Aq	Aq	Aq
÷	_	_	_	_	_	_	_	_		_	_
		_			_	-			_		_
- <u></u>	_	_	_	_	_	_	_	_	_	_	
-											
_											

2100 Expert (B.02.08.SI648)

© Copyright 2003 - 2009 Agilent Technologies, Inc.

Printed: 08.03.2017 10:39:38

Supplementary Data 3. Amplification plot and Melting curve analysis (RT-qPCR).

qPCR program (used in all qPCR runs)

POLR2A (main qPCR)

Melting curve

RPL22 (main qPCR) - dl / dT (%)

40 42 44

Fluorescence (norm)

Amplification plot

Melting curve

RNA18S5 (main qPCR)

Amplification plot

RPLP0 (main qPCR)

Amplification plot

Melting curve

YWHAZ (efficiency qPCR – standard curve)

Melting curve

RPL22 (efficiency qPCR - standard curve)

Amplification plot

Supplementary Data 4. Evaluation of qPCR primer efficiency (factor-specific). Log_{10} serial dilution of cDNA stock solution (1,000,000 pg RNA equivalent) was performed in triplets. From the resulting C_q values a standard curve was created by linear regression.

<u>GAPDH</u>	(factor-specific	primer	efficiency)
--------------	------------------	--------	-------------

	RNA					
	equivalent	Cq	Cq	Cq	Cq	cDNA
Gene	[pg]	Triplet	95%CI	Mean	SD	dilution
GAPDH	100000	14.60	14 56			
GAPDH	100000	14.65	14.50	14.627	0.025	1:10
GAPDH	100000	14.63	/14.05			
GAPDH	10000	17.91	1774			
GAPDH	10000	17.89	/18 15	17.947	0.081	1:10 ²
GAPDH	10000	18.04	/10.15			
GAPDH	1000	21.56	21 11			
GAPDH	1000	21.30	/21.11	21.433	0.130	$1:10^{3}$
GAPDH	1000	21.44	/21.70			
GAPDH	100	24.90	24 74			
GAPDH	100	25.03	/25 29	25.017	0.111	$1:10^{4}$
GAPDH	100	25.12	725.25			
GAPDH	10	28.27	27.05			
GAPDH	10	28.69	/29 1/	28.547	0.240	1:10 ⁵
GAPDH	10	28.68	723.14			
GAPDH	1	33.26	20 80			
GAPDH	1	31.55	/34 53	32.163	0.952	1:10 ⁶
GAPDH	1	31.68	, 54.55			
GAPDH	NTC	39.62				

PPIB ((factor-s	pecific	primer	efficiency)
	`				

	RNA					
	equivalent	Cq	Cq	Cq	Cq	cDNA
Gene	[pg]	Triplet	95%CI	Mean	SD	dilution
PPIB	100000	16.91	16.99			
PPIB	100000	16.90	/16 92	16.900	0.010	1:10
PPIB	100000	16.89	/10.52			
PPIB	10000	20.21	20.00			
PPIB	10000	20.11	/20.00	20.143	0.058	$1:10^{2}$
PPIB	10000	20.11	720.25			
PPIB	1000	23.72	23.60			
PPIB	1000	23.82	/23.00	23.750	0.061	1:10 ³
PPIB	1000	23.71	725.50			
PPIB	100	27.19	26.00			
PPIB	100	27.47	/27 94	27.420	0.210	$1:10^{4}$
PPIB	100	27.60	727.54			
PPIB	10	31.14	20.21			
PPIB	10	30.60	/31 66	30.933	0.291	1:10 ⁵
PPIB	10	31.06	751.00			
PPIB	1	33.62	21 10			
PPIB	1	36.03	/30 07	35.573	1.770	1:10 ⁶
PPIB	1	37.07	133.37			
PPIB	NTC	35.92				

