
 

 

Supplementary Figure 1. Reconstruction of the flagellar curvature. (a) Unprocessed 

curvature of a beating flagellum derived from the tracking points. The number of points is not 

constant, hence some lines are longer than others. (b) The reconstructed curvature from the 

three most important normal modes of the beat pattern (see Supplementary Fig. 2). The semi-

transparent part shows data that has been discarded to have a constant number of flagellar 

points in time. 

  



 

Supplementary Figure 2. Statistically significant beat modes. (a) Unstimulated sperm and 

(b) sperm stimulated with progesterone. Comparison of data (black) with random noise (red) 

shows that only the first three modes are significant. Values are mean ± s.d. (n = 35 panel (a) 

and n = 26 panel (b)). The third mode is barely above threshold. 

 

 

 

Supplementary Figure 3. Curvature spectrogram. Upper: Spectrogram of the curvature at 

arclength position so ≈ 25 µm from one experiment. The power spectrum is color-coded and 

normalized to the maximum value. The fundamental mode corresponds to ωo ≈ 20 Hz. Higher 

harmonics are observed at 2ωo and 3ωo. Red lines indicate a window of particularly strong 

second-harmonic intensity. Lower: Rotation velocity. Note that the rotation velocity increases 

with the second-harmonic intensity. 

 



 

Supplementary Figure 4. Correlation between cell rotation and second-harmonic 

intensity. Correlation coefficient R of rotation velocity and second-harmonic intensity for 

unstimulated sperm measured at arclength positions so ≈ 15 µm and so ≈ 25 µm. 

 

 

 

Supplementary Figure 5. Probability density for the ratio of average curvature |Co| and 

second-harmonic amplitude |C2| derived from experiments. 



 

Supplementary Figure 6. Simulated vs. experimental rotation angle and eigenmodes. 

Comparison between experimental (blue) and simulated (green) rotation angle (a) and 

eigenmodes (b). For clarity, to is chosen such that n is maximal. Same simulation as in Fig. 4a 

in the Main Text and Movie 1. The simulation reproduces fairly well the angular velocity and 

the curvature eigenmodes. 

 

Supplementary Figure 7. Dependency of the simulated rotation velocity with the torque 

ration and phase. The rotation velocity scales linearly with the applied torque ratio T* = T2/T1 

and trigonometrically with the torque phase ψ. Parameters are ω = 28 Hz,  = 2.3 nN µm2, 

λ/L = 0.6, and T1 = 1.38 nN µm. 



 

 

Supplementary Figure 8. Dissipated power. Dissipated power density [fW µm-1] for (a) 

unstimulated and (b) stimulated sperm. The ratio between drag coefficients is ٣	/ ∥ = 1.81, 

with ∥	= 0.69 fNs-1µm-2. The red thick line is the interpolating average using equation (S20). 

 

 

Supplementary Figure 9. Contributions to the total dissipated power Pd by the tangential 

and normal components of the velocity. 

   



Supplementary Note 

Theory of rotation velocity due to the second harmonic 

We present here two approaches to derive the rotation velocity generated by the second 

harmonic. The first approach employs a small-amplitude approximation (equation (2) in the 

Main Text). This calculation illustrates how the symmetry is broken and produces an average 

force in the direction perpendicular to the propagation direction. A second approach is based 

on a small-curvature approximation (equation (4) in the Main Text).  

Small-amplitude approximation 

For small deviations from a straight line, the flagellum is assumed to be oriented, on average, 

parallel to the x-axis. The deviation y(x,t) from this line is given by the superposition of two 

harmonics, 
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with 0 < x < L, y2/y1 ≤ 0.3, and a small expansion parameter ϵ.  

The resistive-drag force is  
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where the velocity v(s,t), the tangent t(s,t), and normal n(s,t), vectors are given by 
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with normalization 1/N2
 = 1/(1+(߲௫ݕ)2) ≈ 1- (߲௫ݕ)2+O(ϵ4). 

Inserting equation (S3) into equation (S2), we obtain the instantaneous forces acting on the 

flagellum 
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The term t y  in fy averages out during one period. The average net torque around the 

tethering point is then computed as 
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In particular, for ϵ = 1 and 2/k → L  
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The torque Ta generated by the second harmonic is balanced by the torque generated by the  



perpendicular viscous drag Tv. In line with the small-amplitude approximation, we estimate the 

viscous torque as the torque acting on a straight rod that is tethered at one end and rotates 

with angular velocity Ω, 
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Torque balance (Tv + Ta = 0) finally yields  
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Small-curvature approximation  

Second, we consider a description of the flagellar shape in an expansion of small local 

curvature. This has the advantage that larger perpendicular deviation amplitudes can be 

included. The flagellar curvature C(s,t) is written as: 
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where C1, and C2 are the curvature amplitudes of the two harmonics and  is the second-

harmonic phase. Given the flagellar curvature C(s,t) at time t, its spatial coordinates r(s,t) are 

given by  

     
 o

0

cos ,
,  d ,

sin ,

s s t
s t t s

s t

  
     

r r     (S10) 

where      o

0

,  d ,   
s

s t s C s t t    is the local angle between the flagellar tangent and the x-

axis. Here, we assume that sperm are clamped at their head such that o(t) = 0. By construction, 

the tangent vector    s,  ,t s s tt r is normalized to unity. 

