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Supplementary Figure 1: Binding of MarA to DNA fragments derived from ChIP-seq binding 

peaks for MarA. Panel a) illustrates results of electrophoretic mobility shift assays with different 

DNA fragments containing the marbox. Panel b shows binding of equivalent MarA concentrations  

to DNA fragments containing no marbox. MarA was added at a final concentration of 0.3, 1.0, and 

1.7 mM as indicated by the triangle. The location of free DNA, and DNA bound by MarA, is 

indicated. 
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Supplementary Figure 2. Phenotypic landscape of the MarA regulon. The heatmap illustrates fitness scores
29

 of strains lacking MarA target genes (y-axis) compared to the wild type parent strain. Red indicates 

a fitness decrease and pale blue indicates a fitness increase. Strains were grown in the presence of different antibiotics (x-axis). The antibiotics are clustered according to the cellular process targeted. Individual row 

and column names are provided. See reference 29 for further details.
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The figure shows b-galactosidase activities determined 

from lysates of strain T7 express carrying two plasmids. 

The first plasmid encoding marA under the control of an 

IPTG inducible promoter. The second plasmid is a 

pRW50 derivative carrying derivatives of the 

mlaFEDCB or xseA regulatory region fused to lacZ. 

Supplementary Figure 3: Activation of mlaFEDCB and xseA by increasing intracellular MarA: a 

requirement for the marbox. The result of a b-galactosidase assay done using lysates of T7 express cells 

transformed with derivatives of the lacZ reporter plasmid, pRW50. Activity values obtained using empty 

pRW50 vector have been subtracted. Additional MarA is provided by plasmid pET21amarA that encodes 

marA under the control of an IPTG inducible promoter. Error bars represent standard deviation (n=3). 
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Supplementary Figure 4: Complementation of the xseA::kan phenotype by xseA. The graph shows 

OD650 values obtained for liquid cultures of strain BW25113 xseA::kan grown in the presence or absence 

of 0.005 g/ml ciprofloxacin. The BW25113 xseA::kan cells were transformed with pBR322 derivatives 

encoding xseA under the control of the xseA1 fragment. Error bars represent standard deviation (n=3). 
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Supplementary Figure 5: 

Complementation of the xseA::kan 

phenotype requires XseA 

determinants for interaction with 

XseB. Panel a) shows a graphical 

illustration of XseA domain 

organisation. Mutations introduced 

into  pBR322 encoded xseA are 

shown below that schematic. In 

panel b) the graphs show OD650 

values for liquid cultures of strain 

BW25113 xseA::kan grown in the 

presence or absence of 0.005 g/ml 

ciprofloxacin. The BW25113 

xseA::kan cells were transformed 

with pBR322 derivatives encoding 

xseA under the control of the xseA1 

fragment. Error bars represent 

standard deviation (n=3). 
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Supplementary Figure 6: Effect of mlaFEDCB P1 promoter inactivation. Panel a) shows the 

DNA sequence of the mlaF1.1 and mlaF2.1 DNA fragments. The mlaF start codon is shown in blue 

and the marbox is in green. Transcription start sites (+1) are underlined and further highlighted by a 

bent arrow. The P1 promoter has been inactivated by changing the sequence of the -10 element from 

5'-TATTCT-3' to 5'-GGTTCT-3. The associated mutations are highlighted by the red box. Panel b) 

shows results of b-galactosidase assays using lysates of strain JCB387 transformed with pRW50 

carrying either the mlaF1.1 or mlaF2.1 fragment upstream of lacZ. Error bars represent standard 

deviation (n=3). 
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Supplementary Figure 7: Complementation of the mlaE::kan phenotype by mlaFEDCB. The graph 

shows OD650 values obtained for liquid cultures of strain BW25113 mlaE::kan grown in the presence or 

absence of 1.0 g/ml doxycycline. The BW25113 mlaE::kan cells were transformed with pBR322 

derivatives encoding mlaFEDCB under the control of the mlaF1 fragment. Error bars represent standard 

deviation (n=3). 
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Supplementary Figure 8: The mlaFEDCB 

marbox is required for effective barrier 

function and optimal surface hydrophobicity. 

Panel a) shows accumulation of doxycycline as a 

function of time for BW25113 mlaE::kan cells 

transformed with pBR322 encoding mlaFEDCB 

under the control of the mlaF1 (+marbox, solid 

line) or the mlaF2 (-marbox, dashed line) 

promoter fragments. Panel b) depicts changes in 

absorbance of an aqueous suspension of bacterial 

cells after mixing with p-xylene. The % 

absorbance is relative to that obtrained with no 

p-xylene, at equilibrium. Data points are 

coloured as in panel a). The indicated volume of 

p-xylene is shown on the x-axis. The bar graph 

(c) shows relative crystal violet adsorption by 

BW25113 mlaE::kan cells transformed with 

pBR322 encoding mlaFEDCB under the control 

of the mlaF1 (solid bar) or the mlaF2 (open bar). 

Error bars represent standard deviation (n=3). 
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Supplementary Figure 9: Rob binds DNA with high affinity but low specificity. Panel a) shows 

the results of an electrophoretic mobility shift assay. Proteins (0.4, 1.2 or 2 M) were incubated with 

the PestA1 DNA fragment  that does not contain a marbox. Panel b) shows binding of MarA and 

SoxS (0.4, 1.2 or 2 M) or Rob (0.08, 0.24 or 0.4 M) to a DNA fragment containing the marRAB 

promoter.  
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Supplementary Figure 10: The xseA and mlaFEDCB and regulatory regions preferentially bind 

MarA rather than SoxS. The figure shows binding of MarA, Rob or SoxS to the a) xseA1 or b) mlaF1 

DNA fragments. For each experiment, the % free DNA was determined for each protein concentration as 

illustrated in the line graphs. 
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Supplementary Figure 11: Uncropped gel images. The images correspond to gels presented in a) Figure 2 

b) Figure 3 c) Supplementary Fig. 1 and d) Supplementary Fig. S9-10.  
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