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Supplementary Text 

 

section S1. Modulated electronic and topographic properties in the heterobilayer 

moiré 

 

(1) Characterization of local interlayer atomic registry in the moiré 

 

We consider a heterobilayer moiré pattern formed by two layers of Mo𝑋2 and W𝑋2
′ . We denote 

the Mo𝑋2 (W𝑋2
′ ) layer lattice constants as 𝑎 (𝑎′), and 𝛿𝜃 is the small deviation angle between the 

zigzag crystalline axes of the two layers. For 𝛿 = 𝑎′ 𝑎⁄ − 1 ≪ 1 and 𝛿𝜃 ≪ 1, the formed moiré 

pattern has a superlattice constant 𝑏 ≈ 𝑎 √𝛿𝜃2 + 𝛿2⁄ , which is much larger than 𝑎′, 𝑎 and can be 

tuned by changing 𝛿𝜃. We set the origin for the in-plane coordinate (𝐑) on a Mo atom. The 

locally different interlayer atomic registry in the moiré pattern can be quantified by 𝐫0(𝐑), the in-

plane displacement vector from a nearby W atom to a Mo atom located at 𝐑, and without losing 

generality, we restrict 𝐫0(𝐑) to be varying within a W𝑋2
′  unit cell (fig. S1). 

 

The function 𝐫0(𝐑) is a mapping from the moiré supercell to the monolayer unit cell: when 𝐑 

traverses a moiré supercell, the corresponding 𝐫0(𝐑) value traverses the W𝑋2
′  unit cell. Assuming 

no change of in-plane coordinates due to strain or topographic modulation by the moiré, 𝐫0(𝐑) is 

simply a linear function of 𝐑 

 

𝐫0(𝐑) = 𝐫0(0) + 𝐑 − 𝐑′ = 𝐫0(0) + 𝑙(𝐚1 − 𝐚1
′ ) + 𝑛(𝐚2 − 𝐚2

′ )            (S1) 

 

Here 𝐑 ≡ 𝑙𝐚1 + 𝑛𝐚2 and 𝐑′ ≡ 𝑙𝐚1
′ + 𝑛𝐚2

′ = (1 + 𝛿)�̂�−𝛿𝜃𝐑, with 𝐚1,2
′  (𝐚1,2 =

1

1+𝛿
�̂�𝛿𝜃𝐚1,2

′ ) the 

primitive lattice vectors in W𝑋2
′  (Mo𝑋2), and 𝑙, 𝑛 are integers. �̂�−𝛿𝜃𝐑 means the rotation of 𝐑 

vector by −𝛿𝜃 angle. In presence of the strain and topographic modulation by moiré, the mapping 

𝐫0(𝐑) can quantitatively deviate from Eq. (S1). The discussions in this work, nevertheless, do not 

rely on any quantitative detail of the mapping. 

 



 
fig. S1. Schematic of how the interlayer translation vector r0(R) (thick green arrows) changes as a function of in-

plane position vector R. 𝐫𝟎(𝐑) is defined as a vector pointing from a nearby W atom to the Mo atom located at 

𝐑. The xy-coordinate origin is set on a Mo atom, where the interlayer translation is 𝐫0(0).  

 

(2) Laterally modulated local interlayer distance and local band gap 

In a long period moiré pattern with 𝑏 ≫ 𝑎′, 𝑎, the local interlayer separation and the local band 

gap are determined by the local interlayer registry 𝐫0(𝐑), and both of them get modulated as 

𝐫0(𝐑) varies in the moiré, as directly revealed in STM/STS study of CVD grown MoS2/WSe2 

heterobilayer (26). In length scale large compared to 𝑎′, 𝑎 but small compared to 𝑏, the local 

atomic registry at 𝐑 (over a large number of unit cells) is nearly indistinguishable from a lattice-

matched heterobilayer of (constant) interlayer registry 𝐫0(𝐑). The local electronic structure and 

interlayer distance can thus be well approximated by those of the lattice-matched bilayer, as 

shown by the comparison of STM/STS measured values at different locals in the MoS2/WSe2 

moiré and the first principle calculations of lattice-matched MoS2/WSe2 bilayers of the 

corresponding 𝐫0, as reported in Ref. (26). 

 

We have performed first-principle calculations on the interlayer separation 𝑑 and band gap 𝐸𝑔 for 

R- and H-type lattice-matched MoS2/WSe2 and MoSe2/WSe2 heterobilayers. The results are 

shown as the symbols in main text Fig. 1 (c,e) and fig. S2.  

 

It is found in Ref. (48) that, the (local) bandgap 𝐸𝑔 as a function of 𝐫0 can be well approximated 

by 

𝐸𝑔(𝐫0) = 𝐸𝑔,0 + ∆𝐸𝑔,1|𝑓0(𝐫0)|2 + ∆𝐸𝑔,2|𝑓+(𝐫0)|2               (S2) 

 

𝑓0(𝐫0) ≡
𝑒−𝑖𝐊∙𝐫0+𝑒−𝑖�̂�3𝐊∙𝐫0+𝑒−𝑖�̂�3

2𝐊∙𝐫0

3
 and 𝑓±(𝐫0) ≡

𝑒−𝑖𝐊∙𝐫0+𝑒
−𝑖(�̂�3𝐊∙𝐫0±

2𝜋
3

)
+𝑒

−𝑖(�̂�3
2𝐊∙𝐫0±

4𝜋
3

)

3
 are the K-point 

coupling forms between two bands in different layers (48), under the two-center approximation 

and keeping only the leading Fourier components. This interlayer hopping affects the band gap of 

the type-II heterojunction through a second-order energy correction (48). The above equation fits 

our first-principle results well, as shown by the curves in Fig. 1(e) of main text and fig. S2. 

Interestingly, we find the interlayer separation 𝑑 as function of 𝐫0 can also be well fitted by 



𝑑(𝐫0) = 𝑑0 + ∆𝑑1|𝑓0(𝐫0)|2 + ∆𝑑2|𝑓+(𝐫0)|2               (S3) 

 

We summarize the fitting parameters in table S1. 

 

table S1. The parameters for fitting the first-principles results (symbols in fig. S2) with eqs. S2 and S3. The 

constants 𝐸𝑔,0 have large deviations to the experimental values and are not related to the band gap modulations we are 

interested, thus are not shown. 

