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Supplementary Text

section S1. Modulated electronic and topographic properties in the heterobilayer
moireé

(1) Characterization of local interlayer atomic registry in the moiré

We consider a heterobilayer moiré pattern formed by two layers of MoX, and WX;. We denote
the MoX, (WX3) layer lattice constants as a (a'), and §6 is the small deviation angle between the
zigzag crystalline axes of the two layers. For § = a’'/a — 1 « 1 and §6 « 1, the formed moiré

pattern has a superlattice constant b = a/v86?% + §2, which is much larger than a’, a and can be
tuned by changing §6. We set the origin for the in-plane coordinate (R) on a Mo atom. The
locally different interlayer atomic registry in the moiré pattern can be quantified by ry(R), the in-
plane displacement vector from a nearby W atom to a Mo atom located at R, and without losing
generality, we restrict ry(R) to be varying within a WX, unit cell (fig. S1).

The function r, (R) is a mapping from the moiré supercell to the monolayer unit cell: when R
traverses a moiré supercell, the corresponding r, (R) value traverses the WX5 unit cell. Assuming
no change of in-plane coordinates due to strain or topographic modulation by the moiré, ry(R) is

simply a linear function of R
ro(R) =1r,(0) + R—R' =1,(0) + l(a; —a}) + n(a, — a)) (S

Here R = la; + na, and R’ = la] + naj = (1 + 8)C_sgR, withal, (a;, = :1565@’1_2) the
primitive lattice vectors in WX, (MoX,), and I, n are integers. C_sgR means the rotation of R
vector by —86 angle. In presence of the strain and topographic modulation by moiré, the mapping

1o (R) can quantitatively deviate from Eq. (S1). The discussions in this work, nevertheless, do not

rely on any quantitative detail of the mapping.
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fig. S1. Schematic of how the interlayer translation vector ro(R) (thick green arrows) changes as a function of in-
plane position vector R. ry(R) is defined as a vector pointing from a nearby W atom to the Mo atom located at
R. The xy-coordinate origin is set on a Mo atom, where the interlayer translation is r,(0).

(2) Laterally modulated local interlayer distance and local band gap

In a long period moiré pattern with b > a’, a, the local interlayer separation and the local band
gap are determined by the local interlayer registry ry(R), and both of them get modulated as

ry (R) varies in the moiré, as directly revealed in STM/STS study of CVD grown MoS,/WSe>
heterobilayer (26). In length scale large compared to a’, a but small compared to b, the local
atomic registry at R (over a large number of unit cells) is nearly indistinguishable from a lattice-
matched heterobilayer of (constant) interlayer registry r,(R). The local electronic structure and
interlayer distance can thus be well approximated by those of the lattice-matched bilayer, as
shown by the comparison of STM/STS measured values at different locals in the MoS,/WSe;
moiré and the first principle calculations of lattice-matched MoS,/WSe; bilayers of the
corresponding ry, as reported in Ref. (26).

We have performed first-principle calculations on the interlayer separation d and band gap E, for
R- and H-type lattice-matched MoS2/\WSe, and MoSe,/WSe; heterobilayers. The results are
shown as the symbols in main text Fig. 1 (c,e) and fig. S2.

It is found in Ref. (48) that, the (local) bandgap E, as a function of r, can be well approximated
by
E4(rg) = Eg + AEg,1|f0(1‘0)|2 + AEg,2|f+(1'0)|2 (S2)
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coupling forms between two bands in different layers (48), under the two-center approximation

are the K-point

3 3

and keeping only the leading Fourier components. This interlayer hopping affects the band gap of
the type-I1 heterojunction through a second-order energy correction (48). The above equation fits
our first-principle results well, as shown by the curves in Fig. 1(e) of main text and fig. S2.

Interestingly, we find the interlayer separation d as function of r, can also be well fitted by



d(ry) = do + Ady | fo(xp)1? + Ady |4 (1) |? (S3)

We summarize the fitting parameters in table S1.

table S1. The parameters for fitting the first-principles results (symbols in fig. S2) with egs. S2 and S3. The
constants Eg , have large deviations to the experimental values and are not related to the band gap modulations we are
interested, thus are not shown.

