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1. Appendix: Large sample properties

Let µ(L; θ) = E(G|L; θ) be the conditional mean of the instrument given observed con-

founders L, which is function of an unknown finite-dimensional parameter θ. In the case

of no observed confounders µ(θ) = θ = E(G) and θ̂ = G. We assume that n1/2(θ̂ − θ) =

n−1/2
∑

i ε
θ
i + op(1), where the εθi ’s are zero-mean iid variables. In the case of no observed

confounders we have εθi = Gi − θ. Let θ0 denote the true value of θ.

We write ‖g‖∞ = supt∈[0,τ ] |g(t)| and use the notation V(g) to denote the total variation of

g over the interval [0, τ ]. Let B◦(t) denote the true value of B(t), and let M◦ = ‖B◦‖∞ <∞.

Technical conditions:

(i) We assume that X and G are bounded, and denote the respective bounds by Xmax and

Gmax.

(ii) Define a(s, h) = E[R(s)XGcehX ]. We assume that there exist M > M◦ and ν > 0 such

that infs∈[0,τ ],h∈[−M,M ] a(s, h) > 1.01ν.

The quantities M◦ and M do not necessarily need to be known.

1.1 Consistency

Below we show that B̂X(t, θ0) is uniformly consistent. In what follows we suppress θ0 from the

notation and write B(t) instead of BX(t). The estimator is given by the recursion equation

B̂n(t) =

∫ t

0

∑
iG

c
ie
B̂n(s−)XidNi(s)∑

iRi(s)XiGc
ie
B̂n(s−)Xi

(1)

It appears difficult to prove directly that B̂n(t) is bounded. Instead we will take a different

approach. We will modify the estimator in a way that will force it to be of bounded variation.

We will then prove that the modified version of the estimator is consistent. If M is not known,

the modified estimator is a theoretical construct that cannot actually be computed, but it will

emerge that for large enough n the modified estimator is equal to the unmodified estimator.

We will use the Helly Selection Theorem in the following form.
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Helly Selection Theorem: Let {fn} be a sequence of functions on [0, τ ] such that ‖fn‖∞ 6 A1

and V(f) 6 A2, where A1 and A2 are finite constants. Then

a. There exists a subsequence {fnj
} of {fn} which converges pointwise to some

function f .

b. If f is continuous, the convergence is uniform.

Then it follows that ‖B̂n −B◦‖∞
a.s.→0.

Proof: For a function H(t) on [0, τ ], define

Υn(H, t) =

∫ t

0

n−1
∑

iG
c
ie
H(s−)XidNi(s)

A(s,H(s−))
(2)

Υ(H, t) =

∫ t

0

c(s,H(s))

a(s,H(s))
ds (3)

where

A(s, h) =
1

n

n∑
i=1

Ri(s)XiG
c
ie
hXi (4)

c(s, h) = E[R(s)GcehXλ(s, L,G,X)] (5)

with λ(s, L,G,X) = (d/ds)E[N(s)|L,G,X], so that E[R(s)GcehXdN(s)] = c(s, h)ds. The

estimator B̂n(t) is then the solution to B(t) = Υn(B, t). Let ξ(y) = sgn(y) min(|y|,M). We

then define the modified estimator B̃n to be the solution to the equation B(t) = Υn(ξ(B), t).

Note that Υ(ξ(B◦), t) = Υ(B◦, t) = B◦(t).

Define q(s, h) = c(s, ξ(h))/a(s, ξ(h)), so that

Υ(ξ(H), t) =

∫ t

0

q(s,H(s))ds

The function q(s, h) satisfies sups∈[0,τ ],h∈R |q(s, h)| 6 2Gmaxe
MXmaxλmaxν

−1, where λmax is an

upper bound on λ(s, L,G,X) (which we assume exists). Moreover, q(s, h) is Lipschitz with

respect to h over s ∈ [0, τ ] and h ∈ R with Lipschitz constant κ = 2Gmaxe
MXmaxλmaxν

−1(1+

XmaxGmaxe
MXmaxν−1). Accordingly, by classical differential equations theory (Hartman, 1973,

Thm. 1.1; Coddington, 1989, Sec. 5.8), B◦ is the unique solution to the equation B(t) =

Υ(ξ(B), t) subject to B(0) = 0.
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We note for later reference that for any two functions B1 and B2 we have