 ΔEg,1 (eV) ΔEg,2 (eV) d0 (Å) Δd1 (Å) Δd2 (Å) 

R-type MoS2/WSe2 -0.116 -0.094 6.387 0.544 0.042 

H-type MoS2/WSe2 0.058 0.072 6.919 -0.456 -0.537 

R-type MoSe2/WSe2 -0.064 -0.092 6.541 0.578 0.002 

H-type MoSe2/WSe2 0.014 0.026 7.082 -0.446 -0.553 

 

 

 

fig. S2. The modulations of layer separation δd, interlayer bandgap δEg, and intralayer bandgap δEintra for H-

type MoS2/WSe2, R-type MoSe2/WSe2, and H-type MoSe2/WSe2 lattice-matched heterobilayers of various 

interlayer atomic registries. The symbols are the first-principle calculation results, while the solid lines are the fits 

using Eq. (S2) and (S3). 

 

(3) Electric field tuning of potential profiles of interlayer excitons in the moiré  

Electric field tuning of the potential profile of interlayer exciton in R-type MoS2/WSe2 

heterobilayer moiré is given in Fig. 3(a)-(c) in the main text. Here we show the potential profile 

and field tunability of interlayer excitons in other three types of TMD heterobilayers for 

comparison in fig. S3. 



The R-type MoSe2/WSe2 is similar to R-type MoS2/WSe2 (fig. S3(a)). At ℰ = −ℰ0, ℰ0 ≈

0.49 V/nm, a honeycomb superlattice with zero Dirac mass is realized, and the barrier height 

between the nearest-neighbor A and B sites is comparable to that in R-type MoS2/WSe2.  

 

For H-type MoS2/WSe2, the exciton potential profile is a triangular superlattice over a large range 

of positive and negative ℰ (fig. S3(b)), with the depth of the potential (𝛿𝑉) continuously tunable 

by ℰ.  

 

In H-type MoSe2/WSe2, electric field can tune the potential from rather deep confinement of 

𝛿𝑉 > 40 meV, to a nearly flat landscape with 𝛿𝑉~7 meV where excitons become itinerant. 

 

fig. S3. The potential profile of the interlayer excitons in the three types of TMD heterobilayers (see Eq. 1 in the 

main text). We have neglected the dependence of exciton binding energy on 𝐑 which is expected to be weak. (a) R-

type MoSe2/WSe2 (ℰ0 ≈ 0.49 V/nm), (b) H-type MoS2/WSe2 and (c) H-type MoSe2/WSe2 (ℰ0
′ ≈ 0.31 V/nm and 

ℰ0
′′ ≈ 0.47 V/nm).  

 

(4) First principle calculated optical transition matrix elements in lattice-matched bilayers  

We have performed ab initio calculations for the direct interband optical matrix element 𝐩cv from 

the valence band edge at K-point (predominantly in W𝑋2
′  layer) to the conduction band edge at 

K/-K (predominantly in Mo𝑋2 layer), for R/H-type lattice-matched Mo𝑋2/W𝑋2
′  heterobilayers. 

Its left- (right-) handed circularly polarized component |𝐞+ ∙ 𝐩cv| (|𝐞− ∙ 𝐩cv|) is shown as red 

(blue) symbols at various interlayer registry 𝐫0 in fig. S4. The interlayer exciton's optical 

transition dipole strength is proportional to 𝐩cv. Under the two-center approximation and keeping 

only the leading Fourier components, it has been shown in Ref. (28) that the 𝐫0 dependence of 

𝐩cv can be described by  



𝐩cv = 𝑓0(𝐫0)𝑝+(𝑑)𝐞+ + 𝑓+(𝐫0)𝑝−(𝑑)𝐞−                       (S4) 

 

In the heterobilayer moiré, since the interlayer distance d also depends 𝐫0 (see Eq. (S3) and fig. 

S2), the 𝑝±(𝑑) factors in Eq. (S4) also contribute to 𝐫0 dependence of 𝐩cv in the moiré. Together 

with Eq. (S3), the 𝐫0-dependences of the transition dipole 𝐞±-components in the heterobilayer 

moiré are expected to have the forms 

 

|𝐞+ ∙ 𝐩cv| ≈ 𝑝+(𝑑0)|𝑓0(𝐫0)| +
𝜕𝑝+

𝜕𝑑
|

𝑑=𝑑0

(∆𝑑1|𝑓0(𝐫0)|2 + ∆𝑑2|𝑓+(𝐫0)|2)|𝑓0(𝐫0)|, 

|𝐞− ∙ 𝐩cv| ≈ 𝑝−(𝑑0)|𝑓+(𝐫0)| +
𝜕𝑝−

𝜕𝑑
|

𝑑=𝑑0

(∆𝑑1|𝑓0(𝐫0)|2 + ∆𝑑2|𝑓+(𝐫0)|2)|𝑓+(𝐫0)|         (S5) 

 

Eq. (S5) fit well the first principle calculated 𝐩cv in lattice-matched heterobilayers of various 𝐫0 

(solid curves in fig. S4). From fig. S4, it is clear that at the high symmetry stacking A or B, the 

spin up interlayer excitons (hole in 𝐊′-valley) couple respectively to 𝜎 + or 𝜎 − polarized 

photons only, while they are dark at the high symmetry C stacking. This comes from the �̂�3 

(2𝜋 3⁄ -rotational) symmetry of such stacking. 

 

 
fig. S4. The ab initio results of the optical matrix elements at various interlayer translations r0. The red and blue 

symbols are the ab initio results of |𝐞+ ∙ 𝐩cv| and |𝐞− ∙ 𝐩cv|, respectively, at various interlayer translation 𝐫0. 𝑝Mo is the 

magnitude of the 𝐊-point intralayer optical matrix element between the valence and conduction bands in the Mo𝑋2 

layer, which is proportional to the intralayer exciton transition dipole. The solid curves are the fits using Eq. (S5), each 

with two fitting parameters 𝑝±(𝑑0) and 
𝜕𝑝±

𝜕𝑑
|

𝑑=𝑑0
, while other parameters involved are from table S1. 

