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s1 Materials and methods

s1.1 Parametrization of bmp

We initially built 2,2’- and 3,3’-dioleoyl lysobisphosphatidic acid (2,2’-bmp18:1 and 3,3’-bmp18:1)

topologies based on the charmm36 additive force field for lipids [1] using analogy. That is, we

adopted all charges and atom types from other 18:1 lipids already included in the charmm36 force

field [1]. Then, we used charmm-gui [2] to generate a bilayer of 128 dopg lipids and mutated each

dopg to 2,2’-bmp18:1 and 3,3’-bmp18:1 separately to construct two different bilayers composed of

128 copies of 2,2’-bmp18:1 and 128 copies of 3,3’-bmp18:1. We performed minimization followed

by a series of equilibration steps, in which we gradually removed the restraints as suggested by

charmm-gui [2] using gromacs 5.0 [3]. We finally simulated the bilayer without restraints for

100 ns in NpT at 310 K and 1 atm pressure.

To derive atomic charges that are consistent with the Slipids force field [4], we followed the

Slipids charge parametrization scheme. 52 random bmp conformations from the last ∼25 ns of

the simulation performed using the charmm36 force field [1] were selected. Head groups and the

glycerol region including the ester groups of each 52 lipids were first geometry optimized. Then, the

partial atomic charges were computed with the multiple conformations and orientations restrained

electrostatic potential (resp) approach [5] using three different orientations for each molecular

fragment. In the resp calculations, charges of the ester group atoms were constrained to the values

already present in the Slipids force field [4].

All quantum-chemical calculations were performed using the Gaussian09 program suite [6] at

the b3lyp/cc-pvtz level of theory. Charge calculations were performed with the iefpcm model
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Fig s1. Comparison of results of charge calculations performed on the head groups and the glycerol
region of 2,2’-bmp18:1 s-s’. Charges were calculated using multiple conformations and orientations
resp fitting using 52 random head group conformations picked from a uniformly s-s bmp or r-r, r-s,
and s-s mixture bmp membranes. Error estimations were performed by generating 100 bootstrap
samples from the 52 head group conformations and refitting the charges. (Left axis) Charge and
their statistical error for each unique atom is shown. (Right axis) The relative errors, means divided
by the statistical error, (spikes) are also shown.

in a polarizable continuum with a dielectric constant of 78.4 by setting solvent to water. Multiple

conformations and orientations resp fitting was performed with the r.e.d. iii.5 software [5].

The bmp can exist as r-r, s-s, and r-s stereoisomers. We tested for the effect of stereoiso-

merization for charge calculations by performing the above protocol for 2,2’-bmp18:1 head groups

conformations that are uniformly s-s, and also for r-r, r-s, and s-s mixtures. The estimated

charges were found to be the same indicating that this stereoisomerization does not effect the charge

estimation using the above protocol (Fig s1). Since s-s 2,2’-bmp is the most biologically active form

and interacts with npc2 most favorably [7], we used this configuration in all subsequent simulations.

s1.2 Preparation of simulation systems and unbiased simulations

We prepared and equilibrated membranes and proteins separately before combining them to use in

the biased and unbiased protein-membrane simulations. All bilayers listed in Table 1 were prepared

in 0.1 M NaCl solution using charmm-gui [2]. The systems with 10 mol% cholesterol contain a total

of 160 lipids, while those with 35 mol% cholesterol contain 200 lipids, so as to have a sufficiently

large membrane area for protein-membrane binding simulations. bmp-containing systems were

prepared by replacing the head groups of dopg-containing bilayers built using charmm-gui [2]. We

minimized the bmp-containing systems in several stages, checking and correcting the stereochemistry

of head groups at each stage. For all membranes, we first performed the staged minimization and

equilibration protocols as prescribed by charmm-gui, and then replaced the charmm36 additive

force field [1] with the Stockholm lipids (Slipids) force field [4] for lipids. We performed at least a

100 ns long NpT simulation of each membrane with the Slipids force field.

There are two available crystal structures for bovine npc2: apo (pdb id: 1nep [8]) and chol-
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bound (pdb id: 2hka [9], chains B and C). Intrinsic pK a of each residue was estimated for the

crystal structure of the apo form and all three chains found in the crystal structure of using

propka 3.1 [10, 11]. Accordingly, E110, H31, and H56, which have intrinsic pKa > 5.0, were

protonated. One of the cholesterol-bound chains (chain C of pdb id: 2hka [8]) and the apo form

(pdb id: 1nep [9]) were placed in 0.1 M NaCl solution. After successive minimization and 100 ps

long NV T and NpT simulations with the protein and ligand heavy atoms harmonically restrained

(k = 100 kJ/mol/Å2), we performed 100 ns long NpT simulations for npc2apo and npc2chol-bound.

