
 

Supplementary Notes 
 
Supplementary Note 1: The traditional stepwise mutation model does not          
capture observed trends in STR variation 
 

Our mutation rate estimation method relies on an STR mutation model that fits well to               

observed population-level data. While a variety of STR mutation models have been            

proposed1, the most widely and traditionally used is the generalized stepwise mutation            

model (GSM), which allows STRs to add or delete one or more repeat units during each                

mutation with equal probabilities of expansion or contraction. Under this model, variance            

in allele size, and therefore squared allele size difference, should grow linearly with time              

according to random walk theory. However, multiple orthogonal lines of evidence           

suggest that a length-dependent bias in mutation direction is a key component of STR              

mutation. First, studies of de novo STR mutations consistently find a bias in mutation              

direction: the longest alleles are more likely to contract, whereas the shortest alleles are              

more likely to expand2,3. Second, looking across more distant time scales, variance in             

allele size usually grows sublinearly with time to the most recent common ancestor             

(TMRCA) (Figure 1b). This saturation in the molecular clock over time is quite different              

than the linear trend predicted by the GSM (as depicted in Figure 3 of Sun et al.2). Taken                  

together, these observations strongly suggest that mutational bias toward a central           

“optimal” allele length is a critical feature of STR evolution1. 

 

A length-biased version of the GSM more accurately describes observed STR mutation            

trends. As pointed out by Garza et al.4, this is reminiscent of an Ornstein-Uhlenbeck              

(OU) stochastic process, which describes Brownian motion of an object with a spring-like             

force pushing that object back toward the central value. As the particle gets farther from               

the center, the force to go back toward the center increases. Here, we develop a               

discretized version of this process, which recapitulates the observed saturation in the            

STR molecular clock over time (Supplementary Figure 1a, b). Importantly, our model            

can be seen as an extension of the GSM allowing for a length constraint: if the length                 

constraint is set to 0, the OU model is equivalent to the GSM. Specific details and                

limitations of our model are described in the main text and in Supplementary Note 2.  
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Supplementary Note 2: Modeling STR mutation as a discrete multi-step          
Ornstein-Uhlenbeck process 
 
Introduction 

The classical OU process describes the position of a continuous variable over time.             

However, STR mutations occur in discrete step sizes. Miao5 outlines a discrete analog of              

the OU, but the model only allows steps that increase or decrease by a single unit. This                 

is insufficient for modeling STR mutations, as it is well known that STRs may mutate by                

more than one repeat unit in a single mutation. 

 

Here we develop a generalized version of Miao’s discrete OU process that allows steps              

of more than one unit. In Supplementary Note 3, we show that step size distributions               

from this model closely match those observed from de novo mutations. We use this to               

provide a realistic model of STR mutation, which serves as the basis for our maximum               

likelihood mutation rate estimation method described in the main text.  

 

Overview of the OU process 

An OU process is described by the stochastic differential equation: 

x β(θ )dt dBd t =  − xt + σ t  
where is the long run mean, is the value at time , is a length constraint which θ       xt       t  β       

pushes back toward , is the standard deviation of the step size, and is x    θ  σ           B   

Brownian motion. For convenience, we assume is equal to 0, and for our purposes as      θ           

outlined below we do not need to know the value of .θ   

 

This is a well-characterized process with properties6: 

[x | x ] veE t o = v =  −βt  
ar[x | x ]V t o = v =  2β

σ (1−e )2 −2βt
 

We are interested in the step size distribution and how that relates to STR mutations.               

