SUPPORTING INFORMATION

Antimalarial Potential of Neolignans and other Compounds from *Magnolia* grandiflora (Magnoliaceae)

Abdul Latif, ^{a,b} Yongle Du,^a Seema R. Dalal,^c Maria L. Fernández-Murga,^c Emilio F. Merino,^{c,d} Maria B. Cassera,^{c,d} Michael Goetz,^e David G. I. Kingston^{*,a}

^aDepartment of Chemistry and Virginia Tech Center for Drug Discovery, M/C 0212, Virginia Tech, Blacksburg, VA 24061, United States, e-mail: dkingston@vt.edu
^bPresent address: Department of Chemistry, University of Malakand, Chakdara, Dir (Lower), Khyber Pakhtunkhwa, 18800, Pakistan
^cDepartment of Biochemistry and Virginia Tech Center for Drug Discovery, M/C 0308, Virginia Tech, Blacksburg, VA 24061, United States
^dPresent address: Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, United States.
^eNatural Products Discovery Institute, 3805 Old Easton Road, Doylestown, PA, 18902, United States

AUTHOR INFORMATION:

1

*Corresponding author. Tel.: +1 540 231 6570; fax: +1 540 231 3255. E-mail address: dkingston@vt.edu (D.G.I. Kingston).

List of supporting information

Figure-S1: ¹H-NMR spectrum (500 MHz, CDCl₃) of compound 1 Figure-S2: ¹³C-NMR spectrum (125 MHz, CDCl₃) of compound 1 Figure-S3: 1H-1H-COSY spectrum of compounds 1 Figure-S4: ¹H-¹³C-HSQC NMR spectrum of compound 1 **Figure-S5**: ¹H-¹³C-HMBC NMR spectrum of compound **1** Figure-S6: HR-ESIMS spectrum of compound 1 Figure-S7: ¹H-NMR spectrum (500 MHz, CDCl₃) of compound 2 Figure-S8: ¹³C-NMR spectrum (125 MHz, CDCl₂) of compound 2 Figure-S9: ¹H-¹³C-HSQC NMR spectrum of compound 2 Figure-S10: ¹H-¹³C-HMBC NMR spectrum of compound 2 Figure-S11: HR-ESIMS spectrum of compound 2 in negative mode Figure-S12: HR-ESIMS spectrum of compound 2 in positive mode Figure-S13: ¹H-NMR spectrum (500 MHz, CDCl₃) of compound 3 Figure-S14: ¹H-NMR spectrum (500 MHz, CDCl₃) of compound 4 Figure-S15: ¹H-NMR spectrum (500 MHz, CDCl₃) of compound 5 **Figure-S16**: ¹H-NMR spectrum (500 MHz, CDCl₃) of compound **6** Figure-S17: ¹H-NMR spectrum (500 MHz, CDCl₂) of compound 7 Figure-S18: ¹H-NMR spectrum (500 MHz, CDCl₃) of compound 8

Figure-S1: ¹H-NMR spectrum (500 MHz, CDCl₃) of compound 1

Figure-S2: ¹³C-NMR spectrum (125 MHz, CDCl₃) of compound **1**

Figure-S3: 1H-1H-COSY spectrum of compounds 1

Figure-S4: ¹H-¹³C-HSQC NMR spectrum of compound 1

Figure-S5: ¹H-¹³C-HMBC NMR spectrum of compound **1**

Sample Name	e AL-7832-new	Position	P1-C4	Instrument Name	Instrument 1	User Name	2					
Inj Vol	2	InjPosition		SampleType	Sample	IRM Calib	ation Status	Success				
Data Filenam	e AL-7832-new_esipos_u	ACQ Method	Dual_esi_union.m	Comment		431820 Acquired 1	ime	7/6/2016 9:50:50 AM				
x10 ⁵	⊧ESI Scan (0.115-0.21 ରା	4 min, 7 Sca	ns) Frag=175.0V	/ AL-7832-new_e	esipos_u.d	Subtract						
7.25-	1.135											
1	ĝ.											
6.75-												
6.5-												
6.25-												
6-												
5.75-												
5.5-												
5.25-												
5-												
4.75-												
4.5-												
4.25-												
- 41			8									
3.75			53									
3.5			Ě									
3.25												
2.75												
2.751												
2.51												
2.23												
1 75												
15]												
1 25	l		1									
	7 82											
0.75	14											
0.5	27 -7											
0.25												
5-	100 200 300	400 5	cio 600 Counts vs	700 800 Mass-to-Chargo	900 10 e (m/z)	000 1100	1200 130	0 1400				

Figure-S6: HR-ESIMS spectrum of compound 1

Figure-S7: ¹H-NMR spectrum (500 MHz, CDCl₃) of compound 2

Figure-S9: ¹H-¹³C-HSQC NMR spectrum of compound **2**

Sample Name	AL-7853-new	Position	P1-C5	Instrument Name	Instrument 1	User Name	
Inj Vol	2	InjPosition		SampleType	Sample	IRM Calibration Status	Some Ions Missed
Data Filenam	e AL-7853-new_esineg_u	ACQ Method	Dual_esineg_union.m	Comment		431820 Acquired Time	7/6/2016 10:05:15 AM
×10 4 -	ESI Scan (0.120-0.20)	2 min, 6 Scar	ns) Frag=175.0V	AL-7853-new_0	esineg_u.d	Subtract	
3.6-		84.18					
3.4-		Î					
3.2-							
3-	Ω.						
2.8-	13.914						
2.6-							
2.4-							
2.2-							
2-							
1.8-							
1.6-	88						
1.4-	195.8						
1.2-							
1-	3 5.959	52					
0.8-	3.891	47.18			ß		
0.6-	1 24	Ī			82.99		
0.4-	1 1				8		
0.2-		Lutter .	يا الدير		. [
01	100 200 300	400 500) 600 700	800 900	0 1000	1100 1200 1300 1	400 1500
	200 000		Counts vs	. Mass-to-Chard	je (m/ž)		

Figure-S11: HR-ESIMS spectrum of compound 2 in negative mode

mpie Name	AL-7853-new	Position	P1-C5	Instrument Name	Instrument 1	User Name	
Vol	2	InjPosition		SampleType	Sample	IRM Calibration Status	Success
ta Filename	AL-7853-new_esipos_u	ACQ Method	Dual_esl_union.m	Comment		431820 Acquired Time	7/6/2016 10:10:
x106 +E	ESI Scan (0.120-0.2	219 min, 7 Sca	ana) Frag=175.0	V AL-7853-new_	esipos_u.d	Subtract	
1.25-		107					
1.2		86.2					
1.15-		ĩ					
1.1							
1.05							
1-							
0.95							
0.9-							
0.85-							
0.8-							
0.75							
0.7							
0.65-							
0.6							
0.55-							
0.5-							
0.45							
0.4							
0.35-							
0.3							
0.25							
0.2							
0.15							
0.1							
0.05-							
ᆈ						·····	

Figure-S12: HR-ESIMS spectrum in of compound 2 in positive mode

Figure-S13: ¹H-NMR spectrum (500 MHz, CDCl₃) of compound 3

 $\begin{array}{c} 7.29\\ 7.29\\ 7.29\\ 7.29\\ 7.29\\ 7.29\\ 7.29\\ 7.29\\ 7.29\\ 7.29\\ 7.29\\ 7.29\\ 7.29\\ 7.29\\ 7.23\\ 7.29\\ 7.23\\$

4	4	\sim	2	8	~	9	4	0	σ	8	8	\sim	9	S	4	4	2		÷-	-	0	8	8	7	\sim	9	9	ഹ	S	\sim	\sim	\sim	9	ഫ
-	T.	H		0	0	σ	σ	0	σ	σ	σ	σ	σ	σ	σ	σ	σ		T	-	H	0	0	0	0	0	0	0	0	∞	∞	∞	\sim	∞
~	~	~	~	~	~	ം	ൎ	പ	лċ.	i.	10	лċ.	лċ.	i.	лċ.	10	л.	i.	л <u>о</u>	ió	i.	10	лċ.	i.	10	i.	i.	i.	10	m.	m.	m.	m.	m.
12	17	12	17	12	17	~~~	~~~	~~	-77	-77	77	-77	-77	-77	-77	-77	- 77	- 77	-77	- 77	-77	-77	-77	- 77	- 11	-11	- 14	- 14	- 11	14	17	17	17.	17
			∽ / ,	- n		_												"												, h				_

Figure-S14: ¹H-NMR spectrum (500 MHz, CDCl₃) of compound 4

Figure-S15: ¹H-NMR spectrum (500 MHz, CDCl₃) of compound **5**

Figure-S16: ¹H-NMR spectrum (500 MHz, CDCl₃) of compound **6**

Figure-S17: ¹H-NMR spectrum (500 MHz, CDCl₃) of compound 7

Figure-S18: ¹H-NMR spectrum (500 MHz, CDCl₃) of compound 8