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Figure S1. 12% SDS-PAGE of WT Gk R2loxI referenced against Spectra Multicolor low range 
protein ladder (Thermo Fisher Scientific).  
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Figure S2. Long-term monitoring of UV-Vis reconstitutions. Stoichiometric Mn/Fe 
reconstitutions were performed in both protiated and deuterated buffers and monitored over ~12 
hours to resolve complete cofactor stabilization. Data from 1-60 minutes were collected at the 
standard rate of one data point/minute. After the initial 60 minute period, spectra were taken every 
10 minutes, with approximately 1 minute required to obtain each spectrum, resulting in a total of 
11 minutes represented per data point. Sample absorbance appeared to level out prior to 2 hours; 
however, continued incubation showed increasing absorbance. This long-term absorbance increase 
in both samples was attributed to oxidation of excess FeII in solution. This agrees with previous 
work, which demonstrates quantitative metallation does not always occur in Mn/Fe R2lox.1 
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Figure S3. Evidence of weak divalent metal binding in R2lox. Optical spectra of 100 µM apo-
R2lox (black); 100 µM apo-R2lox + 1 equiv. MnII + 1 equiv. FeII prepared under anaerobic 
conditions and activated by addition of oxygenated buffer (blue); and 100 µM apo-R2lox + 1 
equiv. MnII + 1 equiv. FeII prepared under anaerobic conditions, with excess metal ions removed 
via desalting column prior to activation by addition of oxygenated buffer (red), as per the 
methodology of Bollinger, Krebs, and coworkers.2 Only low yields of reconstituted protein (< 
10%) are observed following desalting. Using the previously reported e350 = 3000 M-1 cm-1, a KD 
for metal binding of approximately 0.1-1 mM is estimated.3 
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Figure S4. Graphical representation of R2lox reaction model as portrayed by KinTek software 
(v.6.0), developed from reaction steps outlined in Materials and Methods. Assembly and 
maturation of Mn/Fe R2lox is modeled based on data obtained in both (A) protiated and (B) 
deuterated buffers. The Mn binding site (Site 1) is crystallographically disordered in apo-R2lox 
and only becomes ordered upon Fe binding in Site 2; therefore, Fe binding in Site 2 is thought to 
occur first. Because stoichiometric amounts of each metal were included in the experiments, the 
kinetic model is independent of metal binding order. Work is currently underway to experimentally 
determine order of metal binding.  
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Figure S5. Changes in reaction model as rates of metal binding and O2 access are adjusted. At 
rates slower than 1x107 a good fit of the model to the data was not attainable; however, models 
using values of 1x107 and 1x109  for k1 produced fits comparable with those of the diffusion-
limited model (Table S1). 
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Table S1. Rate constants from fittinga kinetic model to protiated (black) or deuterated (green) 
experiment data at various rates of metal binding and O2 access to active site 
 

k1,2 k3 (min-1) k4 (min-1) k5 (min-1)b k7 (min-1)c 
1 x 1010 M-1 s-1 0.30 ± 0.02 7.20 ± 0.45 3.12 ± 1.15 7.20 ± 0.74 
1 x 1010 M-1 s-1 0.159 ± 0.001 3.504 ± 0.034 2.400 ± 0.217 N/A 
1 x 109 M-1 s-1 0.30 ± 0.03 7.20 ± 0.36 3.12  7.20 ± 5.89 
1 x 107 M-1 s-1 0.33 ± 0.17 7.50 ± 1.89 3.12 7.20 
1 x 105 M-1 s-1 0.73 8.10 4.20 8.40 
aRates given without standard error represent values which were manually determined during 
fitting 
bUV-Vis data for decay of the high-valent intermediate likely contained background signal from 
metal-oxo absorbance and values for k5 were held under slower conditions  
cRates for product formation were held in models with k1,2 slower than 1x109, as lack of data for 
intermediates prior to product formation made fitting more difficult. 
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Figure S6. Justification for conformationally gated reaction of O2 with metals. KinTek model 
showing formation of I1 under diffusion-limited conditions considering (A) a slow conformational 
step following O2 addition to the protein and (B) direct, diffusion-controlled O2 binding to the 
metal centers. In the case of (B), high concentrations of I1 would be expected and formation would 
not be resolved, a significant departure from experimental observations. The depicted O2-adduct 
likely resembles the “O” state of sMMO.4  

