Current Biology, Volume 27

Supplemental Information

Life-Long Neurogenic Activity of Individual

Neural Stem Cells and Continuous Growth Establish

an Outside-In Architecture in the Teleost Pallium

Giacomo Furlan, Valentina Cuccioli, Nelly Vuillemin, Lara Dirian, Anna Janue Muntasell, Marion Coolen, Nicolas Dray, Sébastien Bedu, Corinne Houart, Emmanuel Beaurepaire, Isabelle Foucher, and Laure Bally-Cuif

Figure S3

Figure S7

Figure S1 : Eversion exposes the germinative RG layer in the adult zebrafish pallium, related to Figure 1. A. Schematic representations of the neural stem cell (NSC)-dependent (a, b) and -independent (c) strategies shaping brain cytoarchitecture. The germinal NSC pool and its neurogenic activity are indicated in red, and neuronal identities issued from this pool are colorcoded. The output structure is depicted at the top of each panel. (a) Continuous NSC activity generates age-related layers in the mammalian neocortex, in an inside-out fashion following radial neuronal migration. (**b**, **c**) Spatially controlled NSC activity and neuronal migration events organize functional nuclei in the bird and reptile neocortex (from [S4][S5]) B. Simplified schematized cross section of the zebrafish adult pallium at medial antero-posterior levels indicating the parenchymal subdivisions and sulci referred to in this study (from [S1]). The attachment point of the tela choroida, positioning the limit of the eversion process, is indicated (gray dots and arrows) (from [S2]). The pallial germinative zone (ventricular zone, red) extends from this point to the pallial-subpallial boundary (gray dashed line). C. Simplified schematized whole-mount view of the zebrafish adult pallium (viewed from top, anterior left) indicating the germinal zone areas visible from a dorsal view, as identified in [S3]. **D-G.** Whole-mount dorsal views of the pallial germinal zone in transgenic *her4:eGFP* telencephali, identified by the expression of GFP or GS (as indicated) at 2dpf (D), 5dpf (E), 1.5mpf (F) and 3mpf (adult, G). Whole-mount preparations counterstained with DAPI. Abbreviations: Da: anterior pallium; Dc: central pallium; Dl: lateral pallium domain; Dm: medial pallium domain; Dp: posterior pallium domain; ls: lateral sulcus; t.c.: tela choroida; sy: sulcus ypsiloniformis. Scale bars: D, E : 20µm; F : 50µm; G : 100µm.

Figure S2 : **Continuous and direct neurogenesis from radial glial (RG) cells in the zebrafish pallium from embryo to adulthood**, related to Fig.1. **A-E**. Cross sections of transgenic *her4:GFP* telencephali at 2dpf (**A**), 5dpf (**B**), 15dpf (**C**), 1.5mpf (**D**) and adult stage (**E**) at medial antero-posterior levels (see schemes on the right), immunostained for GFP or the RG marker Glutamine Synthase (green, left panel, as indicated), the proliferation marker PCNA (red, middle panel) and counterstained with DAPI (right panel). High magnifications in insets. White dashed line: position of the pallium/subpallium boudary. Scale bars: A, B inset, C inset : 20µm; D inset, E: 50µm. Abbreviations: Di: diencephalon; e: epiphysis; Hy: hypothalamus; Me: mesencephalon; ob: olfactory bulb; Sp: subpallium; Tel: telencephalon, V: ventricle.

Figure S3 : **Validation of the Tet-on strategy**, related to Fig.2. **A.** Compared expression of rtTA (*in situ hybridization*) and GS (immunocytochemistry) (color-coded, as indicated) on cross sections of the adult pallium in a Tg(her4:rtTA) fish (one hemisphere is shown, observed in