AEg1 (eV) | AEg2 (V) do () Ad: (A) Ad; (A)
R-type MoS2/WSe; -0.116 -0.094 6.387 0.544 0.042
H-type MoS,/WSe; 0.058 0.072 6.919 -0.456 -0.537
R-type MoSe,/WSe; -0.064 -0.092 6.541 0.578 0.002
H-type MoSe2/WSe: 0.014 0.026 7.082 -0.446 -0.553
H-type MoS,/WSe, R-type MoSe,/WSe, H-type MoSe,/WSe,
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fig. S2. The modulations of layer separation 8d, interlayer bandgap 8Eg, and intralayer bandgap 8Eintra for H-
type MoS2/WSe2, R-type MoSe2/WSez, and H-type MoSe2/WSe: lattice-matched heterobilayers of various
interlayer atomic registries. The symbols are the first-principle calculation results, while the solid lines are the fits
using Eq. (S2) and (S3).

(3) Electric field tuning of potential profiles of interlayer excitons in the moiré

Electric field tuning of the potential profile of interlayer exciton in R-type MoS,/WSe;
heterobilayer moiré is given in Fig. 3(a)-(c) in the main text. Here we show the potential profile
and field tunability of interlayer excitons in other three types of TMD heterobilayers for
comparison in fig. S3.



The R-type MoSe,/WSe; is similar to R-type MoS2/WSe; (fig. S3(a)). AtE = =&, &y =
0.49 V/nm, a honeycomb superlattice with zero Dirac mass is realized, and the barrier height
between the nearest-neighbor A and B sites is comparable to that in R-type MoS2/\WSe;.

For H-type MoS2/WSe, the exciton potential profile is a triangular superlattice over a large range
of positive and negative £ (fig. S3(b)), with the depth of the potential (6V') continuously tunable
by €.

In H-type MoSe,/WSe,, electric field can tune the potential from rather deep confinement of
6V > 40 meV, to a nearly flat landscape with §V ~7 meV where excitons become itinerant.

(a) R-type MoSe,/WSe, (b) H-type MoS,/WSe,  (c) H-type MoSe,/WSe,
-
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fig. S3. The potential profile of the interlayer excitons in the three types of TMD heterobilayers (see Eq. 1 in the
main text). We have neglected the dependence of exciton binding energy on R which is expected to be weak. (a) R-
type MoSe2/WSe2 (€, = 0.49 V/nm), (b) H-type MoS2/WSe2 and (c) H-type MoSe2/WSe2 (€5 ~ 0.31 V/nm and

&y = 0.47 V/nm).

(4) First principle calculated optical transition matrix elements in lattice-matched bilayers

We have performed ab initio calculations for the direct interband optical matrix element p, from
the valence band edge at K-point (predominantly in WX, layer) to the conduction band edge at
K/-K (predominantly in MoX, layer), for R/H-type lattice-matched MoX,/WX; heterobilayers.
Its left- (right-) handed circularly polarized component |e.,. - poyl (Je— * peyl) is shown as red
(blue) symbols at various interlayer registry ry in fig. S4. The interlayer exciton's optical
transition dipole strength is proportional to p.,. Under the two-center approximation and keeping
only the leading Fourier components, it has been shown in Ref. (28) that the r, dependence of

P.v Can be described by



Pev = fo(To)ps(dey + fi (ro)p-(de- (54)
In the heterobilayer moiré, since the interlayer distance d also depends r, (see Eq. (S3) and fig.
S2), the p,.(d) factors in Eq. (S4) also contribute to ry dependence of p, in the moiré. Together

with Eq. (S3), the ry-dependences of the transition dipole e,.-components in the heterobilayer
moiré are expected to have the forms

a
&4+ Pevl = Py (@l fo )| + 22|

4 (Ady | fo(xp)* + Ad, | f4 () D) fo (ro)l,

ap_

le_ - pevl = p-(d)If+ ()| + W|d=d (Ady | fo(xp)1? + Ady | f+ (1) D f+ (1)