YWHAZ	(factor-sp	pecific	primer	efficiency)
	\ I			, ,

	RNA					
	equivalent	Cq	Cq	Cq	Cq	cDNA
Gene	[pg]	Triplet	95%CI	Mean	SD	dilution
YWHAZ	100000	17.20	16.05			
YWHAZ	100000	17.10	10.05	17.100	0.100	1:10
YWHAZ	100000	17.00	/1/.55			
YWHAZ	10000	20.33	20.21			
YWHAZ	10000	20.26	/20.21	20.300	0.036	1:10 ²
YWHAZ	10000	20.31	/20.55			
YWHAZ	1000	24.04	22 01			
YWHAZ	1000	23.98	/24 08		0.030	1:10 ³
YWHAZ	1000	24.01	/24.00	24.010		
YWHAZ	100	27.72	27 52			
YWHAZ	100	27.66	/27.55	27.733	0.081	1:10 ⁴
YWHAZ	100	27.82	727.55			
YWHAZ	10	31.34	20.26			
YWHAZ	10	31.11	/31 85	31.053	0.319	1:10 ⁵
YWHAZ	10	30.71	/51.05			
YWHAZ	1	36.90	30 73			
YWHAZ	1	34.03	/39 16	34.943	1.696	1:10 ⁶
YWHAZ	1	33.90	/35.10			
YWHAZ	NTC	-				

|--|

	RNA					
	equivalent	Cq	Cq	Cq	Cq	cDNA
Gene	[pg]	Triplet	95%CI	Mean	SD	dilution
POLR2A	100000	20.01	10.02			
POLR2A	100000	20.08	19.95	20.033	0.040	1:10
POLR2A	100000	20.01	/20.15			
POLR2A	10000	23.11	22.01			
POLR2A	10000	23.23	25.01 /23.37	23.193	0.072	$1:10^{2}$
POLR2A	10000	23.24	/23.37			
POLR2A	1000	26.72	26.21			
POLR2A	1000	27.04	20.31	26.810	0.201	1:10 ³
POLR2A	1000	26.67	/2/.51			
POLR2A	100	30.51	20.72			
POLR2A	100	30.29	29.72 /31 /17	30.593	0.352	$1:10^{4}$
POLR2A	100	30.98	/51.4/			
POLR2A	10	36.85	20.14			
POLR2A	10	32.99	/39 7/	33.985	1.407	1:10 ⁵
POLR2A	10	34.98	755.74			
POLR2A	1	37.83	24 50			
POLR2A	1	35.88	/39 49	36.993	1.004	1:10 ⁶
POLR2A	1	37.27	, 55.45			
POLR2A	NTC	37.11				

<u>TBP</u> (factor-specific primer efficiency)

	RNA					
	equivalent	Cq	Cq	Cq	Cq	cDNA
Gene	[pg]	Triplet	95%CI	Mean	SD	dilution
ТВР	100000	26.53	26 46			
ТВР	100000	26.53	20.40	26.550	0.035	1:10
ТВР	100000	26.59	720.04			
твр	10000	29.80	20 72			
твр	10000	29.76	/29.72	29.773	0.023	1:10 ²
ТВР	10000	29.76	725.05			
твр	1000	33.35	22.06			
твр	1000	33.89	/3// 30	33.627	0.270	1:10 ³
ТВР	1000	33.64	754.50			
ТВР	100	35.19	2/ 28			
ТВР	100	36.29	/37.07	35.677	0.561	$1:10^{4}$
ТВР	100	35.55	757.07			
ТВР	10	-				
ТВР	10	41.11	-	41.110	-	1:10 ⁵
ТВР	10	-				
ТВР	1	-				
ТВР	1	39.08	-	39.080	-	1:10 ⁶
ТВР	1	-				
ТВР	NTC	-				

RPL22 ((factor-s	pecific	primer	efficiency)