confocal microscopy). Note that *rtTA* and GS are expressed in the same set of ventricular RG. **B**. Proportion of mCherry-positive cells among ventricular cells at three different anteroposterior levels in *her4*^{H2a-mCherry, 9TB(5dpf)} fish analyzed at 1 day-post-treatment (1dpt) (n=3 brains, T-test (α =0.05, not significant). **C**. Compared expression of the three reporters mCherry, Flag and GFP (immunocytochemistry, color-coded as indicated) observed in whole-mount pallia (C, D) or pallial cross sections at mid-anteroposterior levels (E-G) in double transgenic *Tg(her4:rtTA)*;*Tg(GFP:biTRE:H2amCHERRY*) fish induced with 9TB at 1dpf (C), 2dpf (D), 5dpf (E), 15dpf (F) and 1.5mpf (G) and sacrificed 1 day post-treatment (1dpt). Note the largely coincident expression of the three markers, the broader expression of mCherry being explained by the stability of the H2a-mCherry protein. Note also that, while *her4*-driven expression is limited to the pallial VZ until 5dpf (C-E), it extends to the subpallium at later stages (F, G). The red asterisk in panel G underlies a territory of the DI VZ with low induction response at late stages (1.5mpf). The white line in E-G, right panels, indicates the pallial-subpallial boundary. Scale bars: C-E: 10µm; F, G: 50µm.

Figure S4 : Zebrafish pallial neurogenesis follows a sequential stacking process : anterior and posterior analysis, related to Fig.2. A-L. Localization at posterior and anterior adult pallial levels of the mCherry-positive neurons born from *her4*-positive RG. Position of mCherry-positive neurons on posterior (A-F) and anterior (G-L) 3mpf *her4*^{H2a-mCherry} adult pallium cross sections observed in confocal microscopy (with DAPI counterstain) following 9TB induction at the stages indicated. M, N. Localization, at median pallial levels, of the neurons born at 2 and 5dpf relative to Dc. High magnification views of the confocal images shown in Fig.2C' and D', respectively, stained for mCherry and PV and counterstained with DAPI. Scale bars: 50µm.

Figure S5 : **Superimposed individual brainbow clones and neuroanatomical domains**, related to Figs.5 and 6. **A-D.** 5 clones are shown on thick cross sections of the brain shown in Fig.5A. Clone categories, as defined in Fig.5 C-G and Table S1, are indicated at the bottom right of each panel, and the clones illustrated are color-coded as in Fig.5C-I and Table S1. Note that clone n°5 and 7, shown in A and C respectively, reach into Dc. Scale bar: 80µm. **E-G. Validation of clonality in the analysis of** *her4*^{actswitch,T(5dpf)} **larvae**. **E.** Compared distribution of the number of induced progenitors at 1 day-post-9TB (1dpt) and the number of clones at 1.5mpf (1.5 months post 9TB –mpt-). n = 20 pallial hemispheres at 1dpt and 24 pallial hemispheres at 1.5mpt. The numbers in bracket indicate the number of hemispheres concerned for each number of induced clones per hemisphere at 1.5mpt (averaged from panel E). sem: 0.32 at 1dpt, 0.28 at 1.5mpt. Difference

is not significant (P<0.25). **G.** Cumulative distribution of the nearest neighbors distances separating labeled progenitors in the pallium of a *her4*^{H2a-mCherry,9}TB(5dpf) animal analyzed at 1dpt (Fig.6A, A'). 84% of induced clones are located at least 15µm (approx. 4 cell diameters) away from their nearest neighbor clone.

Figure S6 : **Expression in the adult zebrafish pallium of genes identifying neocortical layers in mammals and/or birds: other anteroposterior levels and summary schemes,** related to Fig.7 **A-F.** Anterior (left panels) and posterior (right panels) pallial cross sections from the specimen shown in Fig.7 (*in situ hybridization* for the indicated probes, blue signal), ordered here for gene probe orthology with markers of deep (left) or upper (right) layer neurons in other vertebrates (see Table S4). **G.** Schematic summary of the expression patterns, on cross sections of the adult zebrafish pallium at anterior, median and posterior levels (equivalent to Fig.7 and panels A-F), of all the genes tested in this study (Table S4). Scale bars: 100μm.