(S5)

Eq. (S5) fit well the first principle calculated p., in lattice-matched heterobilayers of various r
(solid curves in fig. S4). From fig. S4, it is clear that at the high symmetry stacking A or B, the
spin up interlayer excitons (hole in K’-valley) couple respectively to ¢ + or o — polarized
photons only, while they are dark at the high symmetry C stacking. This comes from the C;
(2m/3-rotational) symmetry of such stacking.
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fig. S4. The ab initio results of the optical matrix elements at various interlayer translations ro. The red and blue
symbols are the ab initio results of |e, - poy| and |e_ - p.y|, respectively, at various interlayer translation ry. py, is the
magnitude of the K-point intralayer optical matrix element between the valence and conduction bands in the MoX,
layer, which is proportional to the intralayer exciton transition dipole. The solid curves are the fits using Eq. (S5), each
with two fitting parameters p..(d,) and %|d=d0, while other parameters involved are from table S1.



section S2. Nanopatterned optical properties of the interlayer excitons in the moiré

MX, monolayers have conduction and valence band edges at K and -K corners of the hexagonal
Brillouin zone (BZ), where large spin-orbit splitting leads to an effective locking of spin to
valley, i.e. the valence band edge at K (-K) has spin up (down) states only. Optically active
excitons thus have a spin-1/2 spanned by the spin-valley locked band edges. In the analysis
hereafter, we use spin up interlayer excitons in R-type heterobilayers (therefore electron in K-
valley and hole in K’-valley) as examples to demonstrate the optical properties. Those in H-type
heterobilayers can be obtained similarly, and results are directly presented.

(1) Interlayer exciton in the wavepacket form
The momentum eigenstates of interlayer excitons in the presence of lattice mismatch have been
derived in Ref. (28)

Xo(terth) = ) OOQYmeq,u0: )P myg 1, () (s6)
AQ °

Here Py c(re) = e! &0 ey (1) Py o (1) = e/ +K) My, (1)) s the conduction
(valence) electron Bloch function with wave vector K + k (K’ + k'), and wy . (uy, ) is the period
part. M, = m, + my, is the exciton mass, with m, (m;,) the electron (hole) effective mass.
®(AQ) describes the k-space electron-hole relative motion. As shown in Ref. (28), X (re, ) is

2 2
the eigenstate of kinetic energy, with eigenvalue Eq = %, so the index Q corresponds to the
0

kinematic momentum: (Xq|Ry|Xq) = (Xq|pere+52in|Xq) = 1-Q, ith Ry = %re + Z—:rh the

exciton center-of-mass (COM) coordinate.

In the presence of superlattice potential due to the moiré modulated local band gap and interlayer
distance (Eqg. (1) in the main text), the description of optical properties of interlayer excitons can
be facilitated by wavepackets moving adiabatically in the periodic potential. The momentum
eigenstates in Eq. (S6) can serve as a basis to construct the wavepackets. Here and hereafter we
consider low energy interlayer excitons only, where the electron-hole relative motion is always in

the ground state. An exciton wavepacket centered at R is given by

Xg = Z e~ HQHK-K)RY (Q) X (re, 1) (7)
Q



Here W (Q) = \/‘g”we—WzQz/Z, normalized such that %ol W (Q)1? = 5= [IW (Q)|2dQ = 1 with

S the box normalization area. w corresponds to the real space extension of the exciton COM

wavefunction, which shall be small compared to the moiré period b.