The simulation systems presented in this work were prepared by stacking the final configurations

from the equilibrated membrane and protein systems. After combining the systems, excess water

was removed and the ionic concentration was re-adjusted to 0.1 M. Random initial orientations of

the protein with respect to the membrane were obtained by rotating a sphere that contains the

protein and a layer of solvent around a random axis by 180◦. These systems were then minimized

and a 100 ps NpT simulation was performed with the protein heavy atoms harmonically restrained

(k = 100 kJ/mol/Å2). We then performed 400 ns long unbiased simulations for the systems indicated

in Table 1.

s1.3 Well-tempered metadynamics simulations

s1.3.1 Simulation approach

All free energy calculations presented in this work use wt-mtd [12] with three collective variables

(cvs). These three cvs capture different positions and orientations of the protein with respect to

the membrane surface. The first cv, |z|, is the absolute value of the z-component of the distance

between the protein center of mass (com) and the com of P atoms of the upper leaflet of the bilayer.

The other cvs, θ and φ, are defined as the angles between the membrane normal and the long and

the short axes of the protein, respectively (Main text, Fig 2 A–B).

To limit the phase space, we biased each cv separately within overlapping windows (index w)

flanked by half-harmonic flat-bottomed restraints on the |z| in the form of

V bw =


kminw (|z| − |z|minw )2 , if |z| < |z|minw

0 , if |z|minw ≤ |z| ≤ |z|maxw

kmaxw (|z| − |z|maxw )2 , if |z| > |z|maxw .

(1)

Main text, Fig 2 C shows a schematic representation of the sampling approach. Each window

has a width (|z|maxw − |z|minw ) of 4 Å and overlap (|z|maxw − |z|minw+1) of 1 Å with the neighboring

window, and all force constants (kminw , kmaxw ) were set to 150 kJ/mol/Å2. Within each window w,

we performed separate wt-mtd [12] on |z|, θ, and φ cvs. Therefore, in each simulation (index i),

a history-dependent bias on one of |z|, θ, and φ cvs, as well as a time-independent flat-bottomed

half-harmonic potential on |z| (V bw) were active. Metadynamics bias on |z| was applied only within

the interval, |z|minw ≤ |z| ≤ |z|maxw [13], whereas the metadynamics (mtd) biases on θ and φ were

active throughout the cv space. The width of Gaussian hills was set to 0.05 Å for |z| and 0.05 rad

for θ and φ cvs. The frequency of hill addition was 1 ps−1 for all simulations. Bias factor (γ) was

adjusted early in the simulations and finally kept at 40 in every simulation. The history dependent
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bias was stored on a grid with a spacing of 0.01 for computational efficiency [14]. The neighboring

simulations i and i+ 1 were coupled through bias exchange scheme [13,15] to improve sampling and

phase space overlap. Bias exchanges were attempted between neighbors in alternating even-odd

patterns every 1 ps as indicated by arrows in main text, Fig 2 C.

We performed 51–54 (17–18 windows) 200 ns long simulations spanning a |z| range from the

surface of the membrane to bulk solvent for each system. Each simulation was initialized using a

random configuration from unbiased simulations that conform to the |z| limits of the window. In

cases where no unbiased simulation was previously performed or a particular window could not

be initialized from the unbiased simulation due to lack of sampling, we used short adiabatic bias

molecular dynamics (abmd) [16] simulations with a ratchet-and-pawl like restraint along |z| (force

constant of 150 kJ/mol/Å2) to generate initial configurations starting from a nearby configuration.

Initial 10 ns of each trajectory was discarded and configurations saved at every 100 ps were

reweighted combining a time-independent free energy estimator for mtd [17] and a modified version

of weighted histogram analysis method (wham) [18] as described in Section s1.3.2. All free energy

surfaces were reconstructed with sample weights (pi,t) used in adaptive two-stage weighted kernel

density estimation [19], where the bandwidths for the pilot estimate were determined according

to Silverman’s rule of thumb [20]. The statistical errors were estimated with the Bayesian block

bootstrap approach [21,22] as described in Section s1.3.4, using each independent simulation as a

single block from 100 bootstrap samples.

s1.3.2 Unbiasing the wt-mtd simulations

Here, we present a new protocol to unbias free energy simulations employing a combination of

time-independent and mtd biases. Similar combinations of umbrella sampling (us) and mtd and

protocols to obtain free energy surfaces was put forward elsewhere [23, 24]. Our approach allows

associating weights, pi,t, with each sampled configuration Ri,t in simulation i at time t, simplifying

the construction of pmfs as a function of arbitrary cvs and the estimation of equilibrium averages.

To this end, we use the time-independent free energy estimator for mtd recently introduced by

Tiwary and Parrinello [17] to reweight sampled configurations, lifting the time-dependence due to

mtd. We then use these weights in the non-parametric variant of the Weighted Histogram Analysis

Method (wham) introduced by Bartels and Karplus [25] to combine all simulations. This approach

can be easily generalized to any acting combination of mtd-type and time-independent biases for

other applications.