 



section S2. Nanopatterned optical properties of the interlayer excitons in the moiré 

MX2 monolayers have conduction and valence band edges at K and -K corners of the hexagonal 

Brillouin zone (BZ), where large spin-orbit splitting leads to an effective locking of spin to 

valley, i.e. the valence band edge at K (-K) has spin up (down) states only. Optically active 

excitons thus have a spin-1/2 spanned by the spin-valley locked band edges. In the analysis 

hereafter, we use spin up interlayer excitons in R-type heterobilayers (therefore electron in 𝐊-

valley and hole in 𝐊′-valley) as examples to demonstrate the optical properties. Those in H-type 

heterobilayers can be obtained similarly, and results are directly presented. 

 

(1) Interlayer exciton in the wavepacket form  

The momentum eigenstates of interlayer excitons in the presence of lattice mismatch have been 

derived in Ref. (28) 

 

𝑋𝐐(𝐫e, 𝐫h) = ∑ Φ(∆𝐐)𝜓𝑚e
𝑀0

𝐐+∆𝐐,c
(𝐫e)𝜓

−
𝑚h
𝑀0

𝐐+∆𝐐,v
∗ (𝐫h)

∆𝐐

                       (S6) 

 

Here 𝜓𝐤,c(𝐫e) = 𝑒𝑖(𝐊+𝐤)∙𝐫e𝑢𝐤,c(𝐫e) (𝜓𝐤′,v(𝐫h) = 𝑒𝑖(𝐊′+𝐤′)∙𝐫h𝑢𝐤′,v(𝐫h)) is the conduction 

(valence) electron Bloch function with wave vector 𝐊 + 𝐤 (𝐊′ + 𝐤′), and 𝑢𝐤,c (𝑢𝐤′,v) is the period 

part. 𝑀0 ≡ 𝑚e + 𝑚h is the exciton mass, with 𝑚e (𝑚h) the electron (hole) effective mass. 

Φ(∆𝐐) describes the k-space electron-hole relative motion. As shown in Ref. (28), 𝑋𝐐(𝐫e, 𝐫h) is 

the eigenstate of kinetic energy, with eigenvalue 𝐸𝐐 =
ℏ2|𝐐|2

2𝑀0
, so the index 𝐐 corresponds to the 

kinematic momentum: ⟨𝑋𝐐|�̇�𝑋|𝑋𝐐⟩ ≡ ⟨𝑋𝐐|𝑚e
𝑀0

�̇�e+
𝑚h
𝑀0

�̇�h|𝑋𝐐⟩ = ℏ

𝑀0
𝐐, with 𝐑𝑋 ≡

𝑚e

𝑀0
𝐫e +

𝑚h

𝑀0
𝐫h the 

exciton center-of-mass (COM) coordinate. 

 

In the presence of superlattice potential due to the moiré modulated local band gap and interlayer 

distance (Eq. (1) in the main text), the description of optical properties of interlayer excitons can 

be facilitated by wavepackets moving adiabatically in the periodic potential. The momentum 

eigenstates in Eq. (S6) can serve as a basis to construct the wavepackets. Here and hereafter we 

consider low energy interlayer excitons only, where the electron-hole relative motion is always in 

the ground state. An exciton wavepacket centered at 𝐑 is given by 

 

𝒳𝐑 = ∑ 𝑒−𝑖(𝐐+𝐊−𝐊′)∙𝐑𝑊(𝐐)𝑋𝐐(𝐫e, 𝐫h)

𝐐

                        (S7) 



Here 𝑊(𝐐) = √
4𝜋

𝑆
𝑤𝑒−𝑤2𝐐2 2⁄ , normalized such that ∑ |𝑊(𝐐)|2

𝐐 = 𝑆

(2𝜋)2 ∫|𝑊(𝐐)|2𝑑𝐐 = 1 with 

𝑆 the box normalization area. 𝑤 corresponds to the real space extension of the exciton COM 

wavefunction, which shall be small compared to the moiré period b. 

 

(2) Light coupling of interlayer exciton wavepackets at high-symmetry locations 

Here we consider an interlayer exciton wavepacket 𝒳𝐑 at the high-symmetry location A, B or C 

(see Fig. 1(a) in the main text), which has the 2𝜋 3⁄ -rotational (�̂�3) symmetry around its center R.  

The �̂�3 quantum number of such an exciton is determined by both the 𝐊-point electron Bloch 

state 𝜓c(𝐫e) and 𝐊′-point hole Bloch state 𝜓v
∗(𝐫h), which mainly consist of metal atom 𝑑𝑚=0 ≡

𝑑𝑧2  and 𝑑𝑚=+2 ≡
𝑑

𝑥2−𝑦2±𝑖𝑑𝑥𝑦

√2
 orbitals, respectively. The Bloch states have the forms 

 

𝜓c(𝐫e) =
1

√𝑁
∑ 𝑒𝑖𝐊∙𝐑𝑛𝑑𝑚=0(𝐫e − 𝐑𝑛)

𝑛

 

𝜓v(𝐫h) =
1

√𝑁′
∑ 𝑒𝑖𝐊′∙𝐑𝑛

′
𝑑𝑚=+2(𝐫h − 𝐑𝑛

′ )

𝑛

 

 

Here 𝑁 (𝑁′) is the lattice site number of the Mo (W) layer, and 𝐑𝑛 (𝐑𝑛
′ ) is the coordinate of the 

nth metal site. Under 2𝜋 3⁄ -rotations, both the phase factors (𝑒𝑖𝐊∙𝐑𝑛 and 𝑒𝑖𝐊′∙𝐑𝑛
′
) and the 𝑑𝑚 

orbitals contribute to the resulted �̂�3 quantum numbers. The contribution from 𝑒𝑖𝐊∙𝐑𝑛 and 𝑒𝑖𝐊′∙𝐑𝑛
′

 

depends on the choice of rotation center. Thus the overall �̂�3 eigenvalues of 𝜓c and 𝜓v
∗ are also 

rotation center dependent, as summarized in table S2 below. The combined �̂�3 eigenvalue of the 

electron-hole pair 𝜓c𝜓v
∗ in the same layer has no dependence on the choice of rotation center, 

which determines the optical selection rule of intralayer transition. 

 

table S2. The 3Ĉ  quantum number of K-point Bloch function ψc or 
* v

 for different rotation centers, 

taken from Liu et al. (29). h (hexagon center), M (metal site), or X (chalcogen site). 

 h X M 

𝜓c 𝑒−𝑖2𝜋 3⁄  𝑒𝑖2𝜋 3⁄  1 

𝜓v
∗ 1 𝑒𝑖2𝜋 3⁄  𝑒−𝑖2𝜋 3⁄  

 

For interlayer exciton in the heterobilayer, the interlayer registry thus matters. We can fix the 

rotation on an h center of the hole layer, so the hole wavefunction transforms as �̂�3𝜓v
∗ = 𝜓v

∗. The 

�̂�3 eigenvalue of interlayer exciton is then that of the electron about the common rotation center. 