(2) Light coupling of interlayer exciton wavepackets at high-symmetry locations

Here we consider an interlayer exciton wavepacket Xy at the high-symmetry location A, B or C
(see Fig. 1(a) in the main text), which has the 2r/3-rotational (C5) symmetry around its center R.
The €3 quantum number of such an exciton is determined by both the K-point electron Bloch

state 1. (r.) and K'-point hole Bloch state i (ry,), which mainly consist of metal atom d,,,—o =

d 2

_2tidxy
dpzand dyyyy = 2

s orbitals, respectively. The Bloch states have the forms

1 .
Pe(re) = \/_Ng elK.Rndm=O(re —Rp)

Po() = = > e Rnd (R
WL

Here N (N') is the lattice site number of the Mo (W) layer, and R,, (R},) is the coordinate of the
nth metal site. Under 27z /3-rotations, both the phase factors (e ®» and e!X"Rn) and the d,,,
orbitals contribute to the resulted €5 quantum numbers. The contribution from eRn and e K" Rn
depends on the choice of rotation center. Thus the overall C; eigenvalues of 1. and y;; are also
rotation center dependent, as summarized in table S2 below. The combined C; eigenvalue of the

electron-hole pair .Yy in the same layer has no dependence on the choice of rotation center,

which determines the optical selection rule of intralayer transition.

table S2. The C3 guantum number of K-point Bloch function . or 1//; for different rotation centers,
taken from Liu et al. (29). h (hexagon center), M (metal site), or X (chalcogen site).

h X M
wc e—iZn’/B ei21‘t/3 1
l/); 1 ei21‘t/3 e—iZn’/3

For interlayer exciton in the heterobilayer, the interlayer registry thus matters. We can fix the
rotation on an h center of the hole layer, so the hole wavefunction transforms as C;y; = . The

C; eigenvalue of interlayer exciton is then that of the electron about the common rotation center.



At A, B and C locals in the moiré supercell, the h centers of the hole layer correspond to h, X and

M of the electron layer, respectively. From table S2 we have

CsXpa=e™2m3x,,  CoXg=e2"/3xg,  C3Xc=Xc (S8)
which is Eqg. (2) in the main text for the spin up exciton (s = +). Eq. (S8) is a consequence of the
different interlayer registry at these high symmetry locals. Different choices of hole rotation

center lead to the same conclusion.

When the exciton radiatively recombines, the emitted photon must have the same C; eigenvalue
with the exciton. Eq. (S8) then implies that, the exciton wavepacket X4 (Xg) couples to o +
(o —) circularly polarized photon, while light coupling is forbidden for X.

(3) Light coupling of interlayer exciton wavepackets at general locations

The light coupling properties of an exciton wavepacket Xy is characterized by its optical
transition dipole D(R), which from Eg. (S7) can be obtained from the transition dipole D, of
momentum eigenstate Xq (e, 1) that has been derived in Ref. (28). Under the two-center

approximation and keeping only the leading Fourier components, D can be written as (28)

Do = (Ba,e ™™ + 8 0,0, ™0 + 8¢ gq, K TV |2 D, (59

—iK'- —i(C3K 1y (0)+2E —i(€2K"15(0)+25)\ D_(d)
+ (SQone Koro(0) 4 6Q.f3Qoe (GK O+ + SQ,fngoe {GKm 3))Te_

Here the e, = Xi% component couples to o + circularly polarized photon. D..(d) are two real

values proportional to p(d) in Eq. (S4) which decay with the interlayer distance d. Q, = K’ —

K, €5Q, and €2Q, are the three corners of the moiré-BZ, at which exciton momentum

eigenstates can interconvert with photons directly (satisfying momentum conservation) (28).

From Eq. (S9) and Eq. (S7), we find the optical transition dipole of an exciton wavepacket

D(R) = eiQO'RZ e QR (Q)D, (S10)
Q
— eiQo'RW(QO) [(e—i(Qo'R+K'-l‘o(0)) + e—i(c‘3Q0-R+63K’-ro(o)) + e—i((f—fQo-R+C3?K’-r0(0))) D+3(oz)e+

+ (e—i(Qo-R+K’-ro(O)) + e—i(C3Q0-R+€3K’-r0(O)+2T”) n e—i(C32Q0-R+C32K'-r0(O)+4Tn))D—(d)e ]
— e



The requirement of a small wavepacket extension in real space (w < b = 3[‘& ) is equivalent to

1/w > |Qyl, i.e., the wavepacket extension in Q-space (1/w) is much larger than the moiré-BZ
size (fig. S5). Thus W(Q,) = W(0) = \/%w, such a wavepacket has a finite transition dipole

given by the interference of those D, at the three corners Q, C3Q, and C2Q,.