The velocity of each line element along the flagellum is 
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For convenience, we rewrite the resistive force (equation (S2)) as 

   Tˆ, 1 ,ˆs t    f tt v     (S12) 

with  || .        If a net force is generated, it has to arise from the second term, which 

is proportional to the friction anisotropy . 

The active torque around the tethering point is then obtained (to leading order in ϵ) to be 
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In the limit of L  and for   = 1, this simplifies to 
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Note that the first term in the numerator is usually much larger than the second term. From 

torque balance and assuming a viscous torque as in equation (S7), we approximate 

3
a3 /T L    by the expression given in equation (4) in the Main Text. Similarly, the average 

torque generated by an average flagellar curvature Co is obtained  
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Equations (S14) and (S15) together with torque balance demonstrate that the rotation frequency 

is linear in both the second-harmonic amplitude C2 and mean curvature Co. Furthermore, for 

similar values of |Co| and |C2| the two terms contribute about equally. 

 

Comparison of second harmonic and average curvature  

Supplementary Fig. 5 shows the probability distribution of the ratio |Co|/|C2|. The second-

harmonic contribution is always larger than that of the average curvature; the mean ratio is 0.13 

for unstimulated and 0.16 for stimulated sperm. Because the ratio is much smaller than unity, 

the second harmonic dominates sperm rotation. 

Trajectory curvature 

The second harmonic generates a rotation of sperm around its tethering point. The rotation 

velocity  depends on the flagellar curvature amplitudes C1 and C2, the phase ϕ, and the 

difference between drag coefficients, ٣‐∥. We estimate how these parameters affect the 

trajectory of freely swimming sperm.  

The time needed for sperm to complete a rotation around its center of rotation is T = 2π / 

where  is approximately given by equation (S8) for tethered sperm. Assuming that freely 

swimming sperm have the same center of rotation, they move during the same time along a 

trajectory of length vT, with velocity v = fx / ٣. Because  << ω, we can ignore the fast 

wiggling motion due to the beat. 



The distance travelled in the time T along a circular trajectory of curvature Ctraj is 
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amplitude y2 and phase ϕ determine the swimming trajectory (Fig. 4e in the Main Text and 

Movie 2).  

Sperm model and simulations 

The sperm cell is modelled as a single semi-flexible filament, with one end fixed by a stiff 

harmonic potential. The filament is discretized by beads separated by a distance b between 

bead centres. Each bead is driven by three types of forces: bending, active, and viscous. The 

bending force is determined from the bending potential  
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the vector connecting the centres of bead i and i+1, and κ is the bending rigidity, which is 

obtained by fitting (see below). The active bending torque T is given by equation (5) in the 

Main Text, 
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The viscous forces are modelled by an anisotropic drag. The tangential direction ît  at bead i is 

defined as the line connecting beads i-1 to i+1, and the normal direction is computed by rotating 

ît  counter-clockwise by /2. At the boundary beads, the tangential direction is identical to the 

bond direction. To reproduce the mechanics of the beat, the first 7.2 µm of the semi-flexible 

filament are taken to be inactive, thus mimicking head and midpiece (see Fig.4a in the Main 

Text). The equations of motion are integrated with an adaptive time-step Velocity-Verlet 

method. 

The parameters were chosen as follows. A bond length b = 1.8 µm is a good compromise 

between number of points (hence computational performance) and accuracy. This implies that 

the flagellum is represented by a chain of approximately 25 beads (Supplementary Fig. 6b). 

The exact number of points depends on the flagellar length in the respective experiment. The 



arclength is constrained locally by a harmonic bond potential of stiffness k = 10 nN µm-1. We 

consider a system at low Reynolds number; therefore, the bead mass should not affect the 

dynamics. Nevertheless, it is useful to assign a small mass (11 pg) to each bead for a stable 

integration of the equations of motion. The ratio between the perpendicular and the parallel 

drag coefficients is chosen to be ٣	/ ∥	= 1.81, with ∥	= 0.69 fNs µm-2, as measured for bull 

sperm1. The flagellar length, frequency, and wavelength are derived directly from the flagellar 

waveform. Subsequently, the bending stiffness  and the torque T1 are adjusted to minimize 

the r.m.s. between the experimental and simulated principal modes (Supplementary Fig.6). A 

second fit adjusts T2 and ψ to the rotation velocity. The resulting stiffness  is typically about 

 ≈ 2nNµm2 and thus compatible with known values for sea urchin sperm2, 3. Simulation results 

for beat patterns, rotation velocity, resulting average curvature, and power generation and 

dissipation are shown in Fig. 4 in the Main Text. In addition, Supplementary Fig. 7 shows that 

the trigonometric dependence of the rotation velocity with respect to the torque phase ψ 

agrees well with equation (S8). Note that Supplementary Fig. 7 compares the rotation velocity 

with respect to the driving torque ratio T* = T2 / T1. Thus the simulations support the intuitive 

idea that T2 has the same effect as C2 on the rotation velocity. 