Using the Markov Property and assuming :θ = 0  

[x |x ] [x | x ] veE t+Δt t = v = E Δt 0 = v =  −βΔt  
and so: 

[x  |x ] (e ) − v Δt (Δt)E t+Δt − xt t = v = ve−βΔt − v = v −βΔt − 1 = β + o  
 

For the variance: 
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ar[x  |x ] σ Δt (Δt)V t+Δt − xt t = v = 2β
σ (1−e )2 −2βΔt

=  2 + o  
So the step size has mean and variance of approximately and , respectively. For          βv–   σ2    

the continuous OU, a Gaussian process, the step sizes are drawn from .(− x, σ )N β  2  

 

Discrete single-step OU 

Miao derives a discrete version of the OU process allowing for steps of single units. He                

denotes the process as with a tick size , where each step increases or decreases    X t
h      h        

the value of by a single tick. For our purposes, an allele of size increases by   X t
h             xi    h  

with probability , decreases by with probability , and stays the same with  ui    h    di       

probability . This is then matched to the continuous OU process by matching u )1 − ( i + di             

the values of the first two moments, an established procedure for discretizing continuous             

stochastic processes. Writing the first two moments of in terms of and        [X |X ]E t+Δt t = x     ui   

 is straightforward (taken from Miao):di  

 

[X |X ] Δt(x ) 1 u )Δt)x Δt(x ) (Δt)E h
t+Δt t

h = xi = ui i + h + ( − ( i + di i + di i − h + o  
[(X ) |X ] Δt(x ) 1 u )Δt)x Δt(x ) (Δt)E h

t+Δt
2

t
h = xi = ui i + h 2 + ( − ( i + di i

2 + di i − h 2 + o  
 

Setting these equal to the first two moments of the continuous OU and dropping the               

 term gives:(Δt)o  

ui =  
2h2

σ +hβ(θ−x )2
i  

di =  
2h2

σ −hβ(θ−x )2
i  

 

Since and are probabilities, they must be between 0 and 1. Imposing and ui   di            ≥0u   

gives a possible range of states. If goes outside this range, we set and to≥0d         X t
h        ui   di   

0 or 1 appropriately to force  back inside these boundaries.X t
h  

 

Although not discussed by Miao, there are also limitations on the value of . This value             σ2    

describes the variance of the step size distribution. Here the steps only take values of -1,                

0, or 1, and the variance of that distribution will always be at most 1. Therefore, we                 

impose the additional restriction here that .≤1σ2  

  

Discrete multi-step OU 

 



 

The model described above only allows step sizes of a single unit. Here we extend this                

model to allow larger steps in some cases. The multistep discrete OU will be denoted as                

 and can be described as follows:X t
d  

● Draw a step size from a distribution , where and    k     D   ∈{1, 2, …∞}k     D  

describes with the requirements ; . (k )P = i     P (k ) 1∑∞
i=1 = i =   ≤P (k )≤1 ∀i0 = i  

Below denotes the probability that we draw a step size from distribution (i)P           i    

.D  

● With probability , will change by , with probability it will change by  ui  X t
d     h+ k    di      

, and with probability it will change by 0. Note that in the caseh− k     1 − ui − di            

where we define such that , this is the same as Miao’s single step   D    (1)P = 1          

discrete model. (Recall that is the tick size following Miao’s notation. In cases    h           

of modeling STR mutation we have set  always equal to 1).h  

The first two moments of this process can be written as: 

[X |X ] u ΔtP (j)(x h)  ∑ d ΔtP (j)(x h) 1 u )Δt)x (Δt)E d
t+Δt t

d = xi = ∑∞
j=1 i + j +  ∞

j=1 i − j + ( − ( i + di i + o  

[(X ) |X ] u ΔtP (j)(x h)   ∑ d ΔtP (j)(x h) 1 u )Δt)x (Δt)E d
t+Δt

2
t
d = xi = ∑∞

j=1 i + j 2 +  ∞
j=1 i − j 2 + ( − ( i + di i

2 + o  
Following the example above, we set the first two moments equal to the first two               

moments of the continuous case. This gives: 

ui =  
2h E[D]E[D ]2 2

σ E[D]+βh(θ−x )E[D ]2
i

2

 

di =  
2h E[D]E[D ]2 2

σ E[D]−βh(θ−x )E[D ]2
i

2

 
where is the expected value of the step size drawn from distribution [D] iP (i)E = ∑∞

i=1            D  

and is the expected squared step size. Note that for Miao’s model, we [D ] i P (i)E 2 = ∑∞
i=1