Fourier
- Transform

) Q1 0 .\"\ 0 -
b ()

fig. S5. The real-space form of an interlayer exciton wave packet y , with width W << b, corresponds to a Q-
space distribution covering all the three main light cones (bright spots).

The phases in Eq. (S10) can be expressed as

Qo 'R+ K -1ry(0) = (K'—K) - (la; + na,) + K’ - ry(0)
=K' - ((la; + nay) — (laj +naj)) + K’ - ry(0) = K’ - ry(R)

where the last step has used Eq. (S1). Similarly C3Q, - R + (3K’ - 1y (0) = C3K’ - 1y (R) and
C2Q, R+ C2K' - 1y(0) = C2K’ - ry(R). So the transition dipole of the wavepacket is

exclusively determined by r, (R), the interlayer translation at the wavepacket center

D(R) ~ eiQO-R\/%W [(e—iK’-rO(R) + e~ iCK To(R) 4 e—iégx’-ro(k))0+;d)e+

+ (e—iK’-ro(R) + e—i[C‘3K’-r0(R)+ZT”] + e—i[fszK’-rO(R)+4T” )D_?fd)e_] (s11)

This equation is analogous to the transition dipole in a lattice-matched heterobilayer (Eq. (S4)),
except that the constant interlayer translation vector r, there is now replaced by the location-
dependent local value ry(R) in the moiré. Eq. (S11) shows that the optical properties of the
exciton wavepacket is determined by the local atomic registry within the wavepacket extension,

thus vary continuously with the central position R of the wavepacket, as shown in main text Fig.



2 for the R-type MoS»/WSe, moiré. The symmetry dictated results in Eq. (S8) are well
reproduced. At a general local in the moiré where the local interlayer registry no longer observes
the C; symmetry, the photon emission is of the general elliptical polarization. In fig. S6, the
results in H-type MoS2/\WSe, moiré are also given, which show similar nano-patterned optical

properties.
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fig. S6. Nanopatterned spin optics of moiré excitons in an H-type MoS2/WSe2 moiré pattern. (a) Left: Oscillator
strength of interlayer exciton wavepackets in a near H-type MoSz/WSe2 moiré pattern. Right: Optical selection rule for
interlayer exciton wavepackets with the hole in K’ valley and electron in —K valley. (b) From up to down: superlattice
potential for —K valley intralayer excitons in MoSz, K’ valley intralayer excitons in WSez, and interlayer excitons with
the hole in K’ valley and electron in —K valley. The optical selection rules for intralayer and interlayer exciton
wavepackets centered at A, B and C are also shown.

(4) Radiative lifetime of an interlayer exciton in the nanodots confinement at A & B

The radiative lifetime of an intralayer exciton wavepacket in monolayer TMDs has been derived
in Ref. (49). Here we use the same approach to estimate the radiative lifetime of an interlayer
exciton wavepacket. For the wavepacket located at R, its radiative lifetime 7 (R) is given by

_nwrk=0)
T (ww/c)?

T(R)



Here Aw~1 eV (~1.4 eV) is the emitted photon energy in heterobilayer MoS2/WSe; (26)
(MoSex/WSe: (16) ). Tr(k = 0) is the radiative lifetime of an interlayer exciton at zero COM
wave vector in a lattice-matched heterobilayer (Q, = 0) of the corresponding interlayer distance
d and interlayer translation ry.