80

60

40

20

0

0.01 0.1 1 10 100 1000

6

4

2

0

0.01 0.1 1 10 100 1000

FeIVMnIV
O

O
FeIIIMnIII

O O

FeIIMnII

O
O

FeII

O

O-Glu

N-His

O

O

MnII

His-N

Glu-O
O

H2O

O

Glu

Fatty acid

O

Glu k2 = 1x1010

M-1s-1

+ O2

I1

C
on

c.
 (!

M
)

C
on

c.
 (!

M
)

A

B

I2

Time (min)

k3 = 0.3 
min-1

k4 = 7.2 
min-1

Time (min)

FeII

O

O-Glu

N-His

O

O

MnII

His-N

Glu-O
O

H2O

O

Glu

Fatty acid

O

Glu k2 = 1x1010

M-1s-1

+ O2

FeIIIMnIII

O O

I1

FeIVMnIV
O

O

I2
k4 = 7.2 

min-1



	   S10 

 
 
Figure S7. 2D FitSpace analysis on overall fit of kinetic model utilizing built-in KinTek 
routines. Chi2 threshold was set to 0.7143 with k3, k4, k5, k7, allowed to vary. Absolute chi2 value 
scale illustrates the location of parameter bounds. These boundaries are defined by examining 
parameter values in all the possible pair-wise combinations between two parameters, specifically 
where they can co-vary and produce a good fit. Based on this analysis, k3 is the best constrained, 
with previous fitted values for k4 and k5 consisting of the upper boundary for these parameters. 
Product formation (k7) is the least constrained with minimal bounds.  
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Figure S8. CW X-band EPR spectra of MnII-only R2lox (black) compared to 300 ms RFQ 
samples prepared with NAFe (blue) and 57Fe (red). 
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Figure S9. (A) Formation and (B) decay of I1 monitored at 30 K. Due to experimental 
constraints, 57Fe RFQ samples were measured in (A), while NAFe HQ samples are shown in (B). 
Intermediate formation and decay monitored at ~307 mT with best fit to double exponential 
shown (C). 
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Figure S10. CW X-band EPR spectra of RFQ sample prepared with NAFe (thick line), RFQ 
sample prepared with 57Fe (dotted line), and HQ sample prepared with NAFe (thin line), all 
quenched at t = 1 min and measured at 30 K. 
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Figure S11. Isosbestic point used in I1 analysis.  

  

312310308306304302

E
P

R
 In

te
ns

ity

Field (mT)

NAFe
57Fe

30 K

308.2



	   S15 

 
 