	RNA					
	equivalent	Cq	Cq	Cq	Cq	cDNA
Gene	[pg]	Triplet	95%CI	Mean	SD	dilution
RPL22	100000	18.09	17 00			
RPL22	100000	17.97	17.00	18.037	0.061	1:10
RPL22	100000	18.05	/10.15			
RPL22	10000	20.86	20 77			
RPL22	10000	20.81	/20.77	20.840	0.026	$1:10^{2}$
RPL22	10000	20.85	720.51			
RPL22	1000	24.37	7/ 22			
RPL22	1000	24.38	/24.55	24.367	0.015	1:10 ³
RPL22	1000	24.35	724.40			
RPL22	100	28.18	20 01			
RPL22	100	28.22	20.04	28.247	0.083	$1:10^{4}$
RPL22	100	28.34	720.45			
RPL22	10	32.68	21 50			
RPL22	10	32.04	/33 24	32.413	0.333	1:10 ⁵
RPL22	10	32.52	755.24			
RPL22	1	34.16				
RPL22	1	34.16	-	34.160	0.000	1:10 ⁶
RPL22	1	34.16				
RPL22	NTC	-				

EEF1A1	(factor-sp	pecific	primer	efficiency))
	\ I			, ,	

	RNA					
	equivalent	Cq	Cq	Cq	Cq	cDNA
Gene	[pg]	Triplet	95%CI	Mean	SD	dilution
EEF1A1	100000	16.72	16.25			
EEF1A1	100000	16.92	10.25	16.727	0.190	1:10
EEF1A1	100000	16.54	/1/.20			
EEF1A1	10000	19.16	10 76			
EEF1A1	10000	19.37	/10.70	19.187	0.172	$1:10^{2}$
EEF1A1	10000	19.03	/15.01			
EEF1A1	1000	22.54	22.21			
EEF1A1	1000	23.01	/23.21	22.820	0.248	1:10 ³
EEF1A1	1000	22.91	723.44			
EEF1A1	100	25.53	2/1 Q1			
EEF1A1	100	26.31	/24.01	26.127	0.529	1:10 ⁴
EEF1A1	100	26.54	/2/.44			
EEF1A1	10	30.23	20.28			
EEF1A1	10	29.74	/30.60	29.987	0.245	1:10 ⁵
EEF1A1	10	29.99	, 50.00			
EEF1A1	1	33.03	31 70			
EEF1A1	1	32.83	/33 71	32.703	0.405	1:10 ⁶
EEF1A1	1	32.25	, 55.71			
EEF1A1	NTC	-				

RPLP0 (factor-s	pecific	primer	efficiency)

	RNA					
	equivalent	Cq	Cq	Cq	Cq	cDNA
Gene	[pg]	Triplet	95%CI	Mean	SD	dilution
RPLPO	100000	15.15	14.04			
RPLPO	100000	15.35	14.94	15.317	0.153	1:10
RPLPO	100000	15.45	/15.70			
RPLPO	10000	18.52	10 76			
RPLPO	10000	18.40	10.20	18.507	0.101	1:10 ²
RPLPO	10000	18.60	/10.70			
RPLPO	1000	22.30	22.10			
RPLPO	1000	22.34	/22.10	22.297	0.045	1:10 ³
RPLPO	1000	22.25	/22.71			
RPLP0	100	25.61	2 5 12			
RPLPO	100	26.20	/26.93	26.027	0.363	1:10 ⁴
RPLPO	100	26.27	/20.55			
RPLP0	10	29.30	20 01			
RPLPO	10	29.22	28.94 /29 77	29.353	0.167	1:10 ⁵
RPLPO	10	29.54	725.77			
RPLPO	1	32.49	21.95			
RPLPO	1	32.16	21.05 /22.72	32.290	0.176	1:10 ⁶
RPLP0	1	32.22	/ 52.75			
RPLPO	NTC	39.62				

RNA18S5 (factor-specific primer efficiency)