We first estimate the mtd weights associated with each configuration Ri,t based on ref. [17]:

pmi,t = eβ(V
m
i,t−c

m
i,t), (2)

where V mi,t and cmi,t are the instantaneous mtd bias and the bias offset, respectively. Recently, Tiwary

and Parrinello introduced a time-independent locally-converging free energy estimator for the mtd,

allowing calculation of cm(t) [17]. Changing their notation [17], the free energy estimate for a mtd

simulation on the collective variables s can be expressed as

F (s) = F ′(s, t) + β−1 ln

∫
d s e−βF

′(s,t), (3)
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where the instantaneous free energy estimate F ′(s, t) = γ
1−γV

m(s, t) and γ is the mtd bias factor.

Plugging Eq 3 into the expression for cm(t) [17] and simplifying, one can directly estimate the bias

offset from the stored mtd kernels:

cm(t) = β−1 ln

∫
d s e−βF (s)∫

d s e−β(F (s)+Vm(s,t))
= β−1 ln

∫
d s e−βF

′(s,t)∫
d s e−

β
γ F

′(s,t)
. (4)

Next, we reweight each configuration Ri,t with the associated weight pmi,t before using the

non-parametric wham equations introduced by Bartels and Karplus [25]. This can be achieved by

modifying the equations in ref. [25] as follows and solving iteratively until convergence:

pi,t = pmi,t × (
∑
j

N ′jc
b
j e−βV

b
j (Ri,t))−1

cbj = (
∑
i

Ni∑
t=1

pi,t e−βV
b
j (Ri,t))−1,

(5)

where N ′j =
∑Nj
t=1 p

m
j,t, and V bj is the time-independent bias function in simulation j evaluated for

configuration Ri,t.

The pmf can then be estimated as a function of arbitrary cvs q using:

∆G(q) = −β−1 ln 〈δ(q′(Ri,t)− q)× pi,t〉 , (6)

where the average is taken over all sampled configurations. The pmfs were reconstructed for various

cvs using weighted kernel density estimation and normalized with respect to the aqueous phase.

Similarly, reported free energy values associated with each orientation in Table 1 are obtained by

∆Gori. = −β−1 ln

∑
Ri,t∈ori. pi,t/Ωori.∑
Ri,t∈aq pi,t/Ωaq

, (7)

where the sum in the numerator is taken over a subset of all sampled configurations forming

a particular orientation (ori. := [Prone Supine]) and the sum in the denominator is taken over

configurations in the aqueous (aq) phase. Prone and Supine modes were defined based on the z–φ

space as marked on S1 Fig B. The Ωori. and Ωaq are normalization factors equal to the volume of

the collective variable space used in the definition of the binding orientation, ori., and the aqueous

phase, respectively. Table 1 also shows the free energy contribution by membrane associated states

defined as 5 Å< z < 25 Å collectively.

s1.3.3 Normalized contact frequency analysis

In this application, we define the normalized contact frequency (ncf) as follows:

NCF
bmp/memb.
r,ori. = CF bmp

r,ori./CF
memb.
r,ori. , (8)

where CF bmp
r,ori. and CFmemb.

r,ori. denote the contact frequency of residue r with bmp and any membrane

lipid in a particular orientation, respectively. The ncf are calculated for Prone mode and Supine

mode, separately, to get NCF
bmp/memb.
r,Prone mode and NCF

bmp/memb.
r,Supine mode . We assign configurations to Prone
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mode and Supine mode based on the min zr–φ–θ space as marked on main text, Fig 3 B and

80◦ < θ < 100◦. We averaged the ncfs over all bmp-membrane free energy simulations and calculate

the standard deviation as shown in main text, Fig 4 A.

The contact frequency of residue r with any other group of atoms, g, can be calculated from the

biased simulations as a weighted average

CF gr,ori. =

∑
Ri,t∈ori. C

g
r,i,t × pi,t∑

Ri,t∈ori. pi,t
, (9)

where Cgr,i,t is a number associated residue, r, and configuration Ri,t and the sums are taken over

all configurations assigned to a particular orientation. In this application, r is a protein residue, g is

either bmp or any lipid. Cr1,r2i,t is a binary number equal to one if any atom of g is within 3 Å of any

atom of r in configuration Ri,t, and is equal to zero, otherwise.

s1.3.4 Error estimation using Bayesian block bootstrapping

The Bayesian block bootstrap protocol for error estimation can easily be implemented into Eq 5 by

making the following assignment

pmi,t ← pmi,t × wbi,t, (10)

where wbi,t represents a set of random weights drawn according to the Bayesian bootstrap protocol

for bootstrap sample b [26]. In the block variant, we first group the configurations Ri,t into N

blocks (each containing nblock samples) that are presumably independent and identically distributed.

This can be done based on taking blocks of length equal to at least the autocorrelation time of

the quantity of interest, or more conservatively taking each simulation as a single block. Then, N

weights wbblock are drawn randomly according to Bayesian bootstrap protocol and each configuration

Ri,t belonging to the block is assigned the weight wbi,t = wbblock/nblock. Finally, Eq 5 is solved with

the modified pmi,t to estimate pbi,t associated with bootstrap sample b. With sufficiently many sets of

pb, equilibrium averages and pmfs can be calculated for each set and their standard deviation gives

the error estimate.
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