Figure S7 : **Compared localization of GABA and Glutamatergic neurons with the position of neurons born at 5dpf in the adult pallium,** related to Fig.7. **A-B'**: Cross-sections at median pallial levels of *her4^{H2a-mCherry,9TB(5dpf)* brains observed at 3mpf (confocal microscopy, single 70µm stacks), immuno-processed for mCherry and stained by *in situ hybridization* with the following probes: *gad65/67a/67b* (*gad*, A') and *vglut1/2.1/2.2* (*vglut*, B'). **A, B**: fluorescence channels; **A', B'**: superimposed bright field and fluorescence channels; red arrows in A, B indicate the shape of the mCherry-positive domains and white dotted lines line the pallial contour. Insets are high magnifications of the boxed areas showing mCherry in the nucleus of *gad-* or *vglut*-positive neurons. Scale bar: 70 μm.}

Α	В	С	D	E	F	G	н	I	J	K	L	М	N	0	Р
								Neuroanat	Neuroanat		clone	pallium			
			Nb				Distance of	omical	omical		deepest z	deepest z	deepest z /		
		Nb	ventricula		Clone length in		clone from VZ	location	location	A/P	on cross	on cross	pallial z	"deep" limit	"Dc" limit
Clone #	Nb cells	neurons	r cells	Туре	depth (µm)	Clone width (µm)	(μm)	(VZ)	(depth)	location	section (µm)	section (µm)	ratio in %	(table S2)	(table S2)
5	654	415	238	Attached/Deep	411	238		Dm	Dc	middle	413	450	92	39	71
6	646	568	78	Attached/Deep	384	284		Dm	Dc	posterior	381	450	85	76	82
9	29	22	7	Attached/Deep	406	221		Dm	Dc	middle	458	554	83	39	71
10	398	307	91	Attached/Deep	394	256		Dm	Dc	posterior	394	450	88	76	82
13	120	87	33	Attached/Deep	528	102		Da	Dc	anterior	418	450	93	86	92
14	206	143	63	Attached/Deep	324	164		Dm	Dc	middle	445	554	80	39	71
15	606	380	226	Attached/Deep	512	255		Dm	Dc	posterior	393	450	87	76	82
16	367	265	102	Attached/Deep	491	105		Dm	DC	middle	420	554	76	39	/1
18	215	487	73	Attached/Deep	419	101		Da	DC	anterior	548	583	94	30	92
20	215	190	25	Attached/Deep	348	85.5		Dm		middle	403	644	63	39	/1
26	67	53	14	Attached/Deep	404	110		Dm		middle	520	805	65	39	/1
29	192	158	34	Attached/Deep	391	90.7		Da		anterior	592	205	66	20	92
22	42	70	10	Attached/Deep	403	103		Dm		middlo	10/	805	61	20	71
22	100	00	20	Attached/Deep	325	101		Dm		middlo	494	805	62	20	71
33	133	90	52	Attached/Deep	323	97.5		Dm		middle	511	805	63	30	71
24	162	109	52	Attached/Superficial	39/	220 (short)		Dm		nosterior	278	554	50	76	82
3	68	52	16	Attached/Superficial	291	252 (short)		Dm		posterior	201	450	45	76	82
11	137	72	65	Attached/Superficial	243	282 (short)		Dm		posterior	171	450	38	76	82
17	304	220	84	Attached/Superficial	214	304 (flat)		Dm		middle	145	644	23	39	71
21	404	269	135	Attached/Superficial	283	436 (flat)		Dm		middle	195	644	30	39	71
22	67	110	21	Attached/Superficial	374	122 (short)		Da		anterior	454	583	78	86	92
23	501	371	130	Attached/Superficial	550	191 (short)		Dm		anterior	550	805	68	86	92
28	139	96	43	Attached/Superficial	498	127 (short)		Dm		posterior	489	805	61	76	82
30	38	28	10	Attached/Superficial	186	85.4 (short)		Dm		middle	236	805	29	39	71
25	144	99	45	Attached	230	79.3 (short)		DI		middle	230	805	29	39	71
27	247	187	60	Attached	384	117		Dİ		anterior	489	700	70	86	92
4	28	28	0	Detached/Deep			160	Dm	Dc	middle	433	450	96	39	71
7	21	21	0	Detached/Deep			425	Dm	Dc	middle	545	554	98	39	71
19	473	473	0	Detached/Deep			254	Dm	Dc	middle	468	644	73	39	71
1	25	25	0	Detached/Deep			123	Dm		middle	339	554	61	39	71
8	119	119	0	Detached/Deep			61	Dm		middle	358	554	64	39	71
12	89	89	0	Detached/Deep			217	Dm		middle	385	554	69	39	71
24	82	82	0	Detached/Deep			218	Dm		middle	391	805	49	39	71

