Supplementary Methods

Preparation of unfunctionalized Au/SiO, Catalyst

Firstly, Au/SiO,-NH, with a theory loading of 1.5 wt.% was prepared by the same synthetic
procedure as described in the manuscript. Subsequently, the obtained gold catalyst (0.3 g) was
redispersed in 400 mL ethanol solutions, to which 50 puL of TEOS and 1.0 mL of ammonium
hydroxide solution (28 wt%) were added under continuous stirring. After stirring at room
temperature for 6 h, the precipitate was filtered and washed with deionized water. Following
drying in vacuum at 120 °C for 12 h, Au/SiO,-NH, catalyst was obtained. The achieved catalysts
were then calcined at 800 °C for 20 s at O, atmosphere to obtain the unfunctionalized Au/SiO,
catalyst.

Calculations of turnover number (TON) and turnover frequency (TOF)

After ensuring that the hydrogenation is free of diffusion limitations (e.g. varying stirrer speed and
catalyst mass, the selected stirrer speed is as high as 600 r/min and the catalyst was grinded before
use), the TON and initial TOF reported here is calculated by the equation as follows:

TON = Crcoon XV 1
NAu

TOF = Crcoon XV 2
Ngy t

Where Cpcoon is the formate concentration monitored by HPLC, na, is the total mole number of
Au atoms in catalyst, V is the volume of reactants, and t is the initial time of the catalytic reaction
(where Cycoon is less than 0.05 M compared with the 1.5 M base added).



Supplementary Figure 1. (a) Typical aberration-corrected HAADF-STEM images of
AuU/SiO,-Schiff (a,b) and Au/SiO,-NH; (c,d). Scale bars in a,c represent 20 nm. Scale bars in b,d
represent 5 nm. The Au species are mainly dispersed as nanoclusters (triangle), as well as single
atoms (square) and nanoparticles larger than 2 nm (circles).
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Supplementary Figure 2. FTIR spectra of the functionalized gold catalysts. (a) Au/SiO,-NH;
catalyst. (b) Au/SiO,-Schiff catalyst.
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Supplementary Figure 3. XPS spectra of the N 1s core levels of the as-prepared gold
catalysts. (a) Au/SiO,-Schiff, (b) Au/SiO,-NH; and (c¢) unfunctionalized Au/SiO,.



Au 4f

92 80

Binding energy (ev)

Supplementary Figure 4. XPS spectra of the Au 4f core levels of the as-prepared gold
catalysts. (a) Au/SiO,-NH,, (b) Au/SiO,-Schiff and, (c) unfunctionalized Au/SiO,. Besides
metallic gold, both the functionalized samples contained some form of cationic Au species that
were ascribed to sub-nanometric cationic Au clusters and isolated Au atoms.



Supplementary Figure 5. Typical HAADF-STEM images of Au/SiO,-Schiff catalyst prepared
by in situ reduction method. Scale bars in a represent 100 nm. Scale bars in b represent 50 nm.
Scale bars in c¢,d represent 5 nm. The Au species are mainly dispersed as nanoparticles larger than
2 nm and some individual atoms.



Supplementary Figure 6. Typical HAADF-STEM images of Au/SiO,-Schiff catalyst prepared

by the solid reduction method. Scale bars in a represent 20 nm. Scale bars in b, ¢ and d represent
5 nm. The figures showed that the Au species are mainly dispersed as single atoms (white squares),
as well as some negligible nanoclusters (white circle).



Adsorption
patterns

Ead (eV)

1
vco (cm™)

Supplementary Figure 7. Theoretical understanding the chemisorption of CO, on the model
of Au/SiO,-Schiff catalyst with an Auss cluster. The simulation was performed with the program
package DMol® in the Materials Studio of Accelrys Inc. Geometry with a closed packed Auss
nanocluster (ca ~1.2 nm) and a silylation imine Schiff-base in COSMO of water was used to
model the practical Au/SiO,-Schiff catalyst in water.
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Supplementary Figure 8. Activation patterns of CO, through carbamate zwitterion (a) or
ionic carbamate (b) species. The chemical interaction between CO, and propylamine is
modelling with NWchem software at a B3LYP/def2-tzvp level.
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Supplementary Figure 9. Arrhenius plot for Au/SiO,-Schiff catalyzed hydrogenation of CO,
(INTOF vs. 1/T). Reaction conditions: 5.0 mg catalyst, 10 mL H,O-MeOH (20/80 v/v), 10 mmol
NEts, P(H,)/P(CO,) = 5.0/3.0 MPa, 600 rpm.
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Supplementary Figure 10. HAADF-STEM images of Au/SiO,-Schiff after catalytic
hydrogenation of CO,. Scale bars in a represent 100 nm. Scale bars in b represent 50 nm.
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Supplementary Table 1. Metal loadings and surface atomic ratios of the prepared catalysts.

Metal loading atomic ratios (%) °
Catalyst (WL.%)
C Au N
Au/SiO,-NH, 1.62 22.66 0.39 3.38
Au/SiO,-Schiff 141 51.57 0.16 9.16
Au/SiO,-Schiff © 0.7 52.77 0.10 7.51
Au/SiO, 1.50 21.95 0.15 1.08

® The actual metal loading was measured by inductively coupled plasma mass spectrometry (ICP-AES).
Y The atomic ratios were measured by XPS.
¢ The catalyst was prepared by in situ reduction method.
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Supplementary Table 2. Catalytic activity of the Au/SiO,-Schiff catalyst for CO,
hydrogenation in water/methanol mixtures.?

