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Simulation Algorithm

Here we describe an algorithm for simulating epidemics from our proposed individual model. Consider
the situation where there is one infectious individual at current time t (i.e. the time of this individual
transits from class E to class I) among an entirely susceptible population. The simulation proceeds
as follows:

1. Draw a waiting time 4tI in class I from a specified infectious period distribution, and set the
time of recovery tR = t+4tI .

2. Let tnext be the earliest time in the union of tI and tR (those greater than t) of all currently
infectious individuals.

3. The time of next infection tE is drawn as the first event in a non-homogeneous Poisson pro-
cess with a time-varying rate β(t) (defined in the main text). There are a number of ways of
simulating from a non-homogeneous Poisson process − for example, the thinning algorithm [1]
which essentially samples the next event time tE from a homogeneous Poisson process with the
baseline rate β and accepts that with probability β(tE)/β. Note that when there are n > 1

currently infectious individuals, the acceptance probability would become
∑n

j βj(tE)

nβ .

4. If tE < tnext, set t = tE .

5. If tE ≥ tnext, set t = tnext, and resimulate tE as described in Step 3.

6. After tE is sampled, select the source of this infection uniformly among currently infectious
individuals. This new infection is then placed at distance r and angle ∆θ from the selected
source according to the density g(G = (r,∆θ); η, ŝ) specified in details in the main text.

7. Draw tI the time of becoming infectious and tR the recovery timefor this new infection using
specified waiting time distributions.

8. Repeat the above steps until a stopping criterion (e.g. t > tmax ) is reached.

On the Grid-nature of Population Density Data

In the main text, for mathematical clarity, we have discussed a general case where the population
density along the circumference σ(l|r, ŝ) is assumed to be continuous. In practice, however, the data
of population density over a study area is often provided in a discrete form, mostly on the grid level.
This results in a piecewise constant density of the angle θ, with the precise location of change-points
in this density depending on how the ‘grids’ and the ‘circle’ intersect (see Fig. ??). To derive this
density, it is necessary to compute the probability masses of the arcs (which is proportional to the
density of the corresponding angles) that comprise the whole circumference, where population density
is homogeneous/constant on each arc (and in the grid it belongs). Here we describe an algorithm
for computing σ(l|r, ŝ) given the grid-level population density. First of all, using basic plane and line
geometry, we solve for the coordinates of the intersection points between the grid lines and the circle
(Fig. ??). Then, for each intersection point (xi, yi) we solve for the angle θi measured from the first
quadrant by

θi = arctan(
yi − ys
xi − xs

), (1)

where (xs, ys) is the coordinate of the source of infection (the center of the circle). Let (θ(1), θ(2)....)
be the vector of ordered angles, and let ∆θi = θ(i+1)− θ(i), for i = 1, 2, .... The probability mass of an
arc segment with ∆θi is then proportional to

σ∆li ×∆li, (2)

1



where ∆li is the arc length corresponding to ∆θi, and σ∆li is the constant population density of the
grid-cell in which the arc lies.

It is worth noting that infected individuals emerge in continuous space regardless the form of the
population density data.

Simulating from Individual SEIR Model for Comparison

We describe how we simulate epidemics from the individually-based SEIR model described in the
main text section Comparison with Individual-based SEIR Model. For the sake of computational
efficiency, we consider an initially susceptible population with population size N = 10000. The
geographical locations of these N individuals were randomly assigned accordingly to a normalized
population density across the study area similar to the Ebola dataset. An epidemic was assumed to
be initiated by an index case and progressed according to the conventional spatial-temporal SEIR
epidemic model [2]. In contrast to our proposed framework, the conventional SEIR model requires an
explicit specification of the infectious challenge presented to each susceptible individual. Specifically,
a susceptible individual j becomes exposed during [t, t+ dt) with probability

p(j, t) = {α′ + β′
∑
i∈ξI(t)

K(dij , κ
′)}dt+ o(dt), (3)

where α′ represents a primary infection rate and β′ is the contact parameter. The term K(dij , κ
′)

characterises the dependence of the infectious challenge from infective i to j as a function of dis-
tance dij and is known as the spatial kernel function. We assume that K(dij , κ

′) = exp(−κ′dij).
It is noted that K(dij , κ

′) does not have to be a proper density function. Similar to our proposed
model, an infected individual is assumed to spend random times in class E and I, modelled by
Gamma(γ, λ) and Exponential(1/ϕ) distributions respectively. We focus on simulations that give
rise to epidemics in which around 5% of a study population becomes infected (in 50 days). Specifi-
cally, we set α′ = 2.5× 10−5, β′ = 1.8× 10−4, κ′ = 0.3, γ = 3, λ = 1 and ϕ = 7. It is noted that, as
the conventional SEIR model and our model have very distinct structures (and hence in general imply
differing interpretations of their model parameters), they are therefore compared based on commonly
agreed key ‘model outcomes’ (see main text).

Speed Gain in Comparing to Individual-SEIR Model Inference

We also fit the full individual-based SEIR model to one of the simulated datasets described in Simu-
lating from Individual SEIR Model. It is noted that this will require an explicit consideration of each
individual (among the population with N = 10000) in the model fitting and often require a large
amount of recalculations of likelihood during the MCMC sampling − for example, at proposing a new
value of κ′, the spatial infectivity between all infectious-susceptible pairs must be recalculated. As the
purpose here is to compare the computational efficiency, we only record and compare the run-time
for 1000 MCMC iterations both in performing the full individual-based SEIR model inference and
performing inference of our model. A comparison, in which both model fittings were conducted using
similar C++ codes and data structures, shows a significant speed gain in fitting our model (3 vs 2340
seconds).

Ripley’s K and L Function

Ripley’s K function [3, 4] is similar to Moran’s I function but is able to characterize clustering/dispersion
of point patterns at multiple distances. Theoretically it is defined as

K(r) = λ−1E[number of points within distance r of a randomly chosen point], (4)

where λ is the density of points per unit area. We consider a common transformation of Ripley’s K,
Ripley’s L function L(r) =

√
K(r)/π. We compute the estimated L(r) using the function Linhom(·)

provided in the R package spatstat[5], on a range of distance [0, rmax]. This function also determines
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a sensible default of the maximum distance rmax, by taking into account the increasing estimation un-
certainty at larger distances. It is noted that the estimated L(r) are often compared to those computed
from data generated from a null model (i.e. a Poisson point process), in which clustering/dispersion
are characterized relative to the null model. In this paper, however, it is the comparison of values of
L(r) computed from the model simulated data and the observed data is of interest.
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