Supplementary Information for

Evaluation of ⁶⁴Cu-based Radiopharmaceuticals that Target Aβ Peptide Aggregates as Diagnostic Tools for Alzheimer's Disease

Nilantha Bandara,^{†,§,I} Anuj K. Sharma,^{‡,I} Stephanie Krieger,[§] Jason W. Schultz,[‡] Byung Hee Han,[≠] Buck E. Rogers,^{*,†,§} and Liviu M. Mirica^{*,‡,∇}

[†]Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States [‡]Department of Chemistry, Washington University, One Brookings drive, St. Louis, Missouri 63130-4899, United States [§]Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, United States [¬]Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, United States ^{*}Department of Pharmacology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, Missouri 63501, United States

Table of Contents

Ι	Structure of blocking agents employed	S2
II	$A\beta$ fibril binding assays of blocking agents B_1 and B_2	S 3
III	Aβ fibril binding assays of BFCs L1-L5	S4
IV	A β fibril binding assays of Cu complexes of BFCs L ₁ -L ₅	S6
V	Fluorescence microscopy images of mouse brain sections stained with BFCs L_4 and L_5	S8
VI	HPLC traces from ⁶⁴ Cu radiolabeling of BFCs L ₀ -L ₅	S9
VII	Fused PET/CT Scans	S11

I. Structure of Blocking Agents Employed

2-(4-hydroxyphenyl)benzothiazole (B1)

2-(4-methylamino-hydroxyphenyl)benzothiazole (B2)

Figure S1. Structure of non-radiolabeled compounds used for blocking studies.

II. Aß fibril binding assays of blocking agents B1 and B2

Figure S2. ThT competition assay of **B**₁ with $A\beta_{40}$ fibrils ([$A\beta$] = 2 µM, [ThT] = 1 µM).

Figure S3. ThT competition assay of **B**₂ with $A\beta_{40}$ fibrils ($[A\beta] = 2 \mu M$, $[ThT] = 1 \mu M$).

III. Aβ fibril binding assays of BFCs L1-L5

Figure S4. Direct binding fluorescence assay of L_1 with $A\beta_{40}$ fibrils ($[A\beta] = 5 \mu M$).

Figure S5. Direct binding fluorescence assay of L₅ with $A\beta_{40}$ fibrils ([$A\beta$] = 5 μ M).

IV. Aβ fibril binding assays of Cu complexes of BFCs L1-L5

Figure S6. ThT competition assay of L₁-Cu with ThT-bound A β_{40} fibrils ([A β] = 2 μ M, [ThT] = 1 μ M).

Figure S7. ThT competition assay of L₂-Cu with ThT-bound A β_{40} fibrils ([A β] = 2 μ M, [ThT] = 1 μ M).

Figure S8. ThT competition assay of L₃-Cu with ThT-bound A β_{40} fibrils ([A β] = 2 μ M, [ThT] = 1 μ M).

Figure S9. ThT competition assay of L₄-Cu with ThT-bound A β_{40} fibrils ([A β] = 2 μ M, [ThT] = 1 μ M).

Figure S10. ThT competition assay of L₅-Cu with ThT-bound A β_{40} fibrils ([A β] = 2 μ M, [ThT] = 1 μ M).

V. Fluorescence microscopy images of mouse brain sections stained with BFCs L4 and L5

Figure S11. Fluorescence microscopy images of Tg2576 brain sections incubated with compounds L_4 and L_5 (left panels), Congo Red (middle panels), and merged images (right panels).

Figure S12. HPLC traces from radiolabeling. Retention times were observed as 5.3, 10.8, 10.9, 10.9, 11.2, and 10.8 minutes, respectively, for the ⁶⁴Cu-labeled L_0 - L_5 complexes, suggesting quantitative radiolabeling. If present, free ⁶⁴Cu would appear at 2.5 min.

Figure S13. Representative overlays of the HPLC UV-vis traces (280 nm) and radiotraces, confirming that the radioactivity corresponds to ⁶⁴Cu-labeled BFC complexes.

VII. Fused PET/CT Scans

Figure S14. Representative fused PET/CT scans showing on the same scale the maximum intensity projections for 64 Cu-radiolabeled ligands L₁, L₂, L₄, and L₅ in Tg2576 transgenic mice.