	RNA					
	equivalent	Cq	Cq	Cq	Cq	cDNA
Gene	[pg]	Triplet	95%CI	Mean	SD	dilution
RNA18S	100000	4.65	4 5 7			
RNA18S	100000	4.66	4.57	4.640	0.026	1:10
RNA18S	100000	4.61	/4./1			
RNA18S	10000	7.06	7.00			
RNA18S	10000	7.09	/7 13	7.063	0.025	1:10 ²
RNA18S	10000	7.04	//.15			
RNA18S	1000	10.68	10 54			
RNA18S	1000	10.84	/10.54	10.747	0.083	1:10 ³
RNA18S	1000	10.72	, 10.55			
RNA18S	100	14.23	12 00			
RNA18S	100	14.49	/14 88	14.433	0.182	1:10 ⁴
RNA18S	100	14.58	, 14.00			
RNA18S	10	17.66	17 50			
RNA18S	10	17.88	/18.05	17.777	0.111	1:10 ⁵
RNA18S	10	17.79	, 10.05			
RNA18S	1	21.00	20 72			
RNA18S	1	21.35	/21 74	21.233	0.202	1:10 ⁶
RNA18S	1	21.35	/ 2 1 . / 4			
RNA18S	NTC	35.26				

Supplementary Data 5. Evaluation of a commercially available primer pair for TUBB (Qiagen, PPH17836A). Primer specifity was evaluated and confirmed by melting curve analysis (**a**,**b**) and agarose gel electrophoresis (**c**). **d** To calculate primer efficiency E_P , which was within the pre-specified acceptable range, a serial log_{10} dilution of cDNA stock solution (1,000,000 pg RNA equivalent) was performed in triplets. From the resulting C_q values a standard curve was created by linear regression. The 1:10 dilution used for qPCR for all genes/primers, however, was beyond the linear dynamic range LDR. **e** Amplification efficiency E_A was calculated with LinRegPCR and within the pre-specified acceptable range. **f** Raw qPCR C_q values for TUBB (triplet means). **g** Reference gene stability rankings including TUBB as 10th candidate reference gene indicate low intergroup expression stability in hPDL experiments on orthodontic tooth movement and periodontitis.

(d) TUBB Primer efficiency (factor-specific)

	RNA					
	equivalent	Cq	Cq	Cq	Cq	cDNA
Gene	[pg]	Triplet	95%CI	Mean	SD	dilution
TUBB	100000	19.65	10.20			
TUBB	100000	19.49	/19.50	19.583	0.083	1:10
TUBB	100000	19.61	/15.75			
TUBB	10000	19.45	17 21			
TUBB	10000	18.68	/20.3/	18.777	0.631	$1:10^{2}$
TUBB	10000	18.20	/20.54			
TUBB	1000	21.67	21.07			
TUBB	1000	21.32	/21.07	21.500	0.175	$1:10^{3}$
TUBB	1000	21.51	/21.55			
TUBB	100	24.87	7/ 01			
TUBB	100	24.93	24.01 /25.03	24.920	0.046	$1:10^{4}$
TUBB	100	24.96	725.05			
TUBB	10	28.16	22 00			
TUBB	10	28.57	27.80 /29 1/	28.467	0.270	1:10 ⁵
TUBB	10	28.67	/23.14			
TUBB	1	30.40	70 07			
TUBB	1	31.15	29.07 /31.75	30.807	0.379	1:10 ⁶
TUBB	1	30.87	/51.75			
TUBB	NTC	42.23				
TUBB	-RT	32.31				

Slope	% Efficiency	LDR	LOD
[95% CI]	[95% CI]	(dilution range)	(dilution)
-3.230	104.0	$1:10^2 - 1:10^5$	≤1:10 ⁶
[-4.33/-2.13]	[52.2/165.0]		

SD = standard deviation; NTC = no-template control; -RT = control without reverse transcriptase; LDR = linear dynamic range; LOD = limit of detection; R² = coefficient of determination; CI = confidence interval

(e) Primer efficiency (factor-specific) and coefficients of determination derived from a standard curve for TUBB ($6x \log_{10} dilution of cDNA$ stock solution, random untreated sample) as well as technical repeatability (intraassay reliability, n = 18) and amplification efficiency (sample-specific), calculated using LinRegPCR software (http://LinRegPCR.HFRC.nl; n = 18 in triplets).