At A, B and C locals in the moiré supercell, the h centers of the hole layer correspond to h, X and 

M of the electron layer, respectively. From table S2 we have 

 

�̂�3𝒳𝐀 = 𝑒−𝑖2𝜋 3⁄ 𝒳𝐀, �̂�3𝒳𝐁 = 𝑒𝑖2𝜋 3⁄ 𝒳𝐁, �̂�3𝒳𝐂 = 𝒳𝐂                 (S8) 

which is Eq. (2) in the main text for the spin up exciton (s = +). Eq. (S8) is a consequence of the 

different interlayer registry at these high symmetry locals. Different choices of hole rotation 

center lead to the same conclusion. 

 

When the exciton radiatively recombines, the emitted photon must have the same �̂�3 eigenvalue 

with the exciton. Eq. (S8) then implies that, the exciton wavepacket 𝒳𝐀 (𝒳𝐁) couples to 𝜎 + 

(𝜎 −) circularly polarized photon, while light coupling is forbidden for 𝒳𝐂. 

 

(3) Light coupling of interlayer exciton wavepackets at general locations 

The light coupling properties of an exciton wavepacket 𝒳𝐑 is characterized by its optical 

transition dipole 𝓓(𝐑), which from Eq. (S7) can be obtained from the transition dipole 𝐃𝐐 of 

momentum eigenstate 𝑋𝐐(𝐫e, 𝐫h) that has been derived in Ref. (28). Under the two-center 

approximation and keeping only the leading Fourier components, 𝐃𝐐 can be written as (28)  

 

𝐃𝐐 = (𝛿𝐐,𝐐0
𝑒−𝑖𝐊′∙𝐫0(0) + 𝛿𝐐,�̂�3𝐐0

𝑒−𝑖�̂�3𝐊′∙𝐫0(0) + 𝛿𝐐,�̂�3
2𝐐0

𝑒−𝑖�̂�3
2𝐊′∙𝐫0(0))

𝐷+(𝑑)

3
𝐞+              (S9) 

+ (𝛿𝐐,𝐐0
𝑒−𝑖𝐊′∙𝐫0(0) + 𝛿𝐐,�̂�3𝐐0

𝑒−𝑖(�̂�3𝐊′∙𝐫0(0)+2𝜋
3 ) + 𝛿𝐐,�̂�3

2𝐐0
𝑒−𝑖(�̂�3

2𝐊′∙𝐫0(0)+4𝜋
3 ))

𝐷−(𝑑)

3
𝐞− 

 

Here the 𝐞± ≡
𝐱±𝑖𝐲

√2
 component couples to 𝜎 ± circularly polarized photon. 𝐷±(𝑑) are two real 

values proportional to 𝑝±(𝑑) in Eq. (S4) which decay with the interlayer distance d. 𝐐0 ≡ 𝐊′ −

𝐊, �̂�3𝐐0 and �̂�3
2𝐐0 are the three corners of the moiré-BZ, at which exciton momentum 

eigenstates can interconvert with photons directly (satisfying momentum conservation) (28). 

 

From Eq. (S9) and Eq. (S7), we find the optical transition dipole of an exciton wavepacket 

 

𝓓(𝐑) = 𝑒𝑖𝐐0∙𝐑 ∑ 𝑒−𝑖𝐐∙𝐑𝑊(𝐐)𝐃𝐐

𝐐

                                                                                                                    (S10) 

= 𝑒𝑖𝐐0∙𝐑𝑊(𝐐0) [(𝑒−𝑖(𝐐0∙𝐑+𝐊′∙𝐫0(0)) + 𝑒−𝑖(�̂�3𝐐0∙𝐑+�̂�3𝐊′∙𝐫0(0)) + 𝑒−𝑖(�̂�3
2𝐐0∙𝐑+�̂�3

2𝐊′∙𝐫0(0)))
𝐷+(𝑑)

3
𝐞+

+ (𝑒−𝑖(𝐐0∙𝐑+𝐊′∙𝐫0(0)) + 𝑒−𝑖(�̂�3𝐐0∙𝐑+𝐶3𝐊′∙𝐫0(0)+2𝜋
3 ) + 𝑒−𝑖(�̂�3

2𝐐0∙𝐑+�̂�3
2𝐊′∙𝐫0(0)+4𝜋

3 ))
𝐷−(𝑑)

3
𝐞−] 



The requirement of a small wavepacket extension in real space (𝑤 ≪ 𝑏 = 4𝜋

3|𝐐0|
) is equivalent to 

1 𝑤⁄ ≫ |𝐐0|, i.e., the wavepacket extension in 𝐐-space (1 𝑤⁄ ) is much larger than the moiré-BZ 

size (fig. S5). Thus 𝑊(𝐐0) ≈ 𝑊(0) = √
4𝜋

𝑆
𝑤, such a wavepacket has a finite transition dipole 

given by the interference of those 𝐃𝐐 at the three corners 𝐐0, �̂�3𝐐0 and �̂�3
2𝐐0.  

 

 

 
fig. S5. The real-space form of an interlayer exciton wave packet  , with width w b , corresponds to a Q-

space distribution covering all the three main light cones (bright spots). 