Figure S12. Formation of I2 monitored at 10 K, using RFQ samples prepared with 57Fe, (inset) 
kinetics of formation monitored at ~390 mT from 1 sec – 1 min with best fit to single 
exponential shown. 
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Figure S13. Decay of I2 monitored at 6.7 K. For 1 min and 5 min timepoints, spectra of NAFe HQ 
samples are shown, (inset) kinetics of decay monitored at ~390 mT from 1 min – 60 min with 
best fit to single exponential shown. 
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Figure S14. Postulated absorption spectra and concentration profiles of singular value 
decomposition (SVD) on Mn/Fe R2lox assembly in deuterated buffer.  
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Figure S15. Overlay of SVD amplitudes representing I1 (green) I2 (purple) and product (blue) 
with experimental observables as a global analysis. Good agreement is shown in both protiated 
(top) and deuterated (bottom) solvent data sets.  
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Figure S16. SF-Abs of Mn/Fe R2lox in both protiated (black) and deuterated (green) buffers. (A 
– B) Product and I1 formation monitored at 320 nm and 620 nm, respectively. (C) I2 formation in 
deuterated buffer monitored at 390 nm. Slight formation KIEs are observed in intermediates, with 
a more pronounced overall KIE for formation evident in product. 
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Figure S17. Product formation in protiated and deuterated solvent experiments monitored by 
change in EPR intensity. Single-exponential fits of the data result in an apparent KIEproduct ~2.4, 
with k7, protiated = 0.38 min-1 and k7, deuterated = 0.16 min-1. 
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Figure S18. Normalized SF-Abs for 100 µM apo-R2lox + 1 equiv. MnII + 1 equiv. FeII in aerated 
buffer at 620 nm, 390 nm, and 320 nm. Absorbance of I1 and I2 precedes product formation, and 
both intermediates show maximum absorbance at ~40 sec. 
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Figure S19. SF-Abs (solid lines) of 100 µM apo-R2lox + 1 equiv. MnII + 1 equiv. FeII in aerated 
protiated (left) and deuterated (right) buffer. Data are overlaid with scaled UV-Vis absorbance 
values (open circles) from reconstitution data, showing moderate agreement between measurement 
methods with widely different mixing technique. Lack of defined peaks in D2O is attributed to 
increased precipitation of either FeII or protein over extended times, as R2lox is less stable in D2O. 
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Figure S20.  Metal titrations of Mn/Fe R2lox. Metal concentrations were increased in Mn/Fe SF-
Abs experiments in an attempt to achieve pseudo-second order kinetic conditions. With the 
addition of greater than stoichiometric amounts of FeII (e.g., 4:2 Mn:Fe), product formation appears 
to continue to increase over long times. 
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Figure S21. Diode-array SF-Abs of Mn/Fe R2lox. Apo-R2lox was mixed with 1 equivalent of 
MnII and FeII in aerobic buffer. Traces were collected using logarithmic time spacing for a period 
of 500 seconds; every 20th trace collected is shown. The absence of a sharp peak at 410 nm 
indicates an absence of the proposed tyrosyl radical under the experimental conditions,5,6 though 
rapid decay of such a species may also preclude intermediate accumulation. As mentioned in the 
text, photodegradation of the sample by multiwavelength light prevented quantitative analysis of 
intermediate formation; however, qualitative analysis agrees with the single-wavelength data.  
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Figure S22. Decay of I2 in deuterated buffer collected at 6.7 K, (inset) kinetics of decay 
monitored at ~394 mT with best fit to single exponential shown.  
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Figure S23. Decay of I1 in deuterated buffer collected at 30 K, (inset) decay kinetics monitored 
at ~307 with best fit to single exponential shown.  
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Figure S24. Isotope effects on the kinetic profiles of each intermediate observed via EPR.  
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Figure S25. Comparison between optical (A-B) and EPR (E-F) kinetic profiles for distinct 
intermediates in both protiated and deuterated buffers. In both methods, the decay of I1 occurs at 
a faster rate than that of I2.  Decay of I2 and best fit shown using a single (C) and double (D) 
exponential function. Residuals for each fit shown below data. 
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Figure S26. Variable temperature CW X-band EPR spectra of Mn/Fe R2lox hand-quenched at 1 
min. Differential relative intensities in low-field signals (top inset) show the 307.3 mT species, 
previously seen only in shorter time points, becoming more intense at higher temperatures. This 
suggests a slower relaxation time for this species. The 304.8 mT signal shows an approximately 
inverse temperature dependence, consistent with rapid relaxation rates. The high-field features 
(bottom inset) display a temperature dependence similar to that of the 304.8 mT low-field signal, 
providing evidence that these signals originate from the same species.  
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Figure S27. Temperature dependence on EPR intensities of spectral features of intermediate 
species. Both low- (∆) and high- (�) field features seen in the broad EPR-active species (I2) 
exhibit Curie-like behavior and increase linearly with inverse temperature (purple). Low-field 
(�) feature of narrow EPR-active species (I1) does not display a linear dependence on the inverse 
of temperature (green).  
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Figure S28. Power dependence of EPR spectrum of I1 at 30 K. Signals were scaled appropriately 
(by P1/2) to account for different absolute signal intensities.  
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