Note that the emission rate (TR(k = 0))_1 is proportional to the square of the interlayer exciton

transition dipole [Dy_o|?, thus E=2 — (lDDintral
k=0

Tintra
intralayer exciton in the light cone and Djy ., IS the corresponding transition dipole strength. The
various literatures have consistently suggested a sub-picosecond 7,4 in monolayer TMDs, and

2
) where i, IS the radiative lifetime of the

|Dk=0| ~

here we take 7j,t2~0.15 ps as measured in Ref. (50). % has been given in fig. S4, and
Mo

intra

the calculated values are consistent with the observation that interlayer exciton oscillator strength
is two to three orders of magnitude smaller than that of the intralayer exciton (51).

For the interlayer exciton in the ground state of the nanodot confinement at A or B, we estimate
the wavepacket extension w = 0.3b (35). For a moiré superlattice with period b = 15 nm, the
estimated lifetime 7" at A and B sites is given in table S3. With the change of b, the lifetime
scales as T(R) o b™2,

table S3. The estimated radiative lifetimes for the interlayer exciton wave packets at A or B site in different
heterobilayers with b = 15 nm.

R-Mo0S,/WSe; H-MoS,/WSe; R-MoSe,/WSe, | H-MoSe,/\WSe;
A 80 ns 20 ns 3ns 30 ns
B 20 ns 20 ns 5ns 1ns

section S3. Complex hopping of the interlayer excitons in the moiré

In the main text we have obtained the phase of the hopping amplitude between two wavepackets
centered at A and B sites, respectively, based on the C5 quantum number of the exciton
wavepacket dictated by the local atomic registry (Eq. (S8)). Here we derive the complex hopping
between two general locations in the moiré.

Under envelope approximation for the electron and hole Bloch functions yy . (re) =
e KOy o (Te), Yror o (1) ~ el 4K )Moy, (1), the exciton momentum eigenstate in

Eq. (S6) becomes

Xo(Te, ) ~ e Q@RxIKK )R (1 Yoy o (Te)upr o , () (512)



{(AQ+™hK+Mek! ).
where ®(rep) = Yag ¢(AQ)el(AQ+MoK+MoK )¥en

relative motion (in the ground state of relative motion only), and r.;, = r. — 1y, is the electron-

is the envelope function for the electron-hole

hole relative coordinate. The exciton wavepacket in Eq. (S7) can then be written as
Xp(re 1) ~ e EFIREBW Ry — R)O(Fen)utemo e (T trmgy (1) (S13)

where W(Ry — R) = Wiﬁe‘(RX‘R)Z/ZWZ. The hopping integral of a wavepacket from site R; to

R, isthen

tR, — R;) = j X5, (Ko 1) Ar Xy, (e T)dredry, (S14)

= (K R [ Ry = Ry W (R — Ry ARy [ [0 Pdrey

where Hy is the Hamiltonian for the exciton COM motion in the superlattice potential. In the last
step of Eq. (S14), we have separated out the fast oscillating component u.(r,)us, (ry,) from the
exciton envelope function that is varying in the much larger length scale of exciton Bohr radius
and wavepacket width w.

Since [ W*(Ry — R,)H; W (Ry — R{)dRy is real, the hopping integral (R, — R;) has the
phase factor of e!(&-K') ®R:=R1) Thijs result is fully consistent with the symmetry dictated phases
of the nearest-neighbor (third nearest-neighbor) hopping between A and B sites (c.f. main text Eq.
(3) and Fig. 4(a)). In the nearest-neighbor (third nearest-neighbor) hopping, the displacement
vector R, — Ry equals dg = %(1,0), C3d, or €3d, (dz = 22(—1,0), (3d; or C3dy), so the
hopping phase factors are then e (K-K')do/z = 1, ¢i(K-K')Csdo/z — o=idn/3 gp oi(K-K')C3do/z —
e'm/3 Note that K — K’ = #7(0,1) in main text Fig. 4(a). For next nearest-neighbor hoppings
which are between two A sites (or two B sites), R, — R; equals d; = b(0,1), C3d; or C2d, (see

main text Fig. 4(a)), the hopping phase factors are e!(K~K')di = gi(K-K')Csdy — oi(K-K')C5dy —
ei4rr/3_

section S4. Exciton bands in superlattice potential: Exact solution and tight-binding

model

Using Egs. (S2) and (S3), the superlattice potential V(R) = E;(ry(R)) + e€d(ry(R)) — Ej, for

the interlayer excitons in the moiré can be expressed as



V(R) = (Egp + eEdy — Ep) + (AEy  + eEA,)|fo(re(R))|* + (AE,,, + e€Ad,)|fi (o (R))]