‖Υ(ξ(B1))−Υ(ξ(B2))‖∞ 6 κτ‖B1 −B2‖∞ (6)

Now, by the functional central limit theorem as given in Andersen and Gill (1982),

sup
s∈[0,τ ],h∈[−M,M ]

|A(s, h)− a(s, h)| a.s.→ 0 (7)

Accordingly, from the the assumption that infs∈[0,τ ],h∈[−M,M ] a(s, h) > 1.01ν, we get the

result that infs∈[0,τ ],h∈[−M,M ]A(s, h) > ν for n sufficiently large. We thus find that the jumps

in B̃n(t) are bounded by n−1D with D = 2Gmaxe
MXmax/ν, implying that ‖B̃n‖∞ 6 D and

V(B̃n) 6 D. Let B∗ denote the class of functions B(t) with these two properties. Further,

let H denote the class of functions that are bounded by M̃ = min(M,D) and have total

variation less than D. Since |ξ(y)| 6 |y| and ξ is Lipschitz(1), we find that B ∈ B∗ implies

that ξ(B) ∈ H.

Next, define

Υ̃n(H, t) =

∫ t

0

n−1
∑

iG
c
ie
H(s−)XidNi(s)

a(s,H(s−))
(8)

From (7) it follows that

sup
s∈[0,τ ],H∈H

|Υn(H, s)− Υ̃n(H, s)|a.s.→0 (9)

For U = (T, δ,X, L,G), define

ψH,t(U) =
δGceH(T−)X

a(T,H(T−))
(10)

We then have Υ̃n(H, t) = PnψH,t. We claim that the class of functions F = {ψH,t, H ∈ H, t ∈

[0, τ ]} is Donsker. This result is an immediate consequence of the following facts:

1. Sums and products of bounded Donsker classes are also Donsker.

2. For any finite K, the class of monotone functions mapping [0, τ ] to [−K,K] is

Donsker (Kosorok, 2008, Thm. 9.24).

3. If H is bounded and has bounded variation, then H can be written as H =

H1−H2, where H1 and H2 are monotone increasing functions with ‖H1‖∞ 6 ‖H‖∞+V(H)
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and ‖H2‖∞ 6 V(H) (Jordan decomposition). It follows that the class of functions H with

‖H‖∞ 6 C1 and V(H) 6 C2 is Donsker.

4. If H ∈ H, then the function g(t) = a(t,H(t−)) = E[R(t)XGceH(t−)X ] is bounded

and of bounded variation with ‖g‖∞ 6 2Gmaxe
M̃Xmax and

V(g) 6 2XmaxGmaxe
M̃Xmax(V(r) + V(H)),

where r(s) = E[R(s)].

It follows that

sup
t∈[0,τ ],H∈H

|Υ̃n(H, t)−Υ(H, t)|a.s.→0 (11)

and therefore

sup
t∈[0,τ ],H∈H

|Υn(H, t)−Υ(H, t)|a.s.→0 (12)

Now, by Helly’s selection theorem, every subsequence of B̃n(t) has a further subsequence

that converges to some limit. Since the jumps B̃n(t) are bounded by n−1D and the number

of jumps in the interval [t1, t2] divided by n converges uniformly to E[N(t2)] − E[N(t1)] 6

C(t2− t1) for some constant C, it follows that the limit of the sub-subsequence is continuous,

and therefore (by the second part of Helly’s theorem) the convergence of the sub-subsequence

is uniform. Going further, the fact that B̃n = Υn(ξ(B̃n)) in combination with (6) and

(12) implies that the limit B of the sub-subsequence satisfies B = Υ(ξ(B)). But we said

before that B◦ is the unique continuous solution to this equation. We thus find that every

subsequence of B̃n has a further subsequence that converges uniformly to B◦. Consequently,

B̃n itself converges uniformly to B◦. Since B◦ 6 M◦ and ‖B̃n − B◦‖∞
a.s.→0 (as just stated),

for sufficiently large n we have ‖B̃n‖∞ 6M◦ + 1
2
(M −M◦) and therefore ξ(B̃n(t)) = B̃n(t).

So for n sufficiently large, B̃n solves B = Υn(B), or, in other words B̃n = B̂n. We have thus

shown that ‖B̂n −B◦‖∞
a.s.→0, as desired.

