Sample	Taxon	Morph	Sex	Collecting location	Raw Reads (Gb)	Filtered Reads (Gb)	Mapped rate (%)	Genotype calls (Qual≥30)	Mean Depth (Qual≥30)
PR345	Papilio Polytes		male	lab reared	4.76	4.66	90.43	36236144	15.85
PR346	Papilio Polytes		male	lab reared	2.40	2.35	91.07	35233509	8.01
PR347	Papilio Polytes		male	lab reared	3.81	3.73	90.81	36107778	12.93
PR348	Papilio Polytes		male	lab reared	3.60	3.52	90.21	35719296	12.46
PR349	Papilio Polytes		male	lab reared	4.55	4.45	90.95	36441209	15.01
PR350	Papilio Polytes	cyrus	female	lab reared	2.56	2.51	90.54	35464909	8.94
PR351	Papilio Polytes	cyrus	female	lab reared	2.99	2.93	90.56	35858619	10.26
PR352	Papilio Polytes	cyrus	female	lab reared	2.71	2.66	90.38	35405401	9.41
PR353	Papilio Polytes	cyrus	female	lab reared	2.97	2.90	90.71	35591372	10.07
PR354	Papilio Polytes	cyrus	female	lab reared	3.08	3.01	90.27	35602801	10.59
PR355	Papilio Polytes	cyrus	female	lab reared	1.80	1.74	90.41	33665981	6.44
PR356	Papilio Polytes	cyrus	female	lab reared	3.33	3.23	81.07	35339553	10.37
PR357	Papilio Polytes	cyrus	female	lab reared	2.90	2.81	90.67	35516315	10.08
PR358	Papilio Polytes	cyrus	female	lab reared	2.44	2.38	80.62	34431188	7.74
PR359	Papilio Polytes	cyrus	female	lab reared	2.05	1.98	90.59	34486129	7.16
PR360	Papilio Polytes		male	lab reared	2.02	1.83	54.79	32745479	4.16
PR361	Papilio Polytes		male	lab reared	3.30	3.20	90.51	35457278	11.54
PR362	Papilio Polytes		male	lab reared	2.00	1.94	90.99	34230653	7.05
PR363	Papilio Polytes		male	lab reared	2.33	2.25	91.2	35041142	7.99
PR364	Papilio Polytes		male	lab reared	1.61	1.56	83.43	33986445	5.28
PR365	Papilio Polytes	polytes	female	lab reared	1.68	1.62	91.18	34199491	5.85

Supplementary Table 1. Sample information and sequencing statistics

PR366	Papilio Polytes	polytes	female	lab reared	2.09	2.02	86.17	34361994	7.19
	Papilio								
PR367	Polytes	polytes	female	lab reared	2.88	2.79	90.76	35732553	10.08
DDQ (0)	Papilio		C 1		1.00	1.00	01.15	0.1550.510	6.00
PR368	Polytes	polytes	female	lab reared	1.98	1.92	91.15	34772512	6.83
DD 360	Papilio Polytas	nolytes	female	lab reared	1 00	1 02	00.88	34852610	6 00
1 1309	Papilio	porytes	lemate	lab reared	1.99	1.92	20.00	54652010	0.99
PR370	Polytes	polytes	female	lab reared	2.16	2.09	90.79	35056121	7.50
	Papilio								
PR371	Polytes	polytes	female	lab reared	2.01	1.94	91.05	34995597	6.94
	Papilio								
PR372	Polytes	polytes	female	lab reared	2.90	2.81	90.58	35507931	10.03
DD272	Papilio Polytas	nobitor	famala	lab roorad	2 1 9	2 11	00.14	24245076	7 70
PK3/3	Polyles	polyles	lemale	lab reared	2.18	2.11	90.14	34343070	7.70
PR374	Papillo Polvtes	polytes	female	lab reared	2.83	2.73	90.46	35249732	9.72
	Papilio	r							
pol_t6	Polytes	theseus	female	lab reared	8.44	7.85	89.59	37440311	23.77
	Papilio								
pol_t7	Polytes	theseus	female	lab reared	2.74	2.66	89.87	36097594	8.84
. 1	Papilio	1.	C 1	Timor,	2.47	2.41	25.07	22270052	4.00
timorl	Polytes	polytes	female	Indonesia	3.47	3.41	35.07	32279952	4.92
timor?	Papilio Polytes	cvrus	female	Indonesia	2 78	2 69	83 94	37707690	8 83
timor 2	Panilio	Cyrus	Ternute	Timor	2.70	2.07	05.74	51101090	0.05
timor3	Polytes	cyrus	female	Indonesia	3.56	3.49	25.54	28239839	3.82
	Papilio	·		Landak,					
landak1	Polytes	theseus	female	Indonesia	3.76	3.56	91.82	38555717	12.32
	Papilio	modified		Lombok,					
lombok1	Polytes	theseus	female	Indonesia	5.51	5.36	92.77	38685234	17.32
	Papilio	modified		Lombok,					
lombok2	Polytes	theseus	female	Indonesia	5.18	4.98	83.32	38774944	14.87
	Papilio			Lombok,					
lombok3	Polytes	theseus	female	Indonesia	3.99	3.81	92.81	38644420	13.62
lombol: 1	Papilio Dobutos	these	famala	Lombok,	2.02	276	9656	29170000	11 01
IOIIIDOK4	Polyles	ineseus	lemale	Sumotro	5.92	5.70	80.30	38170099	11.01
sumatra1	Papilio Polvtes		male	Sumaira, Indonesia	5.75	5.63	23.22	32831474	4.98
	Papilio			Sumatra.		2.00			
sumatra2	Polytes		male	Indonesia	2.21	2.09	95.1	37927337	8.24
	Papilio			Jambi,					
jambi1	Polytes	theseus	female	Indonesia	3.06	2.92	78.73	37794856	9.31
h . 11 1	Papilio	41	£ 1	Bali,	2.25	2.05	00.04	26000701	10.27
balil	Polytes	theseus	temale	Indonesia	5.35	5.25	90.86	36880/21	10.37