 

The phases in  Eq. (S10) can be expressed as  

 

𝐐0 ∙ 𝐑 + 𝐊′ ∙ 𝐫0(0) = (𝐊′ − 𝐊) ∙ (𝑙𝐚1 + 𝑛𝐚2) + 𝐊′ ∙ 𝐫0(0) 

= 𝐊′ ∙ ((𝑙𝐚1 + 𝑛𝐚2) − (𝑙𝐚1
′ + 𝑛𝐚2

′ )) + 𝐊′ ∙ 𝐫0(0) = 𝐊′ ∙ 𝐫0(𝐑) 

 

where the last step has used Eq. (S1). Similarly �̂�3𝐐0 ∙ 𝐑 + �̂�3𝐊′ ∙ 𝐫0(0) = �̂�3𝐊′ ∙ 𝐫0(𝐑) and 

�̂�3
2𝐐0 ∙ 𝐑 + �̂�3

2𝐊′ ∙ 𝐫0(0) = �̂�3
2𝐊′ ∙ 𝐫0(𝐑). So the transition dipole of the wavepacket is 

exclusively determined by 𝐫0(𝐑), the interlayer translation at the wavepacket center 

 

𝓓(𝐑) ≈ 𝑒𝑖𝐐0∙𝐑√
4𝜋

𝑆
𝑤 [(𝑒−𝑖𝐊′∙𝐫0(𝐑) + 𝑒−𝑖�̂�3𝐊′∙𝐫0(𝐑) + 𝑒−𝑖�̂�3

2𝐊′∙𝐫0(𝐑))
𝐷+(𝑑)

3
𝐞+

+ (𝑒−𝑖𝐊′∙𝐫0(𝐑) + 𝑒−𝑖[�̂�3𝐊′∙𝐫0(𝐑)+2𝜋
3

] + 𝑒−𝑖[�̂�3
2𝐊′∙𝐫0(𝐑)+4𝜋

3
])

𝐷−(𝑑)

3
𝐞−]     (S11) 

 

This equation is analogous to the transition dipole in a lattice-matched heterobilayer (Eq. (S4)), 

except that the constant interlayer translation vector 𝐫0 there is now replaced by the location-

dependent local value 𝐫0(𝐑) in the moiré. Eq. (S11) shows that the optical properties of the 

exciton wavepacket is determined by the local atomic registry within the wavepacket extension, 

thus vary continuously with the central position 𝐑 of the wavepacket, as shown in main text Fig. 



2 for the R-type MoS2/WSe2 moiré. The symmetry dictated results in Eq. (S8) are well 

reproduced. At a general local in the moiré where the local interlayer registry no longer observes 

the �̂�3 symmetry, the photon emission is of the general elliptical polarization. In fig. S6, the 

results in H-type MoS2/WSe2 moiré are also given, which show similar nano-patterned optical 

properties. 

 

 
fig. S6. Nanopatterned spin optics of moiré excitons in an H-type MoS2/WSe2 moiré pattern. (a) Left: Oscillator 

strength of interlayer exciton wavepackets in a near H-type MoS2/WSe2 moiré pattern. Right: Optical selection rule for 

interlayer exciton wavepackets with the hole in 𝐊’ valley and electron in −𝐊 valley. (b) From up to down: superlattice 

potential for −𝐊 valley intralayer excitons in MoS2, 𝐊′ valley intralayer excitons in WSe2, and interlayer excitons with 

the hole in 𝐊′ valley and electron in −𝐊 valley. The optical selection rules for intralayer and interlayer exciton 

wavepackets centered at A, B and C are also shown. 

 

(4) Radiative lifetime of an interlayer exciton in the nanodots confinement at A & B 

The radiative lifetime of an intralayer exciton wavepacket in monolayer TMDs has been derived 

in Ref. (49). Here we use the same approach to estimate the radiative lifetime of an interlayer 

exciton wavepacket. For the wavepacket located at 𝐑, its radiative lifetime 𝒯(𝐑) is given by 

 

𝒯(𝐑) ≈
𝜏𝐑(𝐤 = 0)

(𝑤𝜔 𝑐⁄ )2
 

 



Here ℏ𝜔~1 eV (~1.4 eV) is the emitted photon energy in heterobilayer MoS2/WSe2 (26) 

(MoSe2/WSe2 (16) ). 𝜏𝐑(𝐤 = 0) is the radiative lifetime of an interlayer exciton at zero COM 

wave vector in a lattice-matched heterobilayer (𝐐0 = 0) of the corresponding interlayer distance 

𝑑 and interlayer translation 𝐫0. 

 

Note that the emission rate (𝜏𝐑(𝐤 = 0))
−1

 is proportional to the square of the interlayer exciton 

transition dipole |𝐃𝐤=0|2, thus 
𝜏𝐑(𝐤=0)

𝜏intra
= (

𝐷intra

|𝐃𝐤=0|
)

2
 where 𝜏intra is the radiative lifetime of the 

intralayer exciton in the light cone and 𝐷intra is the corresponding transition dipole strength. The 

various literatures have consistently suggested a sub-picosecond 𝜏intra in monolayer TMDs, and 

here we take 𝜏intra~0.15 ps as measured in Ref. (50). 
|𝐃𝐤=0|

𝐷intra
≈

|𝐩cv|

𝑝Mo
 has been given in fig. S4, and 

the calculated values are consistent with the observation that interlayer exciton oscillator strength 

is two to three orders of magnitude smaller than that of the intralayer exciton (51). 

 

For the interlayer exciton in the ground state of the nanodot confinement at A or B, we estimate 

the wavepacket extension 𝑤 ≈ 0.3𝑏 (35). For a moiré superlattice with period 𝑏 = 15 nm, the 

estimated lifetime 𝒯 at A and B sites is given in table S3. With the change of 𝑏, the lifetime 

scales as 𝒯(𝐑) ∝ 𝑏−2. 

 

table S3. The estimated radiative lifetimes for the interlayer exciton wave packets at A or B site in different 

heterobilayers with b = 15 nm. 

 R-MoS2/WSe2 H-MoS2/WSe2 R-MoSe2/WSe2 H-MoSe2/WSe2 

A 80 ns 20 ns 3 ns 30 ns 

B 20 ns 20 ns 5 ns 1 ns 

 

 

section S3. Complex hopping of the interlayer excitons in the moiré 

In the main text we have obtained the phase of the hopping amplitude between two wavepackets 

centered at A and B sites, respectively, based on the �̂�3 quantum number of the exciton 

wavepacket dictated by the local atomic registry (Eq. (S8)). Here we derive the complex hopping 

between two general locations in the moiré. 