Total clon	e nb	34									
Attached	27 (80%)	Deep	16 (64%)	Including Dc	9						
		Superficial	9 (36%)	Short	7						
				2							
		ND	2								
Detached	7 (20%)	Deep	7 (100%)	Including Dc	3						
		Superficial	0								

A/P section level			anterior			middle		posterior			
		deepest z	pallial z on	deepest z /	deepest z	pallial z on	deepest z /	deepest z	pallial z on	deepest z /	
		on cross section	cross section	pallial Z	on cross section (b,	cross section	pallial Z ratio	on cross section	cross section	pallial Z	
9-TB timing	_	(μm)	(μm)	ratio in %	in µm)	(a, in μm)	in %	(μm)	(μm)	ratio in %	
	+										
Figure 4, Table S1											
24hpf		500	510	98	355	395	90	380	410	93	
48hpf		510	550	92	250	350	71	329	402	82	
5dpf		479	559	86	136	345	39	301	396	76	
15dpf		280	507	55	67	360	18	244	398	61	
1.5mpf		20	461	4	17	370	5	34	410	8	
"deep" limit				86			39			76	
Dc limit				92			71			82	

Α	В	С	D	E	F	G	н	I	1	к	L	м	N	0	Р
													clone	pallium	
				Nb	Nb								deepest z	deepest z	ł
				proliferating	proliferating					Distance of			on cross	on cross	deepest z /
		Nb	Nb RG	RG (GS+,	precursors		Clone length in	Long axis of VZ	Short axis of VZ	clone from VZ	Neuroanatomical		section	section	pallial Z
Clone #	Nb cells	neurons	(GS+)	PCNA+)	(GS-, PCNA+)	Туре	depth (µm)	area (µm)	area (µm)	(µm)	location (VZ)	A/P location	(µm)	(µm)	ratio (in %)
1	37	33	0	4	0	Attached	122	19	10	0	Da	middle	118	130	91
2	47	38	0	3	6	Attached	119	15	1 row	0	Da	anterior	82	130	63
3	49	44	5	0	0	Attached	53	20	12	0	DI	middle	52.5	130	40
5	56	53	3	0	0	Attached	92	21	1 row	0	Dp	posterior	46.5	130	36
6	11	6	4	1	0	Attached	12	22,1	1 row	0	Da	anterior	16.8	130	13
7	99	90	9	0	0	Attached	66	52	20	0	DI	posterior	62.4	120	52
8	176	148	28	0	0	Attached	45	57	26	0	Da	anterior	35.3	120	30
9	39	38	1	0	0	Attached	45	1 GS cell only	NR	0	Dm	middle	45.3	120	38
10	31	27	3	1	0	Attached	17	7	1 row	0	Dm	middle	53.6	120	45
11	48	42	6	0	0	Attached	34	31	21	0	Dm	middle	17.9	90	20
14	48	41	0	4	3	Attached	31	28	12	0	Dm	middle	33.7	112	30
15	28	26	2	0	0	Attached	60	17	1 row	0	DI	posterior	49.2	112	44
16	42	38	4	0	0	Attached	38	23	4	0	Dp	posterior	45.6	112	41
17	71	62	9	0	0	Attached	80	32	17	0	Da	anterior	69.8	112	62
19	104	94	10	0	0	Attached	252	31	18	0	Da	anterior	94.8	95,8	99
20	76	ND	ND	ND	ND	Attached	148	ND	ND	0	Dm	middle	61.5	95,8	64
21	176	142	34	0	0	Attached	100	82	30	0	Da	middle	76.6	95,8	80
22	201	160	7	6	28	Attached	86	22	8	0	DI	posterior	80.7	95,8	84
23	16	ND	ND	ND	ND	Attached	41	ND	ND	0	Dm	middle	74.9	90	83
24	99	ND	ND	ND	ND	Attached	127	ND	ND	0	Da	anterior	126	130	97
25	134	ND	ND	ND	ND	Attached	97	ND	ND	0	Dp	posterior	48.2	130	37
26	79	33	6	2	38	Attached	133	36	14	0	Dp	posterior	79	130	61
27	27	23	1	2	1	Attached	43	16	1 row	0	Dp	posterior	47	110	43
28	26	23	0	3	0	Attached	69	10	1 row	0	Dm	middle	37	110	34
29	49	46	2	1	0	Attached	61	14	1 row	0	Dp	posterior	43.8	110	40
30	41	31	1	2	7	Attached	31	16	1 row	0	Dm	middle	17.3	110	16
31	24	17	5	2	0	Attached	31	17	11	0	Dm	middle	45.1	110	41
32	37	36	1	0	0	Attached	65	1 GS cell only	NR	0	Dp	posterior	57.7	106	54
33	41	36	3	2	0	Attached	42	19	1 row	0	Dm	middle	22.4	106	21
34	53	34	18	0	1	Attached	48	51	19	0	Dm	middle	38.4	106	36
35	69	ND	ND	ND	ND	Attached	113	ND	ND	0	Dp	posterior	23.8	104	23
36	47	42	5	0	0	Attached	88	23	1 row	0	Dm	middle	25.5	70,4	36
37	38	35	3	0	0	Attached	39	15	8	0	Dm	middle	42	105	40
38	54	44	9	1	0	Attached	33	35	18	0	Dm	middle	33.6	105	32
39	23	11	12	0	0	Attached	42	25	12	0	Da	anterior	52	105	50
40	71	60	9	1	1	Attached	86	29	15	0	Da	anterior	76.6	105	73
4	33	33	0	0	0	Detached	74	NR	NR	10	Dm	middle	67.9	130	52
12	8	8	0	0	0	Detached	35	NR	NR	9	Dm	middle	26.8	90	30
13	19	19	0	0	0	Detached	71	NR	NR	22	DI	posterior	74.8	90	83
18	5	5	0	0	0	Detached	75	NR	NR	37	Dm	posterior	107	130	82