The consistency of B̂X(t, θ̂) then follows immediately by a Taylor series expansion since θ̂

is consistent.
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1.2 Asymptotic normality

Let N(t) = {N1(t), . . . Nn(t)}T and X = (X1, . . . , Xn). For known θ we can write

B̂X(t, θ) =

∫ t

0

Hθ{s, B̂X(s−, θ)}dN(s),

where the kth element of the n-vector Hθ{t, B̂X(t−, θ)} is

{Gk − µ(Lk; θ)}eB̂X(t−,θ)Xk/
n∑
i=1

{Gi − µ(Li; θ)}Ri(t)e
B̂X(t−,θ)XiXi.

Let V (t, θ) = n1/2{B̂X(t, θ) − BX(t)} and let Ḣ denote the derivative of H with respect to

its second argument. It is then easy to see that

V (t, θ) =n1/2

∫ t

0

H(s, BX(s−)) [dN(s)−XdBX(s)]

+

∫ t

0

V (s−, θ){1 + op(1)}Ḣ(s, BX(s−))dN(s)

which is a Volterra-equation, see Andersen et al. (1993), p. 91. The solution to this equation

is given by

V (t, θ) =

∫ t

0

F(s, t)n1/2H(s, BX(s−)) [dN(s)−XdBX(s)] + op(1),

where

F(s, t) =
∏
(s,t]

{
1 + Ḣ(·, BX(·))dN(·)

}
with the latter being a product integral that converges in probability to some limit. This

leads to the iid-representation

V (t, θ) = n−1/2
n∑
i=1

εBi (t)

with the εBi (t)’s being zero-mean iid terms. Specifically

εBi (t) =

∫ t

0

F(s, t)n1/2{H(s, BX(s−))}i [dN(s)−XdBX(s)]i

with ai being the ith element of the vector a. This together with

n1/2{B̂X(t, θ̂)−BX(t)} = n1/2{B̂X(t, θ)−BX(t)}+ n1/2{B̂X(t, θ̂)− B̂X(t, θ)}

= n1/2{B̂X(t, θ)−BX(t)}+Dθ(B̂X(t, θ))|θ̂n
1/2(θ̂ − θ) + op(1),
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where Dθ{B̂X(t, θ)} is the first order derivative of B̂X(t, θ) w.r.t. θ gives an iid-decomposition

of n1/2{B̂X(t, θ̂)−BX(t)}:

n1/2{B̂X(t, θ̂)−BX(t)} = n−1/2
n∑
i=1

εBi (t, θ) + op(1),

where

εBi (t, θ) = εBi (t) +Dθ(B̂X(t, θ))|θε
θ
i . (13)

We now argue that the process V (t, θ) converges in distribution as a process using arguments

similar to what is done in Lin et al. (2000. p. 726). By taking the log to equation (4) in the

main paper it is seen that BX(t) can be written as a difference of two monotone functions

. Let H̃i(s) be the limit in probability of F(s, t)Hi(s, BX(s−)). Now, split H̃i(s) into its

positive and negative parts, H̃+
i (s) and H̃−i (s), and similarly with Xi, X

+
i and X−i . Then∫ t

0
H̃i(s)[dNi(s)−XidBX(s)] can be written as a difference of two monotone functions, and

then we follow the arguments of Lin et al. (2000) (or use example 2.11.16 of van der Vaart

and Wellner, 1996). Convergence in distribution for the process V (t, θ̂) also holds using the

above Taylor expansion. It thus follows that

n1/2{B̂X(t, θ̂)−BX(t)}

converges to a zero-mean Gaussian process with a variance that is consistently estimated by

n−1
n∑
i=1

ε̂Bi (t, θ̂)2.

The derivative Dθ(B̂X(t, θ))|θ̂ can be calculated recursively as B̂X(t, θ̂) is constant between

the observed death times. Denote the jump times by τ1, . . . , τm. Hence

B̂X(τj, θ) = B̂X(τj−1, θ) + dB̂X(τj, θ)

which then also holds for the derivative. Since B̂X(0, θ) = 0 and the derivative of the

increment in the first jump time, dB̂X(τ1, θ), is easily calculated we then have a recursive

way of calculating the derivatives of B̂X(·, θ).
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2. Additional simulation results

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

3. Application to the HIP trial on effectiveness of screening on breast cancer

mortality: additional results

[Table 4 about here.]