3
= Ex(€) + Z(V(E)eign"‘ +V*(E)ei8nR)
n=1

Here V(€) = eatefhs | Hoatetlzgizn/3 By (€) = By + eEdy — Ep +

AEg,l +eEAdq +AEg’2 +eEAd;
3

and g , 3 are the three reciprocal lattice vectors of the moiré pattern as shown in fig. S7(a).

The basis of momentum eigenstates in Eq. (S6) can be expressed in terms of the COM coordinate

R and relative coordinate rep: Xq(re, Ip,) = e"(Q+K‘K')'RUQ(R, Ten), Where

_ i(AQ+TK+TEK" ) ren mh ) . ( Me )
Ug(RTep) = AZQ e Mo~ " Mo CD(AQ)uﬂ—SQMQ,c (R + M, Teh u—z—gQMQ,v R- M, eh

is a periodic function of R with the periodicity of moiré pattern, i.e., Ug(R + By, Tep) =
Uq(R, rep) With By, the lattice vector of the moiré superlattice. For excitons with low kinetic

energies (|Q| « [K]), we can use the envelope approximation uﬁ—ﬁ‘“m‘ ~ Upq,c and

“—’,C,—gmm.v ~ Upq,y Which imply that Uy = Ug—,.

The matrix element of V(R) is

(X' IlV(R)|Xq) = Ex(E) <z ei(Q_QI)le) f Up(R, ren)e' @ RY (R, rep)dRdrep,
SC

m

3
+V(€) Z (Z ei<gn+Q-Q’>'Bm> f Uy(R, reh)ei(gn+Q-Q'>'RUQ(R, Ten)dRdrey
n=1 \'m SC

3
+V*(€) Z (Z ei<Q-Q’-gn>'Bm> f Uy(R, reh)ei(Q-Q’-gn>'RUQ(R, Ten)dRdr,y
n=1 \'m SC

where the integration fsc(--- )dR is restricted in a moiré supercell. Clearly, ¥, e®Bm is nonzero
only when k = g; with g; a general reciprocal lattice vector of the moiré superlattice. Meanwhile
for small values of |Q], |Q’|, |g;| < |K]| we are interested, one can use the envelope

approximation Uy ~ Ug=¢ = Uq_g, Which leads to



(Z eiger) f Ugy (R, Ten)e'8 RUq(R, ren)dRdrep
SC

m

— [ UgR ra)e® R UG (R rep)dRdre
= f (ei(Q—gﬁK—K').RUQ’(R, reh))* (ei(Q+K_K’)'RUQ(R, reh)) dereh

~ fXa—gl(re:rh)XQ(revrh)dredrh = 60,gl

The above last step comes from the orthonormality of the momentum eigenstates. So
(Xq’W(R)'XQ) ~ EX(£)5Q,Q’ + Z%=1(V(£)5gn+Q,Q’ + V*(5)5—gn+Q,Q’)

Therefore, under this basis of momentum eigenstates, the Hamiltonian Hy. for the exciton COM

h?|QI?

motion consists of the diagonal Stark shift and kinetic energy term Ex (€) + S
0

, and the off-

diagonal terms due to the superlattice potential V (R). Write Q = g; + q, where g; is a general
reciprocal lattice vector of the moiré superlattice, and q is a wave vector within the hexagonal

moiré-BZ, we have Ay = ¥4 Hy, where

A=)

l

2 2
(Ex(£) + %) g + aXg +al + (V(E)lg: + gn +aXg, +al +h.c.)

n=1,2,3

The exciton dispersion can then be numerically solved by dropping those g; with large magnitude

that exceed some cutoff value (|g;] > gmax)- FOr b < 20 nm, we find the low energy bands

converge well for a cutoff value gy .x = %. The several lowest exciton bands of a b = 10 nm

moiré superlattice is shown in Fig. 4(c) in the main text.