Gene	Rodents	Human	Birds	Zebrafish ortholog(s)	Adult zebrafish pallium (>2mpf)	refs
bhlhe22(bhlhb5)	L2-L5			bhlhe22(bhlhb5)*	active / recent neurogenesis zones	[\$7]
Cux2	L2-L3	L2 (and L4)	mesopallium	cux2a*, cux2b	no expression	[S4], [S5]
Cart	L5	L2-3		cart1, cart2*, cart3, cart4	salt and pepper	[S15]
	L3-L6 in embryos, L4-					
FoxP1	L5 in adult	L3-L6	mesopallium	foxp1a, foxp1b*	stripe, ventral Dm (neurons)	[S4], [S8]
Lhx2	L3-L4			lhx2a, lhx2b*	neurogenesis zone in ventral Dm	[S3]
	L2 in embryos, L2-6					
Mef2c	in adult	L2-L3-L4	mesopallium, nidopallium	mef2c*	sub-domain in Dm	[S4], [S5], [S13]
	L2 in embryos, L2-6					
Satb2	in adult	L5	mesopallium	satb2*	almost no expression (subpallium only)	[S4], [S5], [S8]
Rorβ	L4	L4	thal. recipient (entopallium, field L)	ror β*	no expression (midbrain only)	[54]
Eag2/Kcnh5	L4		thal. recipient, entopallium	kcnh5a, kch5b		[54]
	L1 in embryos, all					
	layers at postnatal				sub-domain in DI/Dp, active neurogenesis	
CTIP1*	stages			bcl11aa*	zone in ventral Dm	[S10]
	L5 in embryos, L4-L6		medial domains chick pallium,			
CTIP2	in adult	L5b	parahippocampal area	blc11bb*	subpallium	[S8], [S9]
ER81	L5	L5	arcopallium, parahippocampal area	ER81*	no expression (subpallium only)	[\$4], [\$5]
Fezf2	L5	L5b	parahippocampal area	fezf2*	active neurogenesis zone	[S4], [S11]
Sox5	L5-L6	L6		sox5*	active / recent neurogenesis zones	[S12]
Sulf2	L5			sulf2a,b		[S4]
Tbr1	L6	L5-L6		tbr1*	active / recent neurogenesis zones	[S14]