[Figure 1 about here.]

4. Alternative censoring condition

We assume in this section that the censoring time satisfies the following condition

T̃ ⊥⊥ C|X,G,L and P (C > t|X,G,L) = P (C > t|L) (C)

Recall that

exp {−BX(t)x} =
P (T̃ > t|X = x,G, L)

P (T̃ 0 > t|X = x,G, L)
. (14)

Proposition 1: Assume model (14) with the assumption that G is an instrumental

variable, conditional on L, so that the causal diagram in Figure 1 holds, and further that

the censoring time satisfies condition (C). Then

E
[
{G− E(G|L)} eBX(t)XR(t) {dN(t)− dBX(t)X}

]
= 0, (15)

for each t.

Proof

First note that display (14) implies the following relationship between the conditional hazard

functions λT̃ 0(t|X,G,L) and λT̃ (t|X,G,L):

λT̃ 0(t|X,G,L)dt = λT̃ (t|X,G,L)dt− dBX(t)X.
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It then follows by the independent censoring assumption (C) that

E
[
{G− E(G|L)} eBX(t)XR(t) {dN(t)− dBX(t)X}

]
= E

[
{G− E(G|L)} eBX(t)XI(C > t)R̃(t)λT̃ 0(t|X,G,L)dt

]
= E [P (C > t|L) {G− E(G|L)} fT̃ 0(t|X,G,L)dt]

= −E
[
P (C > t|L) {G− E(G|L)} d

dt
P (T̃ 0 > t|X,G,L)dt

]
= − d

dt
E
[
P (C > t|L) {G− E(G|L)}P (T̃ 0 > t|X,G,L)dt

]
= 0

because, for any function gt(L), we have

E
[
gt(L) {G− E(G|L)}P (T̃ 0 > t|X,G,L)dt

]
= 0

since G ⊥⊥ T̃ 0|L. This completes the proof.

5. R code

In the following we provide R code that simulate data and run the IV-estimation. The naive

analysis is also carried out and both are plotted.

library(Rcpp)

library(survival)

library(timereg)

library(lava)

source("http://192.38.117.59/~tma/Rcode/sim_setup1.R") # Simulate data and contains R-function

# running the IV-estimation

source("http://192.38.117.59/~tma/Rcode/test_IV_function.R") # Contains R-function that also allows covariates L

# X # Exposure

# G # Instrument

# L # Covariates

# time # Time-variable

# status # Status-variable
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length(time)

cbind(time,status,L,G,X)[1:10,] # First 10 lines of data

#Observational analysis (naive analysis):

fit.aalen=aalen(Surv(time,status==1)~X+G+L[,1:dim(L)[2]],max.time=3,n.sim=1000)

summary(fit.aalen)

# Naive estimate is plotted further below along with IV-estimate.

## IV-estimation:

fit.iv=iv_est1(time,status,G,X,L,max.time=3,max.time.bet=2.8,n.sim=1000,G_type=0)

# This runs the IV-analysis. 3 years of follow-up; the constant effect is estimated based on 2.8 years of follow-up

# 1000 resamplings are requested for testing goodness-of-fit of constant effects model.

# G_type gives the type of the instrument; 1 is continuous; 0 is binary

# The conditional mean E(G|L) is fitted using a linear model when G cont, and logistic regression when G binary

summary(fit.iv)

names(fit.iv) # res1 contains various results from the IV-analysis:

# stime: is the ordered event times within (0,max.time)

# B: is the IV-estimator \hat B_X(t)

# se_B: the estimated standard errors of \hat B_X(t)

# pval_0: p-value corresponding to supremum test of the null B_X(t)=0.

# eps_B: is the iid-decomposition of \sqrt{n}(\hat B_X(t) - B_X(t))

# beta: is the IV constant effects estimator \hat \beta_X

# se_beta: the estimated standard error of \hat \beta_X

# pval_beta: p-value corresponding to the null \beta_X=0.

# pval_GOF_sup: p-value corresponding to supremum test of the null that const. effects model is ok.

# pval_GOF_CvM: as pval_GOF_sup but now based on the Cramer Von Mises test statistic

# GOF.resamp: a matrix with first row the ordered jump times in (0,max.time.bet),

# second row the observed test process, and the remaining rows are 50 processes sampled under the null.

## Ploting estimates

par(mfrow=c(1,2))

plot(fit.iv)

lines(fit.aalen$cum[,1],fit.aalen$cum[,3],lty=2,type="s")

# Estimated constant effect is the straight line (true value for this simulation is slope=0.1)

# Iv-estimate is given along with 95% pointwise conf.bands. (full lines)
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# Naive estimate is given as dashed curve.

