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Supplementary Figure 1: Total number density ρtotal of the bulk solution as a function of cosolvent mole fraction
xc for aqueous methanol solution for ambient pressure and 298 K temperature. The data is extracted from the
all-atom simulations. Solid lines are linear interpolation between the data points of xc = 0.0 and xc = 1.0.
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Supplementary Figure 2: Simulation snapshots of the generic system presenting bulk solution arrangements for
three different densities. The results are shown for xc = 0.5.
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Supplementary Figure 3: Gyration radius Rg of a PMMA chain as a function of methanol mole fraction xc.
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Supplementary Figure 4: Chemical potential shift µp = µp/kBT per monomer as a function of cosolvent mole
fraction xc. The master curve is obtained by normalizing µp with a chain length Nl dependent function f(Nl) =
2Nl/(Nl + 1). The line is a fit to the data by Supplementary Eq. 2.
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Supplementary Table 1: Lennard-Jones (LJ) interactions for the generic model. p, s and c represents polymer,
solvent and cosolvent, respectively.

LJ energy Symmetric Case 1 Case 2 Cut-off

ǫpp 1.0ǫ 1.0ǫ 1.0ǫ 21/6σ

ǫps 3.5ǫ 3.5ǫ 3.5ǫ 0.75× 21/6σ

ǫpc 3.5ǫ 2.5ǫ 2.0ǫ 0.75× 21/6σ
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Supplementary Note 1: Computational details

In this work a modified OPLS force field of methyl acetate [1] was used to simulate PMMA. We use the SPC/E
water model [2] and OPLS force field for methanol [3]. A more detailed analysis of the all-atom force field will be
presented elsewhere [4].
The temperature is set to 300 K using a Berendsen thermostat with a coupling constant 0.1 ps. The time step for

the simulations is chosen as 1 fs. To obtain equilibrium solvent density, initial configurations are equilibrated for 5 ns
using a Berendsen barostat [5] with a coupling time of 0.5 ps and 1 atm pressure. The production runs are performed
in canonical ensemble. The electrostatics are treated using Particle Mesh Ewald [6]. The interaction cutoff is chosen
as 1.4 nm.
We use PMMA chains of lengths Nl = 30 solvated in a simulation box consisting of 2.0 × 104 solvent molecules

with varying xc. In Supplementary Fig. we show a plot of the all-atom simulation of PMMA in aqueous methanol.
We also want to point out that the case 2 in the generic model is tuned to reproduce PMMA solvation in aqueous
methanol. However, the all-atom chain consists of ∼ 15ℓp with ℓp being the presistance length of the chain, while in
the generic model we have simulated a chain of 30ℓp length. If we now take Rg for the maximally swollen chain Rg

and normalized it by (Nl/ℓp)
1/3

taking a collapsed chain, we find Rg (Nl/ℓp)
−1/3

= 0.67σ for the generic model and
0.59 nm for all-atom chain. This gives a conversion of 1σ ∼ 0.9nm between all-atom and generic simulation.
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Supplementary Note 2: Shift in chemical potential

In order to further consolidate the relevance of the generic model for explaining polymer swelling in poor solvent
mixtures, we now investigate the thermodynamic consistency between the all-atom data and the generic simulations. It
is important to mention that the solvation of macromolecules is intimately linked to the energy density within the sol-
vation volume, which is dictated by the relative interaction strengths between monomers and (co)solvent components
and the relative size of (co)solvents with respect to the monomer size. In our definition thermodynamic consistency
is referred to when we reproduce correct solvation energy (or chemical potential) between two models. Here, we
calculate chemical potential µp using the Kirkwood-Buff theory of solutions [7, 8]. If p at a dilute concentration is
solvated in a mixture of s and c, µp can be calculated using [9],

(

∂µp

∂ρc

)

p,T

=
Gps −Gpc

1− ρc(Gcs −Gcc)
, (1)

where µp = µp/kBT , and ρc is the cosolvent number density. Gij is the Kirkwood-Buff integral that is related to the

pair distribution function gij(r) via Gij = 4π
∫

∞

0
[gij(r)− 1] r2dr. The integration of Supplementary Eq. 1 gives a

direct estimate of the shift in µp with increasing xc.
In Supplementary Fig. we show µp as a function of xc. The shift in µp per monomer between solvent and cosolvent

is ∼ 2kBT , i.e. f(Nl)µp/Nl ∼ 2kBT . Considering f(Nl) ∼ 2, this leads to [µp(xc = 0)− µp(xc = 1)] /Nl ∼ kBT for
polymers. It is also clear that the generic model correctly reproduces intermolecular affinities and its description
within the standard Flory-Huggins theory.

µ̄p (φp → 0) = const− xc lnxc − (1− xc) ln (1− xc)

+ (1− xc)χps + xcχpc

− 2xc (1− xc)χsc. (2)
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