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Snyder Point Process Optimal Filtering

In this work light intensity is described by a hidden Markov process that modulates the rate of a Poisson
process. The Poisson process produces photons and the entire model is known as a Markov modulated
Poisson process (MMPP). The estimation problem at the front end of the cascade (given only photon
noise) is then to reconstruct the Markov light intensity from the resulting photon stream. The Snyder
filter is a Bayesian inference technique that provides the optimal or minimum mean squared error (MMSE)
solution to this problem [1]. It is the point process analogue of the famous Kalman filter [2]. The Snyder
filter is an exact method (no approximations are made on either the state or observation process), that
evolves the posterior statistics of the MMPP using differential-difference equations. The solution to these
hybrid equations involves a discontinuous change at event (photon) times with a continuous inter-event
decaying trajectory. The general construction of the filter follows.

Let x(t) ∈ {0, 1, 2, . . . ,m} = X, be an unobserved, discrete state, continuous time Markov process
that represents the fluctuating, dimensionless, normalised light intensity. In this work, the incident light
intensity, λ(t) is defined by the linear equation λ(t) = αx(t) with α > 0 ms−1. However, the filter
description which follows holds for any functional intensity-state description. The intensity modulates an
observed Poisson point process N(t) for 0 ≤ t ≤ s (denoted Ns

0 ). Photons are therefore produced from
a MMPP with rate λ(t). If the causal posterior probability, P (x(t)|N t

0), is described by the 1 ×m row
vector q(t), then the continuous (differential) component of the Snyder filter is given by equation 1 [1].
The sum

∑
is taken across the columns of a vector. Here R is the infinitesimal generator of the Markov

process, Λ the diagonal rate matrix which controls how the rate of N(t) depends on each x(t) state, and
I the identity matrix. R contains all the Markov chain connection rates and sums to zero on each row,
while Λ has non-negative diagonal values.

dq(t)

dt
= q(t)

(
R+

(∑
q(t)Λ

)
I− Λ

)
(1)

The above set of coupled ordinary differential equations are solved between the event times of N(t)
(photon inter-arrival solution). At the N(t) event times the following update is applied with q(t−) and
q(t+) as the posterior probabilities infitesimally before and after a photon arrival discontinuity at time t.

q(t+) = q(t−)Λ
(∑

q(t−)Λ
)−1

(2)

After every photon, the updated posterior from expression 2 is used as a new initial condition for
solving equation 1. The above equations work for any R and Λ. The resulting conditional mean

estimator, x̂(t) = E [x(t)|N t
0], which achieves the MMSE: E

[
(x(t)− x̂(t))

2
]

is calculated as: x̂(t) =∑
j∈X jP (x(t) = j|N t

0)) =
∑
j∈X jqj(t), with qj(t) as the jth element of the posterior vector.

The 2 state interrupted model, used in the main text, substitutes the following matrices into the above
equations. The resulting 1× 2 posterior can be written as q(t) = [q0 q1].

R =

[
−k k
k −k

]
Λ =

[
0 0
0 α

]
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Since each qi is a probability then
∑
i qi = 1 implies

∑
i
dqi
dt = 0. This decouples the vector equation set

and reduces it to a single expression in terms of q1 only [1]. Further as x̂(t) =
∑
j∈X jqj(t) = q1 then the

inter-event differential equation directly describes the conditional mean estimate dynamics.

dx̂(t)

dt
= k − (2k + α)x̂(t) + αx̂(t)2 (3)

Hence, for the interrupted model, the Snyder equations explicitly describe the evolution of the state
estimate x̂ which is denoted as x̂ph in the main paper. The solution to the above equation (obtained by
completing the square) and its discontinuous update result in equations 1 and 2 of the main text.

Optimal Linear Filtering for the Interrupted Model

Equation 3 above described the non-linear MMSE inter-event trajectory. This is a quadratic ordinary
differential equation in x̂(t) and is derived by maintaining a causal and discrete approach to both the state
x(t) and its associated Poisson observations, N(t). If instead a continuous approximation is made on the
state dynamics using a linear system, then a new quadratic differential equation in terms of a covariance
matrix for the interrupted model, denoted Σt, can be obtained [3]. This allows direct calculation of the
linear MMSE mselph. This is directly comparable to the non-linear MMSE, mseph, obtained from the
Snyder filter. Both measures are at the front end of the phototransduction cascade (only photon noise).

dΣt
dt

= 1− 4kΣt − 2αkΣt
2 =⇒ mselph(t) = kΣt (4)

Solving the above equation over t ≥ 0 by completing the square and integrating (with initial condi-

tion, Σ0 = 1
4k ) leads to the explicit solutions below. Here a = 2αk, b = 4k, c = 1 + b2

4a , d = b
2a ,

Σt =
√

c
a tanh (

√
cat+G) − d and G = tanh−1

(√
a
c

[
1
b + d

])
. The solution is solely a function of the

dimensionless parameter β = α
k , which represents the relative intensity speed.

mselph(t) = k

√
c

a
tanh

(√
cat+G

)
− kd (5)

mselph = lim
t→∞

mselph(t) = k

(√
c

a
− d
)

=
1

β

(√
1 +

β

2
− 1

)
(6)

These equations are only valid for the 2 state interrupted model. However, similar analyses can be
performed for any multi-state Markov model by appropriately approximating the chain dynamics so that
a dynamical description of the covariance matrix results.
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