 

Under envelope approximation for the electron and hole Bloch functions 𝜓𝐤,c(𝐫e) ≈

𝑒𝑖(𝐊+𝐤)∙𝐫e𝑢𝐤=0,c(𝐫e), 𝜓𝐤′,v(𝐫h) ≈ 𝑒𝑖(𝐊′+𝐤′)∙𝐫h𝑢𝐤′=0,v(𝐫h), the exciton momentum eigenstate in 

Eq. (S6) becomes 

 

𝑋𝐐(𝐫e, 𝐫h) ≈ 𝑒𝑖𝐐∙𝐑𝑋𝑒𝑖(𝐊−𝐊′)∙𝐑𝑋Φ(𝐫eh)𝑢𝐤=0,c(𝐫e)𝑢𝐤′=0,v
∗ (𝐫h)            (S12) 

 



where Φ(𝐫eh) ≡ ∑ Φ(∆𝐐)𝑒
𝑖(∆𝐐+

𝑚h
𝑀0

𝐊+
𝑚e
𝑀0

𝐊′)∙𝐫eh
∆𝐐  is the envelope function for the electron-hole 

relative motion (in the ground state of relative motion only), and 𝐫eh ≡ 𝐫e − 𝐫h is the electron-

hole relative coordinate. The exciton wavepacket in Eq. (S7) can then be written as 

 

𝒳𝐑(𝐫e, 𝐫h) ≈ 𝑒𝑖(𝐊−𝐊′)∙(𝐑𝑋−𝐑)𝑊(𝐑𝑋 − 𝐑)Φ(𝐫eh)𝑢𝐤=0,c(𝐫e)𝑢𝐤′=0,v
∗ (𝐫h)           (S13) 

 

where 𝑊(𝐑𝑋 − 𝐑) =
1

𝑤√𝜋
𝑒−(𝐑𝑋−𝐑)2 2𝑤2⁄ . The hopping integral of a wavepacket from site 𝐑1 to 

𝐑2 is then 

 

𝑡(𝐑2 − 𝐑1) ≡ ∫ 𝒳𝐑2

∗ (𝐫e, 𝐫h)�̂�𝑇𝒳𝐑1
(𝐫e, 𝐫h)𝑑𝐫e𝑑𝐫h                                                         (S14) 

≅ 𝑒𝑖(𝐊−𝐊′)∙(𝐑2−𝐑1) ∫ 𝑊∗(𝐑𝑋 − 𝐑2)�̂�𝑇𝑊(𝐑𝑋 − 𝐑1)𝑑𝐑𝑋 ∫|Φ(𝐫eh)|2𝑑𝐫eh 

 

where �̂�𝑇 is the Hamiltonian for the exciton COM motion in the superlattice potential. In the last 

step of Eq. (S14), we have separated out the fast oscillating component 𝑢c(𝐫e)𝑢v
∗(𝐫h) from the 

exciton envelope function that is varying in the much larger length scale of exciton Bohr radius 

and wavepacket width w. 

 

Since ∫ 𝑊∗(𝐑𝑋 − 𝐑2)�̂�𝑇𝑊(𝐑𝑋 − 𝐑1)𝑑𝐑𝑋 is real, the hopping integral 𝑡(𝐑2 − 𝐑1) has the 

phase factor of 𝑒𝑖(𝐊−𝐊′)∙(𝐑2−𝐑1). This result is fully consistent with the symmetry dictated phases 

of the nearest-neighbor (third nearest-neighbor) hopping between A and B sites (c.f. main text Eq. 

(3) and Fig. 4(a)). In the nearest-neighbor (third nearest-neighbor) hopping, the displacement 

vector 𝐑2 − 𝐑1 equals 𝐝0 ≡ 𝑏

√3
(1,0), �̂�3𝐝0 or �̂�3

2𝐝0 (𝐝2 ≡ 2𝑏

√3
(−1,0), �̂�3𝐝2 or �̂�3

2𝐝2), so the 

hopping phase factors are then 𝑒𝑖(𝐊−𝐊′)∙𝐝0 2⁄ = 1, 𝑒𝑖(𝐊−𝐊′)∙�̂�3𝐝0 2⁄ = 𝑒−𝑖4𝜋 3⁄  or 𝑒𝑖(𝐊−𝐊′)∙�̂�3
2𝐝0 2⁄ =

𝑒𝑖4𝜋 3⁄ . Note that 𝐊 − 𝐊′ = 4𝜋

3𝑏
(0,1) in main text Fig. 4(a). For next nearest-neighbor hoppings 

which are between two A sites (or two B sites), 𝐑2 − 𝐑1 equals 𝐝1 ≡ 𝑏(0,1), �̂�3𝐝1 or �̂�3
2𝐝1 (see 

main text Fig. 4(a)), the hopping phase factors are 𝑒𝑖(𝐊−𝐊′)∙𝐝1 = 𝑒𝑖(𝐊−𝐊′)∙�̂�3𝐝1 = 𝑒𝑖(𝐊−𝐊′)∙�̂�3
2𝐝1 =

𝑒𝑖4𝜋 3⁄ . 

 

section S4. Exciton bands in superlattice potential: Exact solution and tight-binding 

model 

Using Eqs. (S2) and (S3), the superlattice potential 𝑉(𝐑) = 𝐸𝑔(𝐫0(𝐑)) + 𝑒ℰ𝑑(𝐫0(𝐑)) − 𝐸𝑏 for 

the interlayer excitons in the moiré can be expressed as 



𝑉(𝐑) = (𝐸𝑔,0 + 𝑒ℰ𝑑0 − 𝐸𝑏) + (∆𝐸𝑔,1 + 𝑒ℰ∆𝑑1)|𝑓0(𝐫0(𝐑))|
2

+ (∆𝐸𝑔,2 + 𝑒ℰ∆𝑑2)|𝑓+(𝐫0(𝐑))|
2
 

= 𝐸𝑋(ℰ) + ∑(𝑉(ℰ)𝑒𝑖𝐠𝑛∙𝐑 + 𝑉∗(ℰ)𝑒−𝑖𝐠𝑛∙𝐑)

3

𝑛=1

 

Here 𝑉(ℰ) ≡
∆𝐸𝑔,1+𝑒ℰ∆𝑑1

9
+

∆𝐸𝑔,2+𝑒ℰ∆𝑑2

9
𝑒𝑖2𝜋 3⁄ , 𝐸𝑋(ℰ) ≡ 𝐸𝑔,0 + 𝑒ℰ𝑑0 − 𝐸𝑏 +

∆𝐸𝑔,1+𝑒ℰ∆𝑑1+∆𝐸𝑔,2+𝑒ℰ∆𝑑2

3
 

and 𝐠1,2,3 are the three reciprocal lattice vectors of the moiré pattern as shown in fig. S7(a).  