2              

have  and  and  reduce to the single step case.[D] [D ]E = E 2 = 1 ui di  

 

Limits on the state space and input parameters 

The nature of this process enforces limits on the state space and input parameters. As in                

the single step case, we must have and . Imposing this gives a state space       ≥0ui   ≥0di        

limit of . If goes outside these boundaries, or will again  θ , θ ][ − σ E[D]2

hβE[D}2  + σ E[D]2

hβ E[D]2   X t
d       ui  di    

be set to 0 or 1 appropriately to force it to a state within these bounds. For , the                 σ2   

distribution will have the highest possible variance when . Since the        .5ui = di = 0    

distribution here is symmetric, its expectation is 0 and . We therefore enforce         [D ]σ2 = E 2     

that . Note that in the case where , then and there will ≤E[D ]σ2 2        [D ]σ2 = E 2   ui + di = 1     

 



 

never be a step of size 0. If is less than this, the 0 step size will receive non-zero        σ2             

probability and the measured mutation rate will have to be corrected to reflect this (see               

next section). 

 

State holding time and its effect on mutation rate estimation 

In the model description above, a step size of 0 can have a non-zero probability if                

. Therefore, even though we will generate mutations from this model at a rate[D ]σ2 < E 2               

, some of those “mutations” will result in no actual allele change. Therefore will beμ              μ    

an overestimate of the rate of true mutation. 

 

Note that at each mutation event, the probability of changing the allele is equal to               

. This is independent of the current state . With , this is equalλ = ui + di =  σ2

h E[D ]2 2         i   h = 1     

to . So will give the true per generation mutation rate. When estimating λ = σ2

E[D ]2   μλ            

mutation rates, should be adjusted using this correction. For all future discussions we  μ             

assume  is the maximum value, which avoids this correction.σ2  

  

Example discrete multi-step model 

For a concrete example, assume we choose to follow a geometric distribution with       D        

parameter . Here can be thought of as the probability that the step size is by a single p   p                 

unit. This distribution fits well to observed STR mutation sizes (Supplementary Note 3).             

Then we have  and . The up and down probabilities would be:[D]E =  p
1 [D ]E 2 =  p2

2−p  

ui =  
2h (2−p)2

σ p +βh(2−p)(θ−x )2 2
i  

di =  
2h (2−p)2

σ p −βh(2−p)(θ−x )2 2
i  

For the STR mutation model, we will assume the central allele and . We will           θ = 0   h = 1    

also set . This gives simplified up and down probabilities:[D ]σ2 = E 2 =  p2
2−p   

ui =  2
1−βp xi  

di =  2
1+βp xi  

Note that when the current allele is 0, the step size distribution is symmetric. When the                

allele is less than 0, the step size distribution is weighted toward positive step sizes, and                

vice versa (Supplementary Figure 1c).  
 

 



 

Limitations of the OU mutation model 

We note that several well established features of STR mutation are not captured by our               

model, and represent potential future improvements: 

● Long STR expansions: Most well known pathogenic STRs, such as those           

involved in Huntington’s Disease or Fragile X Syndrome, are the result of large             

expansions of repeat tracks. Our method cannot currently be used to analyze            

repeat expansion loci for two major reasons. First, current tools for analyzing            

STRs are limited to loci that can be entirely spanned by a single read. For 100bp                

reads, this limits our detection to repeats of around 80bp or less in total length.               

Second, large pathogenic expansions clearly depart from the more stepwise          

mutation patterns observed at most shorter STRs, and thus likely occur under a             

different biological process. We hypothesize that the majority of STRs mutate           

under a stepwise model as described here, but that once a certain length             

threshold is crossed certain repeats become unstable and exhibit large mutation           

sizes that are more difficult to model. 