	Papilio		formala	Bangarupaly am Mandal,	0 72	8.03	01.14	20216440	20.22
romulusi	Polytes Papilio	romulus	iemale	India	8.73	8.02	91.14	39316440	29.22
phestus1	phestus		male	Indonesia	3.94	3.59	32.68	24285031	3.14
phestus?	Papilio phestus		male	Buka, Indonesia	3 61	2.74	60 44	31393030	5 84
phoseusz	Papilio		mule	Buka.	5.01	2.71	00.11	51575656	5.01
phestus3	phestus		male	Indonesia	12.24	10.38	32.51	34577294	8.82
	Papilio			Buka,					
phestus4	phestus		male	Indonesia	2.15	1.44	81.61	30199792	4.37
arfak1	Papilio ambrax		female	Arfak, Indonesia	3.05	2.65	77.9	25730404	6.05
	Papilio			Arfak,					
arfak2	ambrax		female	Indonesia	7.41	6.91	60.74	29512953	10.07
arfak3	Papilio ambrax		female	Arfak, Indonesia	5.66	5.24	84.55	35013294	13.31
	Papilio			Arfak,					
arfak4	ambrax		female	Indonesia	4.84	4.48	78.5	32887779	10.66
timika1	Papilio ambrax		female	Timika, Indonesia	1.98	1.49	87.69	28929884	4.64
	Papilio			Timika,					
timika2	ambrax		female	Indonesia	3.43	2.48	78.15	31387988	5.89
timiko3	Papilio ambrar		fomalo	Timika,	3 75	2 85	86 58	33186526	7 12
unnkas	Papilio		lemate	Timika	5.75	2.05	80.58	55180520	7.42
timika4	ambrax		female	Indonesia	3.39	2.21	87.26	30287624	5.84
	Papilio								
protenor1	protenor		female	Guilin, China	5.36	4.40	74.93	31709831	12.65
protenor2	Papilio protenor		female	Guilin, China	6.41	5.53	80.93	32590680	16.72
	Papilio								
protenor3	protenor		male	Guilin, China	6.52	5.51	56.6	31140423	11.85
muston or 1	Papilio		mala	Cuilin China	11.02	10.44	76 57	22512722	29.40
protenor4	protenor		male	Guinn, China	11.00	10.44	/0.3/	33312723	20.49

Supplementary Table 2. Individual genotypes of different species

	MM	Mm	mm
P. polytes polytes	1	10	2
P. polytes alphenor	15	2	15
P. ambrax and P. phestus	12	0	0

MM denotes homozygous mimetic

mm denotes homozygous non-mimetic

Mm denotes heterozygous

Supplementary Figure 1. Genome-wide phylogeny of *Papilio* butterflies.

(a) A maximum-likelihood phylogenetic tree based on 40.2 million genome-wide SNPs. (b) DensiTree of the polytes group produced by overlaying ML trees from 2,134 non-overlapping 100 kbp windows across the genome. 86% of the windows produce an identical tree as the full genome-wide tree, and all trees, except 1, place *P. polytes alphenor* as the sister lineage to *ambrax/phestus*.

Supplementary Figure 2. Timing diversification events in the Papilio polytes group.

(a) Divergence times, effective population sizes, and migration rates were inferred among *polytes* group taxa using G-PhoCS. Branch widths are proportional to population size and dashed lines indicate divergence times. Parameter estimates are shown along with 95% Bayesian credible intervals. (b) Maximum-likelihood tree of *doublesex* haplotypes, calibrated using the G-PhoCS estimate of 1.995 ± 0.068 My ago for the common ancestor between *P. protenor* and the *polytes* group. Numbers are in million years and blue bars represent 95% confidence intervals. Comparison of (a) and (b) suggests that divergence between mimetic and non-mimetic *dsx* haplotypes (1.954 My ago) occurred before the radiation of the *polytes* group (1.691 My ago). Data are presented as mean \pm SD.