The basis of momentum eigenstates in Eq. (S6) can be expressed in terms of the COM coordinate 

𝐑 and relative coordinate 𝐫eh: 𝑋𝐐(𝐫e, 𝐫h) = 𝑒𝑖(𝐐+𝐊−𝐊′)∙𝐑𝑈𝐐(𝐑, 𝐫eh), where  

 

𝑈𝐐(𝐑, 𝐫eh) ≡ ∑ 𝑒
𝑖(∆𝐐+

𝑚h
𝑀0

𝐊+
𝑚e
𝑀0

𝐊′)∙𝐫ehΦ(∆𝐐)𝑢𝑚e
𝑀0

𝐐+∆𝐐,c (𝐑 +
𝑚h

𝑀0
𝐫eh) 𝑢

−
𝑚h
𝑀0

𝐐+∆𝐐,v
∗ (𝐑 −

𝑚e

𝑀0
𝐫eh)

∆𝐐

 

 

is a periodic function of 𝐑 with the periodicity of moiré pattern, i.e., 𝑈𝐐(𝐑 + 𝐁𝑚, 𝐫eh) =

𝑈𝐐(𝐑, 𝐫eh) with 𝐁𝑚 the lattice vector of the moiré superlattice. For excitons with low kinetic 

energies (|𝐐| ≪ |𝐊|), we can use the envelope approximation 𝑢𝑚e
𝑀0

𝐐+∆𝐐,c ≈ 𝑢∆𝐐,c and 

𝑢−
𝑚h
𝑀0

𝐐+∆𝐐,v ≈ 𝑢∆𝐐,v which imply that 𝑈𝐐 ≈ 𝑈𝐐=0. 

 

The matrix element of 𝑉(𝐑) is 

 

〈𝑋𝐐′|𝑉(𝐑)|𝑋𝐐〉 = 𝐸𝑋(ℰ) (∑ 𝑒𝑖(𝐐−𝐐′)∙𝐁𝑚

𝑚

) ∫ 𝑈𝐐′
∗ (𝐑, 𝐫eh)𝑒𝑖(𝐐−𝐐′)∙𝐑𝑈𝐐(𝐑, 𝐫eh)𝑑𝐑𝑑𝐫eh

 

𝑆𝐶

 

+𝑉(ℰ) ∑ (∑ 𝑒𝑖(𝐠𝑛+𝐐−𝐐′)∙𝐁𝑚

𝑚

) ∫ 𝑈𝐐′
∗ (𝐑, 𝐫eh)𝑒𝑖(𝐠𝑛+𝐐−𝐐′)∙𝐑𝑈𝐐(𝐑, 𝐫eh)𝑑𝐑𝑑𝐫eh

 

𝑆𝐶

3

𝑛=1

 

+𝑉∗(ℰ) ∑ (∑ 𝑒𝑖(𝐐−𝐐′−𝐠𝑛)∙𝐁𝑚

𝑚

) ∫ 𝑈𝐐′
∗ (𝐑, 𝐫eh)𝑒𝑖(𝐐−𝐐′−𝐠𝑛)∙𝐑𝑈𝐐(𝐑, 𝐫eh)𝑑𝐑𝑑𝐫eh

 

𝑆𝐶

3

𝑛=1

 

 

where the integration ∫ (⋯ )𝑑𝐑
 

𝑆𝐶
 is restricted in a moiré supercell. Clearly, ∑ 𝑒𝑖𝐤∙𝐁𝑚

𝑚  is nonzero 

only when 𝐤 = 𝐠𝑙 with 𝐠𝑙 a general reciprocal lattice vector of the moiré superlattice. Meanwhile 

for small values of |𝐐|, |𝐐′|, |𝐠𝑙| ≪ |𝐊| we are interested, one can use the envelope 

approximation 𝑈𝐐′ ≈ 𝑈𝐐=0 ≈ 𝑈𝐐−𝐠𝑙
 which leads to 

 



(∑ 𝑒𝑖𝐠𝑙∙𝐁𝑚

𝑚

) ∫ 𝑈𝐐′
∗ (𝐑, 𝐫eh)𝑒𝑖𝐠𝑙∙𝐑𝑈𝐐(𝐑, 𝐫eh)𝑑𝐑𝑑𝐫eh

 

𝑆𝐶

 

= ∫ 𝑈𝐐′
∗ (𝐑, 𝐫eh)𝑒𝑖𝐠𝑙∙𝐑𝑈𝐐(𝐑, 𝐫eh)𝑑𝐑𝑑𝐫eh 

= ∫ (𝑒𝑖(𝐐−𝐠𝑙+𝐊−𝐊′)∙𝐑𝑈𝐐′(𝐑, 𝐫eh))
∗

(𝑒𝑖(𝐐+𝐊−𝐊′)∙𝐑𝑈𝐐(𝐑, 𝐫eh)) 𝑑𝐑𝑑𝐫eh 

≈ ∫ 𝑋𝐐−𝐠𝑙

∗ (𝐫e, 𝐫h)𝑋𝐐(𝐫e, 𝐫h)𝑑𝐫e𝑑𝐫h = 𝛿0,𝐠𝑙
 

 

The above last step comes from the orthonormality of the momentum eigenstates. So 

〈𝑋𝐐′|𝑉(𝐑)|𝑋𝐐〉 ≈ 𝐸𝑋(ℰ)𝛿𝐐,𝐐′ + ∑ (𝑉(ℰ)𝛿𝐠𝑛+𝐐,𝐐′ + 𝑉∗(ℰ)𝛿−𝐠𝑛+𝐐,𝐐′)3
𝑛=1  

 

Therefore, under this basis of momentum eigenstates, the Hamiltonian �̂�𝑇 for the exciton COM 

motion consists of the diagonal Stark shift and kinetic energy term 𝐸𝑋(ℰ) +
ℏ2|𝐐|2

2𝑀0
, and the off-

diagonal terms due to the superlattice potential 𝑉(𝐑). Write 𝐐 = 𝐠𝑙 + 𝐪, where 𝐠𝑙 is a general 

reciprocal lattice vector of the moiré superlattice, and 𝐪 is a wave vector within the hexagonal 

moiré-BZ, we have �̂�𝑇 = ∑ �̂�𝐪𝐪 , where 

 

�̂�𝐪 = ∑ [(𝐸𝑋(ℰ) +
ℏ2|𝐠𝑙+𝐪|2

2𝑀0
) |𝐠𝑙 + 𝐪⟩⟨𝐠𝑙 + 𝐪| + ∑ (𝑉(ℰ)|𝐠𝑙 + 𝐠𝑛 + 𝐪⟩⟨𝐠𝑙 + 𝐪| + ℎ. 𝑐. )

𝑛=1,2,3

]

𝑙

 

 

The exciton dispersion can then be numerically solved by dropping those 𝐠𝑙 with large magnitude 

that exceed some cutoff value (|𝐠𝑙| > 𝑔max). For 𝑏 < 20 nm, we find the low energy bands 

converge well for a cutoff value 𝑔max =
16𝜋

√3𝑏
. The several lowest exciton bands of a 𝑏 = 10 nm 

moiré superlattice is shown in Fig. 4(c) in the main text. 