● Length-dependent mutation rate: Our model assumes a single per-locus mutation          

rate. However, STR mutation rates have been shown to be dependent on allele             

length, with longer alleles more likely to mutate than shorter ones as modeled in              

Haasl and Payseur7. Our current model does not accommodate allele-specific          

mutation rates. 

● Interaction between alleles: It has been hypothesized that interaction between          

the two STR alleles in an individual may shape mutation patterns8. Our model             

does not take this into account. 

 
Supplementary Note 3: STR mutation properties observed from trio studies  
 
Previous studies have examined properties of STR mutation by directly observing de            

novo mutation events. In this section, we summarize several of these studies and use              

the results to motivate our choice of model and parameters in the main text.              

Supplementary Table 1 summarizes these studies spanning from Weber and Wong’s           

early study of 24 mutations9 to Sun et al.’s2 recent examination of 2,058 mutations.              

Importantly, the vast majority of loci previously studied are di- and tetra- nucleotides that              

were ascertained specifically due to their high degree of polymorphism. Therefore, these            
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loci are unlikely to be representative of parameters of STR mutation genome-wide.            

However, they can be useful for gaining general insight into mutation patterns of STRs. 

 

De novo mutations are length-biased 

Nearly every study summarized in Supplementary Table 1 observed a          

length-dependent bias in mutation direction. The three largest and most recent           

studies2,3,10 showed that longer alleles are more likely to contract, and shorter alleles             

more likely to expand. Ellegren observed only a tendency of long alleles to contract, but               

he and Weber and Wong studied very few overall mutations and thus may have had               

limited power to detect this bias. Overall, these studies suggest a length bias is a key                

feature of STR mutation. 

 

Our model, described in Supplementary Note 2, imposes a length bias denoted as ,             β  

which describes the pressure on alleles to mutate back to an “optimal” central allele.              

Mutation steps are drawn from a distribution with mean , where is the current         βx–   x     

allele length and “0” is the optimal allele. can be measured from mutation data by        β         

taking the negative slope of the best fit line for vs. , where is the starting allele          xi   xΔ i   xi      

for mutation  and  is the mutation size.i xΔ i   

 

Although no study to date has collected enough mutations to estimate this value             

per-locus, Sun et al. plot a similar relationship (population Z-score vs. proportion of             

mutations increasing) in aggregate across all loci analyzed. For tetranucleotides,          

assuming nearly all steps are of a single unit, the proportion of increasing mutations               pi
can be converted to mean mutation size using the formula .          [Δx] p 1 ) pE =  i − ( − pi = 2 i − 1  

Assuming differences in length Z-score are close to differences in repeat size, their             

Figure 2d suggests an estimate of is reasonable. In reality this parameter is likely      .3β = 0          

to vary between loci. 

 

Observed step sizes follow a geometric distribution 

Step-size patterns of de novo STR mutations varied markedly across repeat unit sizes:             

tetranucleotides almost always mutate by a single unit, whereas dinucleotides are much            

more likely to experience multi-step mutations. Little data exists for step sizes of             
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homopolymers or tri-, penta-, and hexa-nucleotides, although Ballantyne et al’s results           

suggest periods 3-6 tend to have single step sizes. Reported step size distributions fit              

well to a geometric distribution (Supplementary Figure 2), which we chose as our             

mutation model. Supplementary Table 1 gives the estimated proportion of single-unit           

steps ( ) and the corresponding value of . This parameter is also likely to vary p       σ2         

significantly between loci. Because we could not obtain accurate per-locus estimates of            

, we also report “effective length constraint” .σ2 /σβef f  = β 2   

 
Supplementary Note 4: Calibrating standard errors for mutation rate         
estimates 
 
Our mutation rate estimation method assumes that each pair of haplotypes is an             

independent observation. However, haplotype pairs often share some portion of          

evolutionary history, and thus this assumption is incorrect. This is especially true in our              

Y-STR mutation rate analysis, which considers all pairs of haplotypes, with each pair             

considered to be independent. Extensive tests of our method on simulated trees show             

that this lack of independence does not bias mutation rate results (Figure 2,             
Supplementary Figure 4). However, non-independence between data points is         

expected to artificially deflate standard errors, making estimates appear more precise           

than they actually are. 

