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Supplementary Information S2

Multi-state Bimodal Light Models Simulate a Main Light Switch with Gradual
Transitions between Non-modal States

As mentioned in the main text, the light models developed here attempt to mimic as many of the prop-
erties of non-repeated naturalistic stimuli as possible, while still maintaining analytical tractability. The
main paper focussed on a 2 state switching model with uniform state distribution, called the interrupted
model. Here this interrupted model is extended to a richer multi-state space of m states, with bimodal
Gaussian-like state distributions. These are described by nearest neighbour transitions between all states
and a multi-state jump between each modal state of the chain (see S1 Fig for an 8 state model). This
model represents a complex light source which flickers between two extreme intensities while also pos-
sessing small light changes about the extreme modes. The R matrix, which defines the transition rates
between states in the model, is obtained by solving for an under-constrained system of equations described
by mR = 0. Here 7 is a 1 X m vector describing the desired bimodal state distribution.

Let the m x m generator, R have (i*", j*) element denoted by R; ;. Then for the bimodal model, R
has diagonals R;; = —%,;, birth reactions R; ;11 = a;, death reactlons Ri+1’2‘ = b;4+1 and modal switch
entries R;; = € and R;; = ¢;. Here ¢ spans the Markov state space, j,l are the modal states and
3; is such that each row sum is 0. Setting linear death reactions, b;y1 = ki with k£ > 0 and allowing
€j1 = €; = € admits the solution for the births as: a; = b; 41—+ Titl where m; is the i*® component of 7. The
rate matrix, which describes the relation (linear in this case) between the states and the intensity, is then
A = adiag([0 12 ... m]) for the m state Markov chain. Note that the k here is the same as that used
to define the dimensionless parameters v and 5. While 7w was chosen in this work to satisfy a bimodal
Gaussian description, a rich set of light intensity dynamics are achievable with this model by choosing
different stationary distributions and tuning the rates of R.

The power spectral density of the intensity for a bimodal light model at [m, v, €] = [16, 10, 3k] is
given in S3 Fig. This demonstrates that the mix of rates and amplitudes from the bimodal Gaussian
Markov intensity results in 1 like behaviour over a large intermediate frequency (f) range. This is an
example of the more complex behaviour achievable with these models over the 2 state interrupted one.
Designing different R matrices can generally encode various types of intensity frequency behaviour. This
16 state model and a similar one at v = 20 are examined further in Supplementary Information S3.

While a simple analytical solution to the Snyder filter equations for this model is not available, they
can be transformed into a linear equation set in un-normalised probabilities that must then be normalised
[4]. These are given below with ¢;(¢) as the j* component of the normalised posterior vector, ¢(t) and
r(t) is the vector of non-normalised probabilities. Note that ¢(0") indicates an initial condition of an
assumed photon at ¢ = 0. This is adjusted so that each new photon time serves as a new initial condition.
As is standard in Snyder descriptions, the inter-event trajectory resets on every event. The reset or
update equation remains as in expression (2) of Supplement S1.

r(t) = q(0F)e A (1)

o (t) = Z% 2)

The conditional mean estimate follows as Zpn(t) = > i-, ig;(t). If expression 1 is diagonalised it can be
shown that, for any Markov model, the inter-event solutions of Zpn(t) involve exponential type decaying




functions. Thus the qualitative nature of the bimodal Snyder solution is the same as the interrupted one,
and is shown in S2 Fig for the visually simpler 8 state model from S1 Fig with ¢ = k. There is always a
stable decay, since for a well posed problem, (R — A) will never have positive eigenvalues. Note that the
causal state estimate only involves operations on weighted sums and decaying functions. This is why the
filter can be easily described with a neuronal network, as was mentioned in the ‘Biological Realisability’
section of main text. In summary, the Markov modulated Poisson light descriptions given here allow the
encoding of a range of qualitatively different light intensity dynamics without changing the qualitative
filtering solution form.

References

1. Snyder D (1975) Random Point Processes. John Wiley and Sons Inc.

2. Kalman R (1960) A New Approach to Linear Filtering and Prediction Problems. Journal of Basic
Engineering 82: 35-45.

3. Snyder D, Miller M (1991) Random Point Processes in Time and Space. Springer-Verlag.

4. Rudemo M (1972) Doubly-Stochastic Poisson Processes and Process Control. Advances in Applied
Probability 2: 318-338.

5. Nikolic K, Loizu J, Degenaar P, Toumazou C (2010) A Stochastic Model of the Single Photon
Response in Drosophila Photoreceptors. Integrative Biology 2: 354-370.

6. Nikolic K, Loizu J (2013) Drosophila Photo-transduction Simulator. Journal of Open Research
Software 1.

7. Hardie R (2012) Phototransduction Mechanisms in Drosophila Microvillar Photoreceptors. WIREs
Membr Transp Signal 1: 162-187.

8. Henderson S, Reuss H, R H (2000) Single Photon Responses in Drosophila Photoreceptors and their

Regulation by Ca2+. Journal of Physiology 524: 179-194.