- (polytes alphenor non-mimetic, phestus)
 (polytes alphenor non-mimetic, ambrail)
- (polytes alphenor non-mimetic, ambrax)
- (polytes alphenor mimetic, phestus)
- (polytes alphenor mimetic, ambrax)
- (polytes alphenor mimetic, polytes polytes mimetic)
- (polytes alphenor non-mimetic, polytes polytes non-mimetic)

Supplementary Figure 3. Genetic differentiation (F_{st}) along the *dsx* gene region.

 F_{sT} scans were performed using a 5 kbp window size to infer the breakpoints of the *dsx* inversion in various species comparisons. The entire 130 kbp *dsx* inversion region is colored in darker yellow. Clear deviations, coinciding with inversion breakpoints, are found in the same locations in comparisons between *P. polytes alphenor* non-mimetic and *P. polytes alphenor* mimetic, between *P. polytes alphenor* non-mimetic and *P. polytes polytes alphenor* non-mimetic and *P. polytes polytes polytes* non-mimetic.

Supplementary Figure 4. Inferences of relationships and migration among *Papilio* **species using Treemix.** In each case, a maximum-likelihood tree was inferred among five species/populations in the *polytes* group, as well as the outgroup species *P. protenor*, based on genome-wide SNP allele frequency data. Migration was explored by assuming 1 to 9 migration edges.

7 migrations

9 migrations

Supplementary Figure 5. Residue fit from the trees generated using Treemix.

Each residue fit matrix is generated by dividing the residual covariance of pairwise populations by the average standard error using Treemix. Residues above zero indicate pairs of populations that are closer to each other and could be candidates for migration events. Migration was explored by assuming 1 to 9 migration edges.

Supplementary Figure 6. Log-likelihood values for Treemix trees. The Ln-likelihood values are calculated for Treemix trees by assuming 1 to 9 migration edges.

Supplementary Figure 7. *Theseus* morph SNP counts across *doublesex*.

The number of *theseus* specific alleles are counted for Philippine group (a) or Indonesia group (b), independently, for each fixed 1 kbp window along the *dsx* gene and neighboring regions. The blue line represents the *dsx* gene. The orange and grey bars represent the coding sequence (CDS) and UTR regions, respectively.

Supplementary Figure 8. Testing parameter sets for a modified model of negative-frequency-dependent-selection (NFDS).

A number of *a* and *b* values were selected to model different scenarios, including pure NFDS (a = b = 1), modified NFDS with equal benefits to homozygous mimetic and heterozygous genotypes (a = b = 1.5, 3 and 5) and modified NFDS with heterozygote advantage (a = 1.5 b = 2, a = 2 b = 3, a = 4 b = 5 and a = 1.5 b = 5). The starting mimetic allele frequency ranged from 0.05 to 0.95. Different *z* values indicate different strengths of NFDS, from neutral (z = 0) to very strong (z = 0.95). Each grid represents the mean mimetic allele frequency from 10 separate runs of each model after 100 or 200 generations, with a constant population size Ne = 10,000.

Supplementary Figure 9. Demographic history of the *polytes* species group.

(a) Historical effective population sizes were inferred from 13 individual genomes using PSMC, assuming a mutation rate of $\mu = 3.0 \times 10^{-9}$ and an average generation time of g = 0.25 year. (b) Historical effective population sizes were inferred from 23 individual genomes using MSMC, using a mutation rate of $\mu = 3.0 \times 10^{-9}$ and an average generation time of g = 0.25 year.

а

b

Supplementary Figure 10. Demographic history of P. *ambrax* inferred using MSMC.

Historical effective population sizes were inferred from eight *P. ambrax* genomes using MSMC, using a mutation rate of $\mu = 3.0 \times 10^{-9}$ and an average generation time of g = 0.25 year. The sequencing depth (X) is indicated for each individual.

Supplementary Figure 11. Demographic history inferred using PSMC with false negative rate corrected.

Historical effective population sizes were inferred from 6 individual genomes with sequencing coverage lower than 10X using PSMC, assuming a mutation rate of $\mu = 3.0 \times 10^{-9}$ and an average generation time of g = 0.25 year. Different values of uniform False Negative Rate (uFNR) from 0.05 to 0.5. For each individual, the original inference is plotted as a colorful line and the uFNR corrected results are plotted in grayscale.

Supplementary Figure 12. Workflow for simulating the molecular evolution of the non-mimetic and mimetic *doublesex* haplotypes.

Scenario 11 and 30, which are highlighted, were selected because they yielded results most similar to our observed data. We compared empirical and simulated DNA sequence variations in *P. polytes*. Each grid represents a Fisher's exact test result from comparing a set of simulation counts with the observed variation from Fig. 4a.