 

To correct for standard error deflation, we use an empirical method to scale standard              

errors such that the 95% interval, calculated as indeed covers the true        og μ .96SEl 10 ˆ ± 1     

mutation rate with 95% probability. We found that standard error deflation grew            

approximately linearly with the absolute value of the log mutation rate (Supplementary            
Figure 3a), and thus scaled standard errors by a constant times the absolute value of          γ      

the log maximum likelihood estimate, giving scaled confidence intervals of          

.og μ .96γ|log μ|SEl 10 ˆ ± 1 10 ˆ   

 

We calibrated the constant by calculating a metric, denoted as “truth coverage” ( ),    γ          C  

which gives the probability that the true value of the mutation rate falls within the scaled                

95% confidence intervals. In cases where the posterior probability distribution of the            

mutation rate is known, we calculate truth coverage for each locus as the total mass of                

 



 

the PDF contained in the scaled confidence interval (method 1). The truth coverage of              

the dataset is the mean value across loci. Stated more formally: 

 ϕ  C =  1
L ∑

L

i=1
∫

log μ +1.96SEγ|log μ |10 iˆ 10 ˆ i 

log μ −1.96SEγ|log μ |10 ˆ   i 10 ˆ i

 i   

 

Where is the maximum likelihood mutation rate estimate at locus , is the total μiˆ          i  L     

number of loci, and is the posterior probability distribution of the true value of the log     ϕi             

mutation rate at locus based on an orthogonal dataset. In the base case where the    i             

ground truth is known, the PDF simply consists of a point mass at the true value, and                 

this metric gives the percent of loci for which the true value falls in the predicted                

confidence interval. 

 

In cases where the ground truth dataset consists of the number of observed mutations              

out of a number of total observed meioses , we calculate truth coverage by firstm)(          n)(        

constructing an empirical confidence interval on the number of mutations for a given ,             n  

then determining how often the observed mutations falls in this interval (method 2).             

Specifically, we using the following steps: 

1. Calculate the scaled standard error as E Eγlog μS ′ = S 10 ˆ  

2. Draw a mutation rate  from .μ′ (μ, SE )N ˆ ′  

3. Draw a number of mutations from a binomial distribution with trials and     m′       n    

probability of success .μ′  

4. Repeat Steps 1-3 1,000 times to generate a distribution of .m′   

5. Determine whether the observed number of mutations falls within the 2.5th to       m       

97.5th percentile of the determined distribution for .m′  

6. Calculate  as the percent of loci for which step 5 passes.C  

 

We used these two approaches to calibrate standard errors for simulated autosomal            

data (Supplementary Figure 3b), Y-STR mutation rates (Supplementary Figure 3c-d),          

and autosomal mutation rates (Supplementary Figure 3e). For simulated data, ground           

truth values were known and thus method 1 was used. Autosomal standard errors were              

calibrated using method 2 against de novo mutation data from Sun et al.2 across 1,634               

loci with an average of 2,136 meioses observed each and from de novo mutation data               
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published for the CODIS markers (http://www.cstl.nist.gov/strbase/mutation.htm) across       

11 loci with an average of 754,996 meioses each. For both simulated and observed              

autosomal mutation datasets, setting between 1-1.5 resulted in the desired truth    γ         

coverage of approximately 95%. For downstream analyses we used to scale         .2γ = 1    

genome-wide autosomal standard errors. 

 

Y-STR standard errors were calibrated using method 1 against posterior distributions           

returned by MUTEA11 (Supplementary Figure 3c) across 702 loci and using method 2             

against observed de novo mutation rates from Ballantyne et al.10 across 52 loci with an               

average of 1,700 meioses each (Supplementary Figure 3d). For both analyses, we            

performed error calibration using both the 1000 Genomes and the SGDP datasets.            