Entry H,O/CH;0H  P(H,/CO,) Base Time HCOOH TON
viv (%) MPa /h M
1 0 5.0/3.0 NEt; 12 0.702 9806
2 5 5.0/3.0 NEt; 12 0.801 11189
3 10 5.0/3.0 NEt; 12 0.814 11370
4 20 5.0/3.0 NEt; 12 0.908 12684
5 40 5.0/3.0 NEt; 12 0.819 11440
6 20 5.0/3.0 NEt; 12 0.518 14470

& Reaction conditions: 10 mg catalyst, 90 °C, 10 mL reagent, 15 mmol base, 600 rpm. [b] 5 mg Au/SiO,-Schiff.
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Supplementary Table 3. Catalytic activities for hydrogenation of CO, to formic acid
catalyzed by recently reported heterogeneous and homogeneous catalysts.

Catalyst Temp. Base P(H/CO,)  Time TON TO_F C Ref.
I°C (MPa) /h ht
Heterogeneous catalysts

AU/SiO,-Schiff 90 NEt; 5/3 12 14,470 1,206 This
work

AUROlite 40 NEt; 9/9 37 18,040 28 1

days

Au NP/AI,O4 70 NEt; 2/2 20 215 10 2

Au NP/TIiO, 70 NEt; 212 20 111 5.5 2

Au NP/CeQ, 70 NEt; 212 20 8 <1 2

Pd/C3N, 150 NEt; 2.7/11.3 24 106 4.4 3

bpy-CTF-[IrCp*CI]CI 120 NEt; 4/4. 2 5,000 2,500 4

IrPN/SBA-15 60 NEt; 212 20 2,700 135 5

Ir(111)/COFs 120 NEt; 4/4 10 6,400 640 6

Pd/r-GO 100 KHCO;3 4/0 32 7,088 221 7

Pd/C3N, 60 KHCO;3 6/0 5 6,595 1,319 8

Ru/LDH (Mg®*/AIP*=5) 100 NaOH 11 24 698 29 9

Homogeneous catalysts

RhCI(PPh3);3 25 NEt; 2/4 20 2,500 125 10

RuCI(OAc)(PMejy), 50 NEL/ 7112 0.33 32,000 95,000 11
CoFsOH

[RuCl,(tppms),], 50 NaHCO, 1/0 6 180 50 12
[RUCI,(CgHg)]/dppm 70 NaHCO, 5/3.5 2 2,520 1,260 13
IrH;(P1) 120 KOH 4/4 48 3500,000 73,000 14
IrH;(P2) 185 KOH 2.8/2.8 24 348,000 14,500 15
Ru(P3)CO(H) 200 K,CO3 31 48 23,000 2,200 16
[Rh(cgcl;):?s;:ilyl)ﬂ/ 50 NEt; 5/5 20 310 630 17
[RUCL,(P(OMe)s3)] 100 bEU/ 7/10 4 6,630 1,660 18

CeFsOH

[Cp*Ir(4DHBP)CI* 120 KOH 33 57 190,000 (42,000) 19
[Cp*Ir(6DHBP)(OH,)]** 120 KHCO,4 0.5/0.5 8 12,500 (25,200) 20
[(Cp*IrCl),(THBPM)]?* 50 KHCO,4 212 8 153,000  (15,700) 21
[Cp*Ir(N1)(OH)]* 80 KHCO;3 1.5/1.5 8 34,000 (33,300) 22
Irl,(AcO)(bis-NHC) 200 KOH 3/3 75 190,000 2,500 23
Fe(PNPMe.iPr)(H)(CO)(Br) 80 DBU 0.4/0.4 21 10,275 489 24

& Abbreviations are the following: PC= bidentate  iminophosphine ligand, dppm =

1,1-bis(diphenylphosphino)methane, cod = 1,5-cyclooctadiene, P1 = 2,6-bis(diisopropylphosphinomethyl)pyridine,
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P2 = (diisopropylphoshinoethyl)amine, P3 = 6-(di-tertbutylphosphinomethylene)-2-(N,N-diethylaminomethyl)-
1,6-dihydropyridine, N1 = 2,2',6,6"-tetrahydroxy-4,4"-bipyrimidine. PNP = 2,6-bis(di-tert-
butylphosphinomethyl)pyridine. DBU= 1,8-Diazabicyclo[5.4.0Jundec-7-ene. ® commercial AUROlite (Mintek; 1
Wt% Au/TiO,, extrudates). © The data in the parentheses are initial TOFs.
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Supplementary Table 4. Catalytic hydrogenation of CO; to formic acid by Au/SiO,-Schiff at
different temperatures (6090 °C).

Entry Temp. /°C Time /min  HCOOH/M  TOF

1 60 120 0.014 195
2 70 90 0.019 353
3 80 50 0.028 938
4 90 30 0.035 1950

Reaction conditions: 5.0 mg catalyst, 10 mL H,O-MeOH (20/80 v/v), 10 mmol NEtz, P(H,)/P(CO,) = 5.0/3.0 MPa,
600 rpm.
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Supplementary Table 5. Hydrogenation of gaseous CO, by Au/SiO,-Schiff.

P(H,)/P(CO
Entry Base (HP(CO) i eooH M TON
MPa
1 i 6.012.0 0.29 8102
N
2 0 6.0/2.0 023 6425
3 ~ N 6.0/2.0 0.15 4190
4 N 6.0/2.0 0.067 1871
5 ~NH; 6.0/2.0 0.08 2235

Reaction conditions: 5.0 mg catalyst, 90 °C, 10 mL H,0-MeOH (20/80 v/v), 10 mmol base, 6 h, 600 rpm.
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Supplementary Table 6. Reuse of the Au/ SiO,-Schiff catalyst for the hydrogenation of CO,
to formic acid.

Cycle HCOOH /M TON
1 0.908 12684
2 0.652 9107
3 0.424 5922

Reaction conditions: 10 mg catalyst, 90 °C, 10 mL reagent, 15 mmol base, 12 h, 600 rpm.
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