Gene symbol	Slope	Primer efficiency E _P [%] (2 ^{E_P/100%)}	Coefficient of determination R ²	Intraassay reliability SD of mean of C _q * (mean, min./max.)	Amplification Efficiency E _A [%] (2 ^E A ^{/100%})	
TUBB	-3.230	104.0 (2.056)	0.9965	0.26 0.05 / 0.63	91.3 (1.883)	

* of three technical replicates (triplet) among all biological replicates (n = 18). CI = confidence interval

(f) Raw C_q values (triplet means) of TUBB RT-qPCR for the three experimental groups.

RAW C _q values		Gene
Sample	Group	TUBB
Control K7	1	20.10
Control K8	1	20.71
Control K9	1	19.58
Control K10	1	19.53
Control K11	1	19.54
Control K12	1	19.30
Compression D7	2	18.84
Compression D8	2	19.06
Compression D9	2	19.88
Compression D10	2	19.10
Compression D11	2	18.55
Compression D12	2	19.50
Agac7	3	19.30
Agac8	3	18.49
Agac9	3	18.29
Agac10	3	18.53
Agac11	3	19.19
Agac12	3	18.38
C _q SD Control	1	0.52
C _q SD Compression	2	0.47
C _q SD Agac	3	0.43
-		

 C_q = quantification cycle; SD = standard deviation of group mean. Agac = Aggregatibacter actinomycetemcomitans (periodontitis) (g) Reference gene stability ranking including TUBB for hPDL experiments on orthodontic tooth movement (compressive orthodontic force vs. untreated control), experiments on periodontitis (Agac, toxins/bacterial lysate vs. untreated control) and pooled/overall experimental conditions as calculated by the algorithms geNorm, NormFinder, comparative ΔC_q and BestKeeper. A higher rank denotes lower expression stability.