## GOF for const. eff model

plot(fit.iv,gof=T)
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test_proc_two_const.pdf

Figure 1. HIP-study. Observed goodness-of-fit test process TST (t) (thick curve) along
with 20 resampled processes under the null.
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Table 1
Summary of simulations concerning the constant parameter estimator β̂X . Binary and continuous exposure case.

Bias of β̂X , average estimated standard error, sd(β̂X), empirical standard error, see(β̂X), and coverage probability of

95% pointwise confidence intervals CP(β̂X)) based on the instrumental variables estimator, in function of sample

size n and at different strengths ρ (correlation) of the instrumental variable. Results for the 2SLS estimator β̌X of
Tchetgen et al. (2015) are also given.

Continuous X (n, ρ)
(1600,0.3) (3200,0.3) (800,0.5) (1600,0.5)

Bias β̂X -0.002 -0.004 -0.003 0.001

sd (β̂X) 0.107 0.074 0.082 0.057

see (β̂X) 0.113 0.073 0.084 0.057

95% CP(β̂X) 97.2 95.5 96.1 95.5
Bias β̌X 0.003 -0.001 -0.003 0.001
sd (β̌X) 0.098 0.068 0.075 0.053

Binary X (n, ρ)
(3200,0.3) (6400,0.3) (1600,0.5) (3200,0.5)

Bias β̂X -0.002 -0.004 -0.003 -0.000

sd (β̂X) 0.085 0.061 0.082 0.056

see (β̂X) 0.088 0.062 0.081 0.057

95% CP(β̂X) 96.2 95.4 95.5 95.4
Bias β̌X 0.001 -0.001 -0.001 -0.002
sd (β̌X) 0.072 0.050 0.068 0.048
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Table 2
Continuous exposure case. Time-dependent exposure effect. Bias of B̂X(t), average estimated standard error,

sd(B̂X(t)), empirical standard error, see(B̂X(t))), and coverage probability of 95% pointwise confidence intervals

CP(B̂X(t))) based on the instrumental variables estimator, in function of sample size n and at different strengths ρ
(correlation) of the instrumental variable.

ρ = 0.3 ρ = 0.5
n t = 1 t = 2 t = 3 n t = 1 t = 2 t = 3

Bias B̂X(t) 1600 0.005 0.008 0.001 800 -0.001 0.001 - 0.006

sd (B̂X(t)) 0.136 0.224 0.336 0.108 0.176 0.249

see (B̂X(t)) 0.138 0.228 0.363 0.107 0.176 0.264

95% CP(B̂X(t)) 96.2 96.2 96.5 95.2 96.0 97.1

Bias B̂X(t) 3200 0.003 -0.001 -0.004 1600 0.001 0.005 0.003

sd (B̂X(t)) 0.097 0.156 0.224 0.076 0.122 0.175

see (B̂X(t)) 0.096 0.157 0.230 0.075 0.121 0.173

95% CP(B̂X(t)) 95.1 95.4 96.6 94.8 95.0 95.5
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Table 3
Summary of simulations concerning the constant parameter estimator β̂X and two versions of the 2SLS estimator of

Tchetgen et al. (2015). Binary exposure and continuous instrument. Bias of β̂X , average estimated standard error,

sd(β̂X), in function of sample size n. Results for two versions (see text for details) of 2SLS estimator β̌1X and β̌2X
of Tchetgen et al. (2015) are also given.

n bias β̂X sd (β̂X) bias β̌1X sd (β̌1X) bias β̌2X sd (β̌2X)
1000 -0.002 0.117 0.069 0.117 0.039 0.100
2000 -0.002 0.079 0.067 0.079 0.038 0.068
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Table 4
HIP-study.

Control Screening group
Group

All Compl. Non-compl.

n 30565 30130 20146 9984


