Crimped Nanofibrous Biomaterials Mimic Microstructure and Mechanics of Native Tissue and Alter Strain Transfer to Cells

Spencer E. Szczesny^{1#}, Tristan P. Driscoll^{1,2#}, Hsiao-Yun Tseng³, Pang-Ching Liu³, Su-Jin Heo^{1,2}, Robert L. Mauck^{1,2}, Pen-Hsiu G. Chao^{3*}

¹McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA

²Department of Bioengineering, University of Pennsylvania, Philadelphia, PA

³National Taiwan University School of Medicine and School of Engineering, Taipei, Taiwan

Contributed equally to this work.

*Address for Correspondence:

Pen-hsiu G. Chao, Ph.D. Associate Professor of Biomedical Engineering National Taiwan University 510 YongLin Building 49 Fanglan Road Taipei, Taiwan 106 Phone: 886.2.2732.8014 Email: pgchao@ntu.edu.tw

Number of pages: 2

Number of figures: 1

Supplementary Figures

Figure S1. Effect of scaffold treatment on cell infiltration. (A) Representative image of cell infiltration. Blue: cell nucleus, Scale bar = $50 \ \mu m$. (B) Washing out the PEO fibers significantly increased cell infiltration depth, which is indicative of an increase in scaffold porosity. (line: p<0.01 vs PLLA groups)