 

On the other hand, one can also describe the two lowest exciton bands with an effective tight-

binding model following the standard approach in optical lattices (35). In a honeycomb optical 

lattices with same potential profile as 𝑉(𝐑), Ref. (35) has shown that it is sufficient to keep up to 

third nearest-neighbor hopping terms. The difference here lies in the complex hopping phases 

which have already been fully determined as discussed in Section III above, while the magnitudes 

of the hopping strengths 𝑡0,1,2 ≡ |𝑡(𝐝0,1,2)| can be obtained by fitting the numerical results 



(shown as the symbols in fig. S7(b)). Ref. (35) has also given the following fitting forms for the 

hopping strength 

 

𝑡0 ≈ 1.16𝐸𝑅 (
𝑉

𝐸𝑅
)

0.95
exp [−1.634√

𝑉

𝐸𝑅
] , 

𝑡1 ≈ 0.78𝐸𝑅 (
𝑉

𝐸𝑅
)

1.85
exp [−3.404√

𝑉

𝐸𝑅
],                    (S15) 

𝑡2 ≈ 1.81𝐸𝑅 (
𝑉

𝐸𝑅
)

2.75
exp [−5.196√

𝑉

𝐸𝑅
] 

 

Here 𝐸𝑅 =
ℏ2

2𝑀0
(

4𝜋

3𝑏
)

2
 is the recoil energy, 𝑉 ≈ 10 meV is the barrier height. 𝑡0,1,2 as functions of 

𝑏 from Eq. (S15) are shown as curves in Fig. 3(f) in the main text and fig. S7(b). By comparing 

with the fitting of the exact exciton bands, we can see that for 𝑉 𝐸𝑅⁄ > 3, Eq. (S15) agree well 

with those from fitting the numerical results, but they underestimate the magnitudes of 𝑡0,1,2 for 

smaller 𝑉 𝐸𝑅⁄ . 

 

 

fig. S7. The six reciprocal lattice vectors in the Fourier components of the excitonic potential, and the obtained 

hopping magnitudes t0,1,2 as functions of the moiré period b or V/ER. (a) The Fourier components of the excitonic 

potential correspond to six reciprocal lattice vectors ±𝐠𝑛 (n=1,2,3). The dashed hexagon is the moiré superlattice BZ. 

(b) The obtained magnitudes of 𝑡0,1,2 as functions of the moiré period b or V/ER. The symbols are the fits to the 

numerical results under ℰ = ℰ0, while the curves are the asymptotic forms Eqs. (S15). For b~10 nm or smaller, Eqs. 

(S15) underestimate 𝑡0,1,2. 

  



section S5. Exciton-exciton interactions in the superlattices 

We now consider the on-site Coulomb interaction �̂�𝐶 between two exciton wavepackets located in 

the same nanodot (e.g., at A) 

 

𝑈 = ⟨𝒳𝒳|�̂�𝐶|𝒳𝒳⟩ 

= ∑ 𝑒𝑖(𝐐3+𝐐4−𝐐1−𝐐2)∙𝐑𝑊(𝐐3)𝑊(𝐐4)𝑊(𝐐1)𝑊(𝐐2)⟨𝑋𝐐3
𝑋𝐐4

|�̂�𝐶|𝑋𝐐1
𝑋𝐐2

⟩

𝐐1𝐐2𝐐3𝐐4

 

 

Here ⟨𝑋𝐐3
𝑋𝐐4

|�̂�𝐶|𝑋𝐐1
𝑋𝐐2

⟩ is the Coulomb matrix element between momentum eigenstates, 

which has been thoroughly investigated for spatially direct and indirect excitons in early papers 

(52-55). It is shown that for |𝐐1,2,3,4| ≲ 𝑤−1 ≪ 𝑎𝐵
−1, ⟨𝑋𝐐3

𝑋𝐐4
|�̂�𝐶|𝑋𝐐1

𝑋𝐐2
⟩ ≈

𝛿𝐐1+𝐐2,𝐐3+𝐐4

𝑎𝐵
2

𝑆
𝑉𝐶,where 𝑎𝐵 is the exciton Bohr radius and 𝑆 the box normalization area. 𝑉𝐶 is a 

constant with two contributions (52-55): (i) 𝑉ex, from the exchange interaction between excitons 

with the same spin indices only, and (ii) 𝑉dd, from the dipole-dipole interaction independent of 

the spin indices. Following (17, 56), we estimate that 𝑉ex~𝐸𝑏 and 𝑉dd~
𝑑

𝑎𝐵
𝐸𝑏. So 

 

𝑈ex/dd = 𝑉ex/dd
𝑎𝐵

2

𝑆
(

4𝜋

𝑆
)

2
𝑤4 ∑ 𝑒−

𝑤2

2 (𝐐1
2+𝐐2

2+𝐐3
2+(𝐐1+𝐐2−𝐐3)2)

𝐐1𝐐2𝐐3

=
1

2𝜋
(

𝑎𝐵

𝑤
)

2
𝑉ex/dd         (S16) 

 

In the last step we have converted the summation into integral: ∑ (… )𝐐 = 𝑆

(2𝜋)2 ∫(… )𝑑𝐐. Using 

the parameters d = 0.6 nm, aB = 2 nm, w = 0.3b, Eb = 0.2 eV, we estimate 𝑈ex =

1

2𝜋
(𝑎𝐵

𝑤
)

2
𝑉ex~14 meV and 𝑈dd = 1

2𝜋
(𝑎𝐵

𝑤
)

2
𝑉dd~4 meV for b = 10 nm. With the change of b, we 

have 𝑈ex~(10 nm

𝑏
)

2
× 14 meV and 𝑈dd~(10 nm

𝑏
)

2
× 4 meV. 