Second harmonics of the beat could be produced from the superposition of fundamental and 

second harmonic waves of active bending torques as described in the Main Text (see Eq. (6)). 

Alternatively, second harmonics could result from elastic nonlinearities. We tested this 

hypothesis by using our simulation approach. Specifically, we simulated sperm cells lacking a 

second harmonic torque, but featuring a constant torque component that results in an average 

curvature (Supplementary Movie 3). This constant torque has been set such that the resulting 

average curvature (1) matches that from experiments, or (2) is large enough to produce the cell 

rotation frequency observed from experiments. 

Indeed, including nonlinearities results in a spontaneous second-harmonic frequency. 

However, when taking an average curvature observed in experiments (case 1), the simulated 

flagellum does not rotate as fast as tethered sperm. For simulations with either an average 

curvature set to match experimental rotation frequency (case 2) or a second-harmonic torque, 

beat shape and flagellar rotation are similar. Nevertheless, a more quantitative analysis reveals 

that in case (2) the mean amplitude ratio (<Co/C2> ≈ 6) is much larger than that obtained in the 

second-harmonic-torque simulations (<Co/C2> ≈ 0.5), and is even larger than the experimental 

ratio (<Co/C2> ≈ 0.13). Thus, we conclude that second-harmonic torques provide the best fit to 



the experimental results. It might be possible to consider other forms of nonlinearity. However, 

to be useful, a detailed understanding of the mechanisms underlying second-harmonic 

generation is required. The elucidation of the origin of the second harmonic (or even the first 

one) is beyond the scope of our manuscript. 

Generated and dissipated power 

The average power density dissipated by the viscous forces at arclength s is 
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where f(s,t) is the resistive force equation (S2), and v(s,t) is the filament velocity at position s 

and time t. Because the torque is the force conjugate to the curvature, the average power 

generated by the torque is 
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The torque is given in equation (5) in the Main Text and in equation (S17) Thus, equations 

(S17), (S18), and (S19), can be used to estimate from experiments and simulations how the 

power is generated and dissipated along the flagellum. 

Experimental results 

Supplementary Fig. 8 displays Pd(s) derived from the experimental data. The power dissipation 

increases approximately linearly towards the tip. For both unstimulated and stimulated sperm, 

a simple linear fit yields 
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where o
dP = 0.265 ± 0.101 [fW µm-1] and 1

dP  =0.023 ± 0.008 [fW µm-2] for unstimulated sperm 

and o
dP = 0.253 ± 0.075 [fW µm-1] and 1

dP  =0.022 ± 0.007 [fW µm-2] after stimulation. Thus, 

dissipated power does not change upon stimulation.  

Simulation results 

In contrast to the experiments, the simulations allow a direct calculation and comparison of 

both the power dissipated in the medium and the power generated by the torques, without any 



further assumption and simplification. Figure 4f of the Main Text reveals a quite complex 

behavior. The generated power Pg displays a maximum roughly 3/4 down the flagellar length, 

and decreases again towards the tip. In the regime of maximum power consumption, the 

dissipated power Pd is nearly constant, but then increases sharply towards the tip. This implies 

that power is transported along the flagellum from the central part of the flagellum toward the 

tip. Interestingly, Supplementary Fig. 9 shows that in the front part and near the tip, dissipation 

is mainly due to motion of the flagellum perpendicular to the instantaneous contour, while 

motion tangential to the contour becomes increasingly important near the tip. These results can 

be understood qualitatively by considering that the effects of local torques add up to generate 

large beating amplitudes and velocities in the tip region, while amplitudes and velocities are 

small near the midpiece due to the tethering constraint.  

Discussion 

A direct comparison of experimental and simulation results is only possible for the dissipated 

power. Here, we find that the absolute values and the trends are very similar in the 

“experimental range” 10-30 µm of arclengths. This is not very surprising given that the beat 

shapes and beat frequencies from experiments and simulations are very similar (see Fig. 4a in 

the Main Text and Movie 1), and that the dissipated power is essentially a function of local 

beat velocities. The strong increase of dissipation near the tip observed in the simulations falls 

outside the experimental range. 

A striking result of the simulations is the pronounced peak of the generated power in the central 

region of the flagellum. This behavior has important and interesting consequences. In 

particular, it implies that there is transport of power from the central portion of the flagellum 

(20 – 35 µm) toward tip and midpiece. Thus, the power is not simply dissipated locally where 

it is produced. In the case of a swimming sperm, this should be even more pronounced, because 

part of the power generated by the flagellum is dissipated by the head. Hence, the mechanical 

structure of the flagellum mediates the power transport to other portions of the sperm cell. 

Further analysis is needed to gain deeper insights of power generation, thrust, and dissipation, 

as well as the differences between tethered and freely-swimming sperm. 
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