Table S1. Quantitative characteristics of the clones segmented in *her4^{zebrabow,T(1dpf)}* adult pallia. **Column A** : clone numbers, see Fig.5 and Fig.S5 for illustrations of the clones highlighted in color. **Columns B-D**: total number of cells per clone (B), as the sum of the number of neurons (C) and ventricular cells (D). Column E : clone type. "Attached" clones are defined as possessing at least one ventricular (progenitor) cell, while "detached" clones have no ventricular cells. The clones are further classified as "deep" if they contain neurons born at or before 5dpf, and as "superficial" otherwise. The z positions of the 5dpf ("deep") and Dc (48hpf) limits (columns O and P) were measured on standard anterior, middle or posterior sections as in Figs.2 and S4, and normalized by pallial depth at these antero-posterior positions (Table S2). These limits are here compared to the ratio of the "z position of the deepest clone cell" to "pallial depth" for each clone (columns L-N) to estimate the age of the first-born neuron of each clone. Due to the curvature of the age-related neuronal sheets (eg. see Fig.2G), the age of clones situated laterally could not be ascertained and these clones are only referred to as "attached" (clones 25 and 27). Columns F-G : total length (distance from the most superficial to the deepest cell, F) and width (largest measure parallel to the VZ plane, G) of each clone; attached clones are referred to as "flat" if their width is superior to their length; they are referred to as "short" otherwise. **Column H** : in the case of "detached" clones, distance of the most superficial cell to the ventricular surface. Columns I-J : neuroanatomical location of the clone at the ventricular zone (I, Da, Dm, Dl or Dp) and in depth (J, clone overlapping – green- or not Dc). **Column K** : antero-posterior location of the clone along the pallium. "Anterior", "middle" and "posterior" levels are those illustrated in Figs.2 and S4 and measured in Table S2. Bottom table: total count of the different clone categories, as defined above.

Table S2. Quantitative positioning of neurons born at the indicated ages on anterior, middle and posterior cross sections of the pallium at 3mpf. The position of sections is as shown in Figs.2 and S4. The diagnostic "age ratio" (deepest z/pallial at anterior, middle and posterior level) is obtained by normalizing the z position of the deepest H2a-mCherry-positive neurons (value "b" on the scheme) by the deepest z position of the pallium (value "a" on the scheme). Values in bold are those reported into Table S1.

Table S3. Quantitative characteristics of the clones segmented in *her4*^{actswitch,T(5dpf)} 1.5 mpf pallia. See Fig.6 for illustrations. Column A : clone numbers (see Fig.6 for illustrations). Columns B-F : number of cells of each type within clones (number of neurons (column C), number of quiescent radial glia (GS-positive, PCNA-negative) (column D), number of activated radial glia (GS-positive, PCNA-positive) (column E) and number of proliferating non-glial precursor (GS-negative, PCNA-positive) (column F)). Column G : clone types (only classified as "attached" or "detached" in this experiment). **Column H** : Clone length (length of longest axis in the parenchyme). **Columns I, J:** Size (length, width) of the VZ component (RGs, aNPs) of each clone along the ventricular plane (see Fig.6E for the schematic representation of each category –the short axis can be composed of several cell rows, one cell row, or no cells if the VZ component only consists in 1 cell-). **Column K:** depth of the clone within the parenchyme (for detached clones). **Column L** : neuroanatomical location of the clone at the ventricular zone (I, Da, Dm, Dl or Dp). **Column M** : antero-posterior location of the clone along the pallium. Columns N-P: Deepest positions of each clone and of the pallium on cross-sections, and corresponding ratios. **Bottom table** : total count of the 2 clone categories defined above. ND: not determined; NR: not relevant.

Table S4. List of the genes identifying neocortical layers in mouse, human and chick used in this study. The zebrafish orthologs are identified, and expression profiles in each case are reported. In case expression differs between embryonic and adult stage in rodents, this is also indicated. Zebrafish genes selected for illustrations in Figs.7 and S6 are indicated with an asterisk. After references [S5][S6][S4][S7][S8][S9][S10][S11][S12][S13][S14][S15].