	Total (of 4 methods)		geNorm		NormFinder		comparative deltaC _q		BestKeeper				
Rank	Ranking order	Rank sum	Ranking order	Stability value (M)	Ranking order	Stability value (ρ _{ig} /σ _i)	Standard error	Ranking order	Stability value (mean SD of mean ∆C _q)	Ranking order	Stability value (r)	SD (+/- C _q)	CV (% C _q)
hPDL untreated + compressive orthodontic force (experiments on orthodontic tooth movement, n = 12)													
1.)	RPL22	6	RPL22	0.263	RPL22	0.043	0.033	RPL22	0.271	RNA18S5	0.910	0.259	3.110
2.)	PPIB	13	PPIB	0.286	EEF1A1	0.092	0.031	PPIB	0.296	YWHAZ	0.905	0.373	1.728
3.)	RPLP0	17	RPLP0	0.296	RPLP0	0.097	0.031	RPLP0	0.307	RPL22	0.856	0.121	0.665
4.)	TBP	18	TBP	0.299	PPIB	0.099	0.031	EEF1A1	0.311	TBP	0.657	0.202	0.860
5.)	EEF1A1	18	EEF1A1	0.302	TBP	0.121	0.034	TBP	0.314	PPIB	0.627	0.187	1.128
6.)	RNA18S5	19	RNA18S5	0.347	RNA18S5	0.152	0.039	RNA18S5	0.350	POLR2A	0.533	0.357	1.681
7.)	YWHAZ	29	GAPDH	0.350	GAPDH	0.166	0.041	GAPDH	0.365	EEF1A1	0.505	0.114	0.814
8.)	POLR2A	30	POLR2A	0.399	POLR2A	0.230	0.053	POLR2A	0.423	RPLP0	0.364	0.098	0.601
9.)	GAPDH	31	YWHAZ	0.424	YWHAZ	0.234	0.054	YWHAZ	0.449	TUBB	0.187	0.420	2.157
10.)	TUBB	39	TUBB	0.678	TUBB	0.449	0.097	TUBB	0.664	GAPDH	-0.154	0.117	0.776
hPDL untreated + Agac toxins/bacterial lysate (experiments on periodontitis, n = 12)													
1.)	PPIB	8	PPIB	0.250	PPIB	0.066	0.031	PPIB	0.255	RNA18S5	0.815	0.269	3.261
2.)	ТВР	10	TBP	0.259	ТВР	0.077	0.031	TBP	0.265	POLR2A	0.599	0.176	0.836
3.)	POLR2A	18	EEF1A1	0.269	GAPDH	0.116	0.034	EEF1A1	0.270	YWHAZ	0.567	0.318	1.488
4.)	RPL22	20	RPL22	0.284	POLR2A	0.121	0.035	RPL22	0.290	TBP	0.514	0.121	0.518
5.)	EEF1A1	21	POLR2A	0.286	RPL22	0.122	0.035	GAPDH	0.295	PPIB	0.449	0.099	0.602
6.)	GAPDH	21	RPLP0	0.286	EEF1A1	0.128	0.036	RPLP0	0.296	GAPDH	0.420	0.159	1.044
7.)	RNA18S5	25	GAPDH	0.287	RPLP0	0.140	0.038	ROLR2A	0.297	RPL22	0.343	0.164	0.902
8.)	RPLP0	29	RNA18S5	0.380	RNA18S5	0.166	0.042	RNA18S5	0.381	TUBB	0.324	0.558	2.897
9.)	YWHAZ	30	YWHAZ	0.420	YWHAZ	0.203	0.049	YWHAZ	0.439	EEF1A1	0.313	0.167	1.170
10.)	TUBB	38	TUBB	0.815	TUBB	0.554	0.119	TUBB	0.792	RPLP0	0.291	0.172	1.049
hPDL pooled	/overall (exper	iments on or	thodontic tooth r	movement a	ind periodontitis	n = 18)							
1.)	PPIB	7	PPIB	0.296	PPIB	0.076	0.026	PPIB	0.306	RNA18S5	0.859	0.266	3.199
2.)	твр	12	ТВР	0.304	RPL22	0.093	0.026	RPL22	0.313	YWHAZ	0.759	0.381	1.777
3.)	RPL22	12	RPL22	0.304	TBP	0.096	0.026	TBP	0.316	TBP	0.625	0.173	0.735
4.)	RPLP0	19	RPLP0	0.326	RPLP0	0.135	0.030	RPLP0	0.338	PPIB	0.587	0.158	0.955
5.)	RNA18S5	19	EEF1A1	0.357	RNA18S5	0.159	0.033	EEF1A1	0.362	POLR2A	0.525	0.280	1.320
6.)	EEF1A1	24	POLR2A	0.373	EEF1A1	0.171	0.035	RNA18S5	0.383	RPL22	0.485	0.141	0.776
7.)	POLR2A	25	RNA18S5	0.379	POLR2A	0.184	0.037	POLR2A	0.391	RPLP0	0.262	0.149	0.913
8.)	YWHAZ	29	GAPDH	0.384	GAPDH	0.195	0.038	GAPDH	0.400	EEF1A1	0.261	0.181	1.277
9.)	GAPDH	34	YWHAZ	0.465	YWHAZ	0.253	0.047	YWHAZ	0.491	TUBB	0.236	0.501	2.605
10.)	TUBB	39	TUBB	0.744	TUBB	0.491	0.085	TUBB	0.726	GAPDH	0.057	0.189	1.245

C_q = quantification cycle; SD = standard deviation; CV = coefficient of variation; r = Pearson's correlation coefficient