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Supplementary Information S2

Multi-state Bimodal Light Models Simulate a Main Light Switch with Gradual
Transitions between Non-modal States

As mentioned in the main text, the light models developed here attempt to mimic as many of the prop-
erties of non-repeated naturalistic stimuli as possible, while still maintaining analytical tractability. The
main paper focussed on a 2 state switching model with uniform state distribution, called the interrupted
model. Here this interrupted model is extended to a richer multi-state space of m states, with bimodal
Gaussian-like state distributions. These are described by nearest neighbour transitions between all states
and a multi-state jump between each modal state of the chain (see S1 Fig for an 8 state model). This
model represents a complex light source which flickers between two extreme intensities while also pos-
sessing small light changes about the extreme modes. The R matrix, which defines the transition rates
between states in the model, is obtained by solving for an under-constrained system of equations described
by πR = 0. Here π is a 1 ×m vector describing the desired bimodal state distribution.

Let the m×m generator, R have (ith, jth) element denoted by Ri,j . Then for the bimodal model, R
has diagonals Ri,i = −Σi, birth reactions Ri,i+1 = ai, death reactions Ri+1,i = bi+1 and modal switch
entries Rj,l = εjl and Rl,j = εlj . Here i spans the Markov state space, j, l are the modal states and
Σi is such that each row sum is 0. Setting linear death reactions, bi+1 = ki with k > 0 and allowing
εjl = εlj = ε admits the solution for the births as: ai = bi+1

πi+1

πi
where πi is the ith component of π. The

rate matrix, which describes the relation (linear in this case) between the states and the intensity, is then
Λ = α diag ([0 1 2 ... m]) for the m state Markov chain. Note that the k here is the same as that used
to define the dimensionless parameters γ and β. While π was chosen in this work to satisfy a bimodal
Gaussian description, a rich set of light intensity dynamics are achievable with this model by choosing
different stationary distributions and tuning the rates of R.

The power spectral density of the intensity for a bimodal light model at [m, γ, ε] = [16, 10, 3k] is
given in S3 Fig. This demonstrates that the mix of rates and amplitudes from the bimodal Gaussian
Markov intensity results in 1

f like behaviour over a large intermediate frequency (f) range. This is an
example of the more complex behaviour achievable with these models over the 2 state interrupted one.
Designing different R matrices can generally encode various types of intensity frequency behaviour. This
16 state model and a similar one at γ = 20 are examined further in Supplementary Information S3.

While a simple analytical solution to the Snyder filter equations for this model is not available, they
can be transformed into a linear equation set in un-normalised probabilities that must then be normalised
[4]. These are given below with qj(t) as the jth component of the normalised posterior vector, q(t) and
r(t) is the vector of non-normalised probabilities. Note that q(0+) indicates an initial condition of an
assumed photon at t = 0. This is adjusted so that each new photon time serves as a new initial condition.
As is standard in Snyder descriptions, the inter-event trajectory resets on every event. The reset or
update equation remains as in expression (2) of Supplement S1.

r(t) = q(0+)e(R−Λ)t (1)

qj(t) =
rj(t)∑
i ri(t)

(2)

The conditional mean estimate follows as x̂ph(t) =
∑m
i=1 iqi(t). If expression 1 is diagonalised it can be

shown that, for any Markov model, the inter-event solutions of x̂ph(t) involve exponential type decaying
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functions. Thus the qualitative nature of the bimodal Snyder solution is the same as the interrupted one,
and is shown in S2 Fig for the visually simpler 8 state model from S1 Fig with ε = k. There is always a
stable decay, since for a well posed problem, (R− Λ) will never have positive eigenvalues. Note that the
causal state estimate only involves operations on weighted sums and decaying functions. This is why the
filter can be easily described with a neuronal network, as was mentioned in the ‘Biological Realisability’
section of main text. In summary, the Markov modulated Poisson light descriptions given here allow the
encoding of a range of qualitatively different light intensity dynamics without changing the qualitative
filtering solution form.

References

1. Snyder D (1975) Random Point Processes. John Wiley and Sons Inc.

2. Kalman R (1960) A New Approach to Linear Filtering and Prediction Problems. Journal of Basic
Engineering 82: 35-45.

3. Snyder D, Miller M (1991) Random Point Processes in Time and Space. Springer-Verlag.

4. Rudemo M (1972) Doubly-Stochastic Poisson Processes and Process Control. Advances in Applied
Probability 2: 318-338.

5. Nikolic K, Loizu J, Degenaar P, Toumazou C (2010) A Stochastic Model of the Single Photon
Response in Drosophila Photoreceptors. Integrative Biology 2: 354-370.

6. Nikolic K, Loizu J (2013) Drosophila Photo-transduction Simulator. Journal of Open Research
Software 1.

7. Hardie R (2012) Phototransduction Mechanisms in Drosophila Microvillar Photoreceptors. WIREs
Membr Transp Signal 1: 162-187.

8. Henderson S, Reuss H, R H (2000) Single Photon Responses in Drosophila Photoreceptors and their
Regulation by Ca2+. Journal of Physiology 524: 179-194.