Abbreviations list

- Da anterior subdivision of the pallial ventricular zone
- **Dc** central subdivision of the pallium
- **Dl** lateral subdivision of the pallium
- **Dm** medial subdivision of the pallium
- **Dp** posterior subdivision of the pallium
- NPC neural progenitor cell
- **NSC** neural stem cell
- **PV** Parvalbumin
- RG radial glia
- sy sulcus ypsiloniformis
- VZ ventricular zone

References

- S1. Wullimann, M.F., Rupp, B., and Reichert, H. (1996). Neuroanatomy of the Zebrafish Brain: A Topological Atlas
- S2. Nieuwenhuys, R. (2011). The development and general morphology of the telencephalon of actinopterygian fishes: Synopsis, documentation and commentary. Brain Struct. Funct. *215*, 141–157.
- S3. Dray, N., Bedu, S., Vuillemin, N., Alunni, A., Coolen, M., Krecsmarik, M., Supatto, W., Beaurepaire, E., and Bally-Cuif, L. (2015). Large-scale live imaging of adult neural stem cells in their endogenous niche. Development 142, 3592–600.
- Suzuki, I.K., Kawasaki, T., Gojobori, T., and Hirata, T. (2012). The Temporal Sequence of the Mammalian Neocortical Neurogenetic Program Drives Mediolateral Pattern in the Chick Pallium. Dev. Cell 22, 863–870.
- S5. Dugas-Ford, J., Rowell, J.J., and Ragsdale, C.W. (2012). Cell-type homologies and the origins of the neocortex. Proc. Natl. Acad. Sci. U. S. A. *109*, 16974–9.
- S6. Dugas-Ford, J., and Ragsdale, C.W. (2015). Levels of Homology and the Problem of Neocortex. Annu. Rev. Neurosci. *38*, 351–68.
- S7. Joshi, P.S., Molyneaux, B.J., Feng, L., Xie, X., Macklis, J.D., and Gan, L. (2008). Bhlhb5 Regulates the
 Postmitotic Acquisition of Area Identities in Layers II-V of the Developing Neocortex. Neuron 60, 258–272.
- Cobos, I., and Seeley, W.W. (2015). Human von economo neurons express transcription factors associated with Layer v subcerebral projection neurons. Cereb. Cortex 25, 213–220.
- S9. Arlotta, P., Molyneaux, B.J., Chen, J., Inoue, J., Kominami, R., and MacKlis, J.D. (2005). Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221.
- S10. Woodworth, M.B., Greig, L.C., Liu, K.X., Ippolito, G.C., Tucker, H.O., and Macklis, J.D. (2016). Ctip1
 Regulates the Balance between Specification of Distinct Projection Neuron Subtypes in Deep Cortical
 Layers. Cell Rep. 15, 999–1012.
- S11. Berberoglu, M.A., Dong, Z., Mueller, T., and Guo, S. (2009). fezf2 expression delineates cells with proliferative potential and expressing markers of neural stem cells in the adult zebrafish brain. Gene Expr. Patterns 9, 411–422.
- S12. Ip, B.K., Bayatti, N., Howard, N.J., Lindsay, S., and Clowry, G.J. (2011). The corticofugal neuronassociated genes ROBO1, SRGAP1, and CTIP2 exhibit an anterior to posterior gradient of expression in

early fetal human neocortex development. Cereb. Cortex 21, 1395–1407.

- S13. Leifer, D., Li, Y.L., and Wehr, K. (1997). Myocyte-specific enhancer binding factor 2C expression in fetal mouse brain development. J Mol Neurosci *8*, 131–143.
- S14. Hevner, R.F., Shi, L., Justice, N., Hsueh, Y.P., Sheng, M., Smiga, S., Bulfone, A., Goffinet, A.M.,
 Campagnoni, A.T., and Rubenstein, J.L.R. (2001). Tbr1 regulates differentiation of the preplate and layer
 6. Neuron 29, 353–366.
- S15. Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F., Boguski, M.S.,
 Brockway, K.S., Byrnes, E.J., *et al.* (2007). Genome-wide atlas of gene expression in the adult mouse
 brain. Nature *445*, 168–176.