Notably, standard error deflation was significantly stronger in the 1000 Genomes data,            

likely a result of the higher degree of shared history between individuals compared to the               

diverse genetic backgrounds present in the SGDP dataset. For both datasets, was           γ   

significantly higher for Y-STRs than for autosomal loci. This trend is expected: whereas             

the data points for autosomal estimation essentially consist of randomly chosen           

haplotype pairs, the Y-STR analysis considers all haplotype pairs and thus has a much              

higher degree of non-independence across data points. For Y-STR analyses, we used            

to scale standard errors for the 1000 Genomes and to scale estimates fromγ = 8           γ = 6      

the SGDP data. 

 

Supplementary Note 5: Gene-level analysis of STR constraint 
 

Overall, we computed constraint scores for 1,424 STRs in coding regions across 1,180             

individual genes. Most genes (83%) contained only a single STR. 13% contained two             

STRs, 3% contained 3 STRs, and 1% contained 4 or more. Pairs of STRs in the same                 

gene had moderately more similar constraint scores compared to all pairwise           

comparisons (median difference 1.00 vs. 2.31), although this difference was not           

statistically significant (Mann-Whitney U test; p=0.054; n1=155, n2=1,012,862), suggesting         

different STRs in the same gene contain independent information. 

 

To determine whether our score implicates a role for STRs in genes with specific              

characteristics, we also examined the relationship between STR constraint and gene           
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expression levels across tissues as measured by GTEx12. Constraint scores were           

significantly stronger in the top 20% of expressed genes in nearly every tissue. STRs              

were most constrained in genes highly expressed in brain-related tissues          

(Supplementary Figure 14). Intriguingly, this is consistent with the fact that most known             

pathogenic STRs results in neurological or psychiatric phenotypes13. 

 

We also compared STR constraint scores to gene-level scores computed by the Exome             

Aggregation Consortium (ExAC)14 measuring tolerance to loss of function mutations (pLI           

scores) or missense mutations (missense Z score). Genes with high pLI scores (>0.9)             

had overall stronger STR constraint (Mann-Whitney U test; p=1.5e-97; n1=463;          

n2=7,564) (mean constraint -6.7 for high pLI, mean constraint -1.4 for low PLI). Similarly,              

genes with high missense Z scores (>3) had overall stronger STR constraint            

(Mann-Whitney U test; p=2.5e-51; n1=272; n2=7,755). On the other hand, for many            

genes the STRs and the SNPs tell a different story. 21 genes with pLI>0.9 had STRs                

with positive scores (not constrained). Interestingly, at least two of these STRs (in ATN1              

and CACNA1A) are involved in known Mendelian late-onset STR expansion disorders.           

Similarly, hundreds of highly constrained STRs are present in genes with low pLI and/or              

low missense Z scores. Thus, the two different variant types likely provide orthogonal             

sources of information in many cases. 
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Supplementary Tables 
 
Supplementary Table 1 
 

Study # 

STRs 

# Mutations Mutation rate  Step size1 

Weber and Wong9  28 24* 1.2 × 10-3 ; .87pdi,tetra = 0 .49σ2
di,tetra = 1  

Ellegren15 52 102 - 
; .85pdi = 0 .59σ2

di = 1  

; .92  ptetra = 0 .28σ2
tetra = 1  

Huang et al. 20023  362 97 1.9 × 10−4 ; .37pdi = 0 1.91σ2
di = 1  

Ballantyne et al.10  

(Y-STRs)  
186 924 

3.78×10−4 to 

7.44×10−2 
; .96ptri−hexa = 0 .13σ2

tri−hexa = 1  

Sun et al.2 2,477 2,058 

10.01 × 10−4 

(tetra) 

2.73 × 10−4 (di) 

; .68pdi = 0 .85σ2
di = 2  

; .99  ptetra = 0 .03σ2
tetra = 1  

Previously reported parameters of STR mutation 
1 denotes the probability that a mutation is a single unit. is calculated as . Subscripts denote the length of  p           σ2     2 )/p  ( − p 2       

the repeat motif. 
*Verified and likely events reported in Table 1. Includes both di and tetranucleotides combined. 
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Supplementary Table 2 
 

Motif length p u d u+d. 

