1	Supplementary materials to		
2	Thermostability improvement of a Talaromyces leycettanus xylanase by		
3	semi-rational protein engineering		
4	Xiaoyu Wang ^{a,b} · Rui Ma ^a · Xiangming Xie ^a · Weina Liu ^a · Tao Tu ^a · Fei		
5	$Zheng^{a,b} \cdot Shuai You^{a} \cdot Jianzhong Ge^{a} \cdot Huifang Xie^{a} \cdot Bin Yao^{a,*} \cdot Huiying Luo^{a,*}$		
6			
7	Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed		
8	Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081,		
9	People's Republic of China ^a ; College of Biological Sciences and Biotechnology,		
10	Beijing Forestry University, Beijing 100083, People's Republic of China ^b		
11			
12	Corresponding authors. E-mail: binyao@caas.cn; luohuiying@caas.cn.		
13			
14			
15			
16			
17			
18			

Purification	Protein concentration	Total activity	Specific activity	Recovery rate
step	(µg/mL)	(U)	(U/mg)	(%)
Crude enzyme	86	340,600	6,600	-
Vivaflow	532	180,900	6,800	53
Anion exchange	384	164,300	8,600	48

19 Supplementary Table 1 Summary of the recombinant *Tl*Xyn11B purification

3

Primers	Sequences $(5' \rightarrow 3')^a$
<i>Tl</i> Xyn11BF	ATGGTGTCCTTCTCCTCCCCCGC
<i>Tl</i> Xyn11BR	CTAGGAAACAGTAATGGAAGAGGACCCG
<i>Tl</i> Xyn11B_EcoF	AC <u>GAATTC</u> GCTCCTAGCGAGCTCTCCAAACGC
<i>Tl</i> Xyn11B_NotR	ATTT <u>GCGGCCGC</u> CTAGGAAACAGTAATGGAAGAGGACCCG
<i>Tl</i> Xyn11B_T1-F	AC <u>GAATTC</u> CGCCAAACACTAACCTCAAGCTCC
<i>Tl</i> Xyn11B_T2-F	ACGAATTCACACTAACCTCAAGCTCCACTGGC
<i>Tl</i> Xyn11B_S3-F	AC <u>GAATTC</u> GCTCCTNNKGAGCTCTCCAAACGC
<i>Tl</i> Xyn11B_D35-F	GGAACGGTCNNKTACACTAATGGCAA
<i>Tl</i> Xyn11B_D35-R	ATTGCCATTAGTGTAMNNGACCGTTCC
5sAOX	TTGCGACTGGTTCCAATTGACAAGCTTTTG
3sAOX	TCCTCTTGATTAGAATCTAGCAAGACCGGTCTTC

22 Supplementary Table 2 Primers used in this study

^a The restriction sites are underlined

Supplementary Fig. 1 Homology modeling of *Tl*Xyn11B with the GH11
endo-1,4-β-xylanase from *T. cellulolyticus* (PDB: 3WP3) as template. The catalytic
residues, palm region and N-terminus are indicated.

46 supplementary Fig. 2 SDS-FAGE analysis of *Tr*AyITTB and its mutants. Eales. Wi,
47 the molecular mass standards; 1, the crude enzymes; 2, the purified recombinant
48 enzymes; 3, the deglycosylated enzymes with Endo H treatment.

52 Supplementary Fig. 3 MS identification of the purified recombinant *Tl*Xyn11B.