On the other hand, one can also describe the two lowest exciton bands with an effective tight-
binding model following the standard approach in optical lattices (35). In a honeycomb optical
lattices with same potential profile as V(R), Ref. (35) has shown that it is sufficient to keep up to
third nearest-neighbor hopping terms. The difference here lies in the complex hopping phases
which have already been fully determined as discussed in Section Il above, while the magnitudes

of the hopping strengths t, ; , = |t(d0,1,2)| can be obtained by fitting the numerical results



(shown as the symbols in fig. S7(b)). Ref. (35) has also given the following fitting forms for the
hopping strength

0.95 [ ]
to ~ 1.16Ep (%) exp —1.634\/:%

1.85 [ )
t, ~ 0.78Ep (%) exp —3.404\/:% , (515)

2.75 [ 1
t, ~ 1.81Eg (%) exp —5.196\/}%

2 2
Here Ex = % (2—’;) is the recoil energy, V' = 10 meV is the barrier height. t ; , as functions of
0

b from Eq. (S15) are shown as curves in Fig. 3(f) in the main text and fig. S7(b). By comparing
with the fitting of the exact exciton bands, we can see that for V/E, > 3, EQ. (S15) agree well
with those from fitting the numerical results, but they underestimate the magnitudes of t, ; , for
smaller V/Eg.
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fig. S7. The six reciprocal lattice vectors in the Fourier components of the excitonic potential, and the obtained
hopping magnitudes to,1,2 as functions of the moiré period b or V/Er. (a) The Fourier components of the excitonic
potential correspond to six reciprocal lattice vectors +g, (n=1,2,3). The dashed hexagon is the moiré superlattice BZ.
(b) The obtained magnitudes of ¢, ; , as functions of the moiré period b or V/Er. The symbols are the fits to the
numerical results under € = &,, while the curves are the asymptotic forms Egs. (S15). For b~10 nm or smaller, Egs.
(S15) underestimate tg 1 5.



section S5. Exciton-exciton interactions in the superlattices

We now consider the on-site Coulomb interaction V. between two exciton wavepackets located in

the same nanodot (e.g., at A)

U = (xXx|V:|xx)

= Z Qs+ Q- Ry (Q)W (Q)W (Q)W (Q2)(Xq, Xo, Ve |Xq, Xa,)
Q1Q2Q3Q4

Here (Xq,Xq,|Vc|Xq,Xq,) is the Coulomb matrix element between momentum eigenstates,
which has been thoroughly investigated for spatially direct and indirect excitons in early papers
(52-55). It is shown that for [Qq 34| S W™ < ag?, (Xq,Xo,|Vc|Xq, Xq,) =

2
80,+Q,,0:+Q, aS—BVC,where ag is the exciton Bohr radius and S the box normalization area. V. is a

constant with two contributions (52-55): (i) V., from the exchange interaction between excitons

with the same spin indices only, and (ii) V44, from the dipole-dipole interaction independent of

the spin indices. Following (17, 56), we estimate that V.,~E}, and Vdd~aiEb. So
B

a} (4m\? W 024 024024(0.40,-0)2) 1 (ag\2
Uex/dd — Vex/dd?B (?) wt z e 2 (QI+Q3+Q5+(Q:+Q2-Q3)?) _ E(WB) Vex/dd (S16)
Q:Q2Q3

In the last step we have converted the summation into integral: ¥o(...) = #](...)dQ. Using
the parameters d = 0.6 nm, ag = 2 nm, w = 0.3b, Ex=0.2 eV, we estimate Upy, =
L “WB)ZVeX~14 meV and Ugq = %(“WB)ZVdd~4 meV for b = 10 nm. With the change of b, we

have Up~(222m)" x 14 meV and Ugg~(222")” x 4 meV.