1 0.92 0.012 0.027 0.040 

2 0.90 0.00070 0.0047 0.0056 

3 0.86 0.00024 0.0011 0.0013 

4 0.75 0.00017 0.00038 0.00058 

5 0.67 0.00018 0.00028 0.00047 

6 0.67 0.00018 0.00020 0.00041 

 

Per-locus stutter parameter estimates. The median value of each parameter          

estimated across all autosomal loci is shown. “u+d” gives the median total probability of              

stutter error. 

  

 



 

Supplementary Table 3 
 

Motif length log10μ Log10μ 

(SE≥0) 

β p 

1 -5.0 -4.8 0.60 1.00 

2 -6.3 -4.7 0.40 0.93 

3 -7.6 -5.9 0.44 0.94 

4 -7.6 -5.9 0.45 0.95 

5 -7.6 -6.2 0.44 0.94 

6 -7.6 -6.7 0.42 0.93 

Per-locus mutation median parameter estimates. The third column gives median          

mutation rates for STRs that had defined or non-zero standard errors, meaning they             

were not on the optimization boundary of our method. 
  

 



 

Supplementary Table 4 
 

Feature Pearson r P-value 

Uninterrupted 

length 
0.38 <10e-200 

Length 0.15 <10e-200 

GC content -0.044 <10e-200 

Entropy 0.030 7.4e-160 

Period -0.27 <10e-200 

Replication 

timing 
-0.030 2.3e-162 

Purity score 0.22 <10e-200 

Impact of local sequence features on STR mutation rates. P-values of <10e-200            

denotes p-values under Python’s numerical threshold using the scipy.stats.pearsonr         

function. 
  

 



 

Supplementary Table 5 
 
 
Chrom Start Motif  Gene Zscore OMIM annotation Category 

18 19752073 ACC GATA6 -12.88 

Atrioventricular septal 

defect 5; Atrial septal 

defect 9; Pancreatic 

agenesis and congenital 

heart defects; Persistent 

truncus arteriosus; 

Tetralogy of Fallot 

Most constrained 

2 5833526 ACG SOX11 -12.60 
Mental retardation, 

autosomal dominant 
Most constrained 

14 99641544 AGG BCL11B -12.31 Immunodeficiency Most constrained 

17 40345560 AGC GHDC -12.02 NA Most constrained 

17 71205859 AGC FAM104A -12.02 NA Most constrained 

8 28209226 AGC ZNF395 -12.02 NA Most constrained 

3 129546680 AGC TMCC1 -11.88 NA Most constrained 

19 51961617 AGC SIGLEC8 -11.88 NA Most constrained 

2 237076427 CCG GBX2 -11.88 NA Most constrained 

2 105472776 ACC POU3F3 -11.88 NA Most constrained 

9 35561913 ACCC FAM166B 2.78  Least constrained 

10 21805467 AGG SKIDA1 2.97  Least constrained 

5 112824025 AGC MCC 4.09 Colorectal cancer Least constrained 

1 17026022 CCG ESPNP 4.21  Least constrained 

13 25671799 AGC PABPC3 4.99  Least constrained 

3 18391133 AGC SATB1 5.18  Least constrained 

19 39019599 AGG RYR1 8.35 

Central core disease; 

Minicore myopathy with 

external ophthalmoplegia; 

Neuromuscular disease, 

congenital, with uniform 

type 1 fiber; 

King-Denborough 

syndrome 

Least constrained 

10 29821971 AAG SVIL 9.36  Least constrained 

7 73462847 AGC ELN 10.01 
Supravalvar aortic 

stenosis, cutis laxa 
Least constrained 

11 73020369 AGG ARHGEF17 14.04  Least constrained 

Most and least constrained protein coding STRs. 
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