SUPPLEMENTAL MATERIAL

Figure S1. **Pulmonary immune cell analysis of WT and STING N153S mice.** (A–F) Flow cytometry analysis of immune cells isolated from the lungs of WT and STING N153S mice. Total numbers were determined for the following immune cell subsets: $CD3^+$ (A), $CD4^+$ (B), $CD3^+$ (C), $CD19^+$ (D), $CD11b^+$ (E), and $CD49b^+$ populations (F). Data represent the mean \pm SEM of n = 3 mice per group. *, P < 0.005, ***, P < 0.0005 by unpaired *t* test.

JEM

Figure S2. **IFN**- β and ISG expression in primary STING N154S patient skin fibroblasts, STING N153S MEFs, and transfected 293T cells. (A–F) Cells were stimulated with increasing amounts of 2'3'-cGAMP (2, 4, and 8 µg), herring testes DNA (htDNA; 0.1, 0.5, and 1 µg) and polyinosinic–polycytidylic acid (poly I:C; 0.1, 0.5, and 1 µg) for 6 h. There was no significant difference cGAMP-transfected WT and STING N153S MEFs or between healthy control and STING N154S skin fibroblasts. Data were analyzed by ANOVA. (G) ISG expression in 293T cells 24 h after overexpression of WT mouse or mutant STING N153S as previously described (Dobbs et al., 2015). ***, P < 0005; ****, P < 0.0001 by *t* test. Stimulations were performed in biological triplicates, and qRT-PCR was performed in technical triplicates. Data represent the mean \pm SEM.

Table S1. Antibodies used in CyTOF

Tag	Target	Clone	Manufacturer	Catalog #
089Y	CD45	30-F11	Fluidigm	3089005B
141Pr	pSHP2	D66F10	Fluidigm	3141002A
142Nd	Caspase 3 (Cleaved)	D3E9	Fluidigm	3142004A
143Nd	TCRβ	H57-597	Fluidigm	3143010B
145Nd	CD4	RM4-5	Fluidigm	3145002B
146Nd	CD8a	53-6.7	Fluidigm	3146003B
147Sm	pSTAT5	47	Fluidigm	3147012A
148Nd	CD11B (Mac-1)	M1/70	Fluidigm	3148003B
149Sm	p4E-BP1	236B4	Fluidigm	3149005A
150Nd	CD25	3C7	Fluidigm	3150002B
151Eu	Ly-6G	1A8	Fluidigm	3151010B
153Eu	pSTAT1	58D6	Fluidigm	3153003A
154Sm	TER119	TER-119	Fluidigm	3154005B
155Gd	pTBK1/NAK	D52C2	CST	5483BF
158Gd	pSTAT3	4/P-Stat3	Fluidigm	3158005A
159Tb	ΤCRγδ	GL3	Fluidigm	3159012B
160Gd	CD45R (B220)	RA3-6B2	Fluidigm	3160012B
161Dy	pBAD	40A9	Fluidigm	3161006A
164Dy	ΙκΒα	L35A5	Fluidigm	3164004A
165Ho	CD3e	145-2C11	Fluidigm	3165020B
166Er	CD19	6D5	Fluidigm	3166015B
168Er	Ki67	B56	Fluidigm	3168007B
170Er	NK1.1	PK136	Fluidigm	3170002B
171Yb	CD44	IM7	Fluidigm	3171003B
172Yb	pS6	N7-548	Fluidigm	3172008A
173Yb	CD117 (c-kit)	2B8	Fluidigm	3173004B
174Yb	MHCII	M5/114.15.2	Fluidigm	3174003B
176Yb	pCREB	87G3	Fluidigm	3176005A

Table S2. Definition	of populations	used in CyTOF	⁼ analysis
----------------------	----------------	---------------	-----------------------

Cell populations	Marker expression	
Fig. 5		
CD4 (CD4 T cells)	CD45 ⁺ TER119 ⁻ CD3 ⁺ CD4 ⁺ TCR β^+	
CD8 (CD8 T cells)	CD45 ⁺ TER119 ⁻ CD3 ⁺ CD8 ⁺ TCR β^+	
NK (NK cells)	CD45 ⁺ TER119 ⁻ NK1.1 ⁺ CD3 ⁻	
CD19 (B cells)	CD45 ⁺ TER119 ⁻ CD19 ⁺ B220 ⁺ MHCII ^{+/int/lo}	
Ly6G+ (CD11b ^{hi} Ly6G ^{hi})	CD45 ^{+/Io} TER119 ⁻ CD11b ^{hi} Ly6G ^{hi}	
Monocytes	CD45 ⁺ TER119 ⁻ CD11b ⁺ Ly66 ⁻ MHCII ⁻	
Immature myeloid	CD45 ^{lo} TER119 ⁻ CD117 ^{+/lo} CD11b ⁺ Ly6G ^{int/lo/-}	
CD3 double-negative (DN)	CD45 ⁺ TER119 ⁻ CD3 ⁺ CD4 ⁻ CD8 ⁻	
Fig. 6		
CD4 ⁺ CD8 ⁻	CD45+ TER119- B220- CD19- NK1.1- CD4+ CD8-	
CD8 ⁺ CD4 ⁻	CD45 ⁺ TER119 ⁻ B220 ⁻ CD19 ⁻ NK1.1 ⁻ CD8 ⁺ CD4 ⁻	
CD4 ⁺ CD8 ⁺	CD45* TER119 ⁻ B220 ⁻ CD19 ⁻ NK1.1 ⁻ CD4* CD8*	
CD4 ⁻ CD8 ⁻	CD45+ TER119- B220- CD19- NK1.1- CD4- CD8-	
CD19 ⁺ B220 ⁺	CD45+ TER119- B220+ CD19+	
NK1.1 ⁺	CD45+ TER119- B220- CD19- NK1.1+	
DN1	CD45 ⁺ TER119 ⁻ B220 ⁻ CD19 ⁻ NK1.1 ⁻ CD4 ⁺ CD4 ⁺ CD4 ⁺ CD25 ⁻	
DN2	CD45 ⁺ TER119 ⁻ B220 ⁻ CD19 ⁻ NK1.1 ⁻ CD4 ⁺ CD8 ⁺ CD44 ⁺ CD25 ⁺	
DN3	CD45 ⁺ TER119 ⁻ B220 ⁻ CD19 ⁻ NK1.1 ⁻ CD4 ⁺ CD8 ⁺ CD25 ⁺ CD44 ^{I0/-}	
DN4	CD45 ⁺ TER119 ⁻ B220 ⁻ CD19 ⁻ NK1.1 ⁻ CD4 ⁺ CD4 ⁺ CD4 ⁺ CD25 ⁻	
Fig. 7		
B cells	CD45 ⁺ TER119 ⁻ CD3 ⁻ CD19 ⁺	
T cells	CD45* TER119" CD19" CD3*	
Monocytes	CD45 ⁺ TER119 ⁻ CD3 ⁻ CD19 ⁻ CD11b ⁺ Ly6G ⁻ MHCII ⁻	
NK cells	CD45+ TER119- CD19- CD3- NK1.1+	
Immature myeloid	CD45 ⁺ TER119 ⁻ CD3 ⁻ CD19 ⁻ CD11b ⁺ MHCII ⁻	

REFERENCE

Dobbs, N., N. Burnaevskiy, D. Chen, V.K. Gonugunta, N.M. Alto, and N.Yan. 2015. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. *Cell Host Microbe.* 18:157–168. http://dx.doi.org/10.1016/j